2008 |
50 | EE | Harry Buhrman,
John M. Hitchcock:
NP-Hard Sets Are Exponentially Dense Unless coNP C NP/poly.
IEEE Conference on Computational Complexity 2008: 1-7 |
49 | EE | John M. Hitchcock,
Aduri Pavan:
Hardness Hypotheses, Derandomization, and Circuit Complexity.
Computational Complexity 17(1): 119-146 (2008) |
48 | EE | Harry Buhrman,
John M. Hitchcock:
NP-Hard Sets are Exponentially Dense Unless NP is contained in coNP/poly.
Electronic Colloquium on Computational Complexity (ECCC) 15(022): (2008) |
47 | EE | John M. Hitchcock,
Aduri Pavan,
N. V. Vinodchandran:
Partial Bi-immunity, Scaled Dimension, and NP-Completeness.
Theory Comput. Syst. 42(2): 131-142 (2008) |
2007 |
46 | EE | Ryan C. Harkins,
John M. Hitchcock:
Dimension, Halfspaces, and the Density of Hard Sets.
COCOON 2007: 129-139 |
45 | EE | Ryan C. Harkins,
John M. Hitchcock,
Aduri Pavan:
Strong Reductions and Isomorphism of Complete Sets.
FSTTCS 2007: 168-178 |
44 | EE | John M. Hitchcock,
Jack H. Lutz,
Sebastiaan Terwijn:
The arithmetical complexity of dimension and randomness.
ACM Trans. Comput. Log. 8(2): (2007) |
43 | EE | John M. Hitchcock,
Aduri Pavan:
Comparing reductions to NP-complete sets.
Inf. Comput. 205(5): 694-706 (2007) |
42 | EE | John M. Hitchcock:
Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets.
SIAM J. Comput. 36(6): 1696-1708 (2007) |
41 | EE | Krishna B. Athreya,
John M. Hitchcock,
Jack H. Lutz,
Elvira Mayordomo:
Effective Strong Dimension in Algorithmic Information and Computational Complexity.
SIAM J. Comput. 37(3): 671-705 (2007) |
40 | EE | Ryan C. Harkins,
John M. Hitchcock:
Upward separations and weaker hypotheses in resource-bounded measure.
Theor. Comput. Sci. 389(1-2): 162-171 (2007) |
2006 |
39 | EE | Lance Fortnow,
John M. Hitchcock,
Aduri Pavan,
N. V. Vinodchandran,
Fengming Wang:
Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws.
ICALP (1) 2006: 335-345 |
38 | EE | John M. Hitchcock,
Aduri Pavan:
Comparing Reductions to NP-Complete Sets.
ICALP (1) 2006: 465-476 |
37 | EE | John M. Hitchcock:
Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets.
STACS 2006: 408-419 |
36 | EE | John M. Hitchcock,
Aduri Pavan:
Comparing Reductions to NP-Complete Sets.
Electronic Colloquium on Computational Complexity (ECCC) 13(039): (2006) |
35 | EE | John M. Hitchcock,
Aduri Pavan:
Hardness Hypotheses, Derandomization, and Circuit Complexity.
Electronic Colloquium on Computational Complexity (ECCC) 13(071): (2006) |
34 | EE | John M. Hitchcock,
N. V. Vinodchandran:
Dimension, entropy rates, and compression.
J. Comput. Syst. Sci. 72(4): 760-782 (2006) |
33 | EE | John M. Hitchcock:
Hausdorff dimension and oracle constructions.
Theor. Comput. Sci. 355(3): 382-388 (2006) |
32 | EE | John M. Hitchcock,
Jack H. Lutz:
Why Computational Complexity Requires Stricter Martingales.
Theory Comput. Syst. 39(2): 277-296 (2006) |
2005 |
31 | EE | John M. Hitchcock:
Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets
CoRR abs/cs/0512053: (2005) |
30 | EE | Lance Fortnow,
John M. Hitchcock,
Aduri Pavan,
N. V. Vinodchandran,
Fengming Wang:
Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws
Electronic Colloquium on Computational Complexity (ECCC)(105): (2005) |
29 | EE | John M. Hitchcock:
Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets
Electronic Colloquium on Computational Complexity (ECCC)(161): (2005) |
28 | EE | John M. Hitchcock,
Aduri Pavan:
Resource-bounded strong dimension versus resource-bounded category.
Inf. Process. Lett. 95(3): 377-381 (2005) |
27 | EE | Chris Bourke,
John M. Hitchcock,
N. V. Vinodchandran:
Entropy rates and finite-state dimension.
Theor. Comput. Sci. 349(3): 392-406 (2005) |
26 | EE | John M. Hitchcock:
Correspondence Principles for Effective Dimensions.
Theory Comput. Syst. 38(5): 559-571 (2005) |
2004 |
25 | EE | John M. Hitchcock,
Aduri Pavan:
Hardness Hypotheses, Derandomization, and Circuit Complexity.
FSTTCS 2004: 336-347 |
24 | EE | John M. Hitchcock:
Small Spans in Scaled Dimension.
IEEE Conference on Computational Complexity 2004: 104-112 |
23 | EE | John M. Hitchcock,
N. V. Vinodchandran:
Dimension, Entropy Rates, and Compression.
IEEE Conference on Computational Complexity 2004: 174-183 |
22 | EE | John M. Hitchcock,
Aduri Pavan,
N. V. Vinodchandran:
Partial Bi-immunity and NP-Completeness.
IEEE Conference on Computational Complexity 2004: 198-203 |
21 | EE | John M. Hitchcock,
María López-Valdés,
Elvira Mayordomo:
Scaled Dimension and the Kolmogorov Complexity of Turing-Hard Sets.
MFCS 2004: 476-487 |
20 | EE | Krishna B. Athreya,
John M. Hitchcock,
Jack H. Lutz,
Elvira Mayordomo:
Effective Strong Dimension in Algorithmic Information and Computational Complexity.
STACS 2004: 632-643 |
19 | EE | John M. Hitchcock,
Jack H. Lutz,
Sebastiaan Terwijn:
The Arithmetical Complexity of Dimension and Randomness
CoRR cs.LO/0408043: (2004) |
18 | EE | John M. Hitchcock,
Aduri Pavan,
Pramodchandran N. Variyam:
Partial Bi-Immunity and NP-Completeness
Electronic Colloquium on Computational Complexity (ECCC)(025): (2004) |
17 | EE | John M. Hitchcock,
María López-Valdés,
Elvira Mayordomo:
Scaled dimension and the Kolmogorov complexity of Turing hard sets
Electronic Colloquium on Computational Complexity (ECCC)(029): (2004) |
16 | EE | John M. Hitchcock:
Hausdorff Dimension and Oracle Constructions
Electronic Colloquium on Computational Complexity (ECCC)(072): (2004) |
15 | EE | John M. Hitchcock,
Jack H. Lutz,
Sebastiaan Terwijn:
The Arithmetical Complexity of Dimension and Randomness
Electronic Colloquium on Computational Complexity (ECCC)(079): (2004) |
14 | EE | John M. Hitchcock,
Jack H. Lutz,
Elvira Mayordomo:
Scaled dimension and nonuniform complexity.
J. Comput. Syst. Sci. 69(2): 97-122 (2004) |
13 | EE | John M. Hitchcock:
Small Spans in Scaled Dimension.
SIAM J. Comput. 34(1): 170-194 (2004) |
12 | EE | John M. Hitchcock:
The size of SPP.
Theor. Comput. Sci. 320(2-3): 495-503 (2004) |
2003 |
11 | EE | John M. Hitchcock,
Jack H. Lutz,
Sebastiaan Terwijn:
The Arithmetical Complexity of Dimension and Randomness.
CSL 2003: 241-254 |
10 | EE | John M. Hitchcock,
Jack H. Lutz,
Elvira Mayordomo:
Scaled Dimension and Nonuniform Complexity.
ICALP 2003: 278-290 |
9 | EE | John M. Hitchcock:
Small Spans in Scaled Dimension
CoRR cs.CC/0304030: (2003) |
8 | EE | John M. Hitchcock:
The Size of SPP
Electronic Colloquium on Computational Complexity (ECCC)(063): (2003) |
7 | EE | John M. Hitchcock:
Gales suffice for constructive dimension.
Inf. Process. Lett. 86(1): 9-12 (2003) |
6 | EE | John M. Hitchcock:
Fractal dimension and logarithmic loss unpredictability.
Theor. Comput. Sci. 1-3(304): 431-441 (2003) |
2002 |
5 | EE | John M. Hitchcock,
Jack H. Lutz:
Why Computational Complexity Requires Stricter Martingales.
ICALP 2002: 549-560 |
4 | EE | John M. Hitchcock:
Correspondence Principles for Effective Dimensions.
ICALP 2002: 561-571 |
3 | EE | John M. Hitchcock:
Gales Suffice for Constructive Dimension
CoRR cs.CC/0208043: (2002) |
2 | EE | Krishna B. Athreya,
John M. Hitchcock,
Jack H. Lutz,
Elvira Mayordomo:
Effective Strong Dimension, Algorithmic Information, and Computational Complexity
CoRR cs.CC/0211025: (2002) |
1 | | John M. Hitchcock:
MAX3SAT is exponentially hard to approximate if NP has positive dimension.
Theor. Comput. Sci. 289(1): 861-869 (2002) |