dblp.uni-trier.dewww.uni-trier.de

Andreas Goerdt

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

2007
45EEAmin Coja-Oghlan, Andreas Goerdt, André Lanka: Strong Refutation Heuristics for Random k-SAT. Combinatorics, Probability & Computing 16(1): 5-28 (2007)
2006
44EEAmin Coja-Oghlan, Andreas Goerdt, André Lanka: Spectral Partitioning of Random Graphs with Given Expected Degrees. IFIP TCS 2006: 271-282
2005
43EEJoel Friedman, Andreas Goerdt, Michael Krivelevich: Recognizing More Unsatisfiable Random k-SAT Instances Efficiently. SIAM J. Comput. 35(2): 408-430 (2005)
2004
42EEAmin Coja-Oghlan, Andreas Goerdt, André Lanka: Strong Refutation Heuristics for Random k-SAT. APPROX-RANDOM 2004: 310-321
41EEAndreas Goerdt, André Lanka: On the Hardness and Easiness of Random 4-SAT Formulas. ISAAC 2004: 470-483
40EEAndré Lanka, Andreas Goerdt: An approximation hardness result for bipartite Clique Electronic Colloquium on Computational Complexity (ECCC)(048): (2004)
39EEAmin Coja-Oghlan, Andreas Goerdt, André Lanka, Frank Schädlich: Techniques from combinatorial approximation algorithms yield efficient algorithms for random 2k-SAT. Theor. Comput. Sci. 329(1-3): 1-45 (2004)
2003
38EEAmin Coja-Oghlan, Andreas Goerdt, André Lanka, Frank Schädlich: Certifying Unsatisfiability of Random 2k-SAT Formulas Using Approximation Techniques. FCT 2003: 15-26
37 Andreas Goerdt, Tomasz Jurdzinski: Some Results On Random Unsatisfiable K-Sat Instances And Approximation Algorithms Applied To Random Structures. Combinatorics, Probability & Computing 12(3): (2003)
36EEAmin Coja-Oghlan, Andreas Goerdt, André Lanka, Frank Schädlich: Certifying Unsatisfiability of Random 2k-SAT Formulas using Approximation Techniques Electronic Colloquium on Computational Complexity (ECCC) 10(030): (2003)
35EEAndreas Goerdt, André Lanka: Recognizing more random unsatisfiable 3-SAT instances efficiently. Electronic Notes in Discrete Mathematics 16: 21-46 (2003)
34EEAndreas Goerdt, Michael Molloy: Analysis of edge deletion processes on faulty random regular graphs. Theor. Comput. Sci. 297(1-3): 241-260 (2003)
2002
33EEAndreas Goerdt, Tomasz Jurdzinski: Some Results on Random Unsatisfiable k-Sat Instances and Approximation Algorithms Applied to Random Structures. MFCS 2002: 280-291
32 Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg, Christos H. Papadimitriou, Prabhakar Raghavan, Uwe Schöning: A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search. Theor. Comput. Sci. 289(1): 69-83 (2002)
2001
31EEJoel Friedman, Andreas Goerdt: Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently. ICALP 2001: 310-321
30EEAndreas Goerdt, Michael Krivelevich: Efficient Recognition of Random Unsatisfiable k-SAT Instances by Spectral Methods. STACS 2001: 294-304
29EEAndreas Goerdt: The giant component threshold for random regular graphs with edge faults H. Prodinger. Theor. Comput. Sci. 259(1-2): 307-321 (2001)
28EEAndreas Goerdt: Random regular graphs with edge faults: Expansion through cores. Theor. Comput. Sci. 264(1): 91-125 (2001)
2000
27EEEvgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Uwe Schöning: Deterministic Algorithms for k-SAT Based on Covering Codes and Local Search. ICALP 2000: 236-247
26 Andreas Goerdt, Michael Molloy: Analysis of Edge Deletion Processes on Faulty Random Regular Graphs. LATIN 2000: 38-47
1999
25EEAndreas Goerdt: A Remark on Random 2-SAT. Discrete Applied Mathematics 96-97: 107-110 (1999)
1998
24EEAndreas Goerdt: Random Regular Graphs with Edge Faults: Expansion through Cores. ISAAC 1998: 219-228
1997
23 Andreas Goerdt: The Giant Component Threshold for Random Regular Graphs with Edge Faults. MFCS 1997: 279-288
1996
22 Andreas Goerdt: A Threshold for Unsatisfiability. J. Comput. Syst. Sci. 53(3): 469-486 (1996)
1993
21 Andreas Goerdt, Udo Kamps: On the Reasons for Average Superlinear Speedup in Parallel Backtrack Search. CSL 1993: 106-127
20 Andreas Goerdt: Regular Resolution Versus Unrestricted Resolution. SIAM J. Comput. 22(4): 661-683 (1993)
1992
19 Andreas Goerdt: A Treshold for Unsatisfiability. MFCS 1992: 264-274
18 Andreas Goerdt: Davis-Putnam Resolution versus Unrestricted Resolution. Ann. Math. Artif. Intell. 6(1-3): 169-184 (1992)
17 Andreas Goerdt: Characterizing Complexity Classes by General Recursive Definitions in Higher Types Inf. Comput. 101(2): 202-218 (1992)
16 Andreas Goerdt: Characterizing Complexity Classes by Higher Type Primitive Recursive Definitions. Theor. Comput. Sci. 100(1): 45-66 (1992)
15 Andreas Goerdt: Unrestricted Resolution versus N-Resolution. Theor. Comput. Sci. 93(1): 159-167 (1992)
1991
14 Andreas Goerdt: The Cutting Plane Proof System with Bounded Degree of Falsity. CSL 1991: 119-133
1990
13 Andreas Goerdt: Cuting Plane Versus Frege Proof Systems. CSL 1990: 174-194
12 Andreas Goerdt: Comparing the Complexity of Regular and Unrestricted Resolution. GWAI 1990: 181-185
11 Andreas Goerdt, Helmut Seidl: Characterizing Complexity Classes by Higher Type Primitive Recursive Definitions, Part II. IMYCS 1990: 148-158
10 Andreas Goerdt: Unrestricted Resolution versus N-Resolution. MFCS 1990: 300-305
1989
9 Andreas Goerdt: Davis-Putnam Resolution versus Unrestricted Resolution. CSL 1989: 143-162
8 Andreas Goerdt: Characterizing Complexity Classes By Higher Type Primitive Recursive Definitions LICS 1989: 364-374
1988
7 Andreas Goerdt: Characterizing Complexity Classes by General Recursive Definitions in Higher Types. CSL 1988: 99-117
6 Andreas Goerdt: On the Expressive Strength of the Finitely Typed Lambda-Terms. MFCS 1988: 318-328
5 Andreas Goerdt: Hoare Calculi for Higher-Type Control Structures and Their Completeness in the Sense of Cook. MFCS 1988: 329-338
1987
4 Andreas Goerdt: Hoare Logic for Lambda-Terms as Basis of Hoare Logic for Imperative Languages LICS 1987: 293-299
1986
3 Werner Damm, Andreas Goerdt: An Automata-Theoretical Characterization of the OI-Hierarchy Information and Control 71(1/2): 1-32 (1986)
1985
2 Andreas Goerdt: A Hoare Calculus for Functions Defined by Recursion on Higher Types. Logic of Programs 1985: 106-117
1982
1 Werner Damm, Andreas Goerdt: An Automata-Theoretic Characterization of the OI-Hierarchy. ICALP 1982: 141-153

Coauthor Index

1Amin Coja-Oghlan [36] [38] [39] [42] [44] [45]
2Werner Damm [1] [3]
3Evgeny Dantsin [27] [32]
4Joel Friedman [31] [43]
5Edward A. Hirsch [27] [32]
6Tomasz Jurdzinski [33] [37]
7Udo Kamps [21]
8Ravi Kannan (Ravindran Kannan) [32]
9Jon M. Kleinberg [32]
10Michael Krivelevich [30] [43]
11André Lanka [35] [36] [38] [39] [40] [41] [42] [44] [45]
12Michael Molloy (Michael S. O. Molloy) [26] [34]
13Christos H. Papadimitriou [32]
14Prabhakar Raghavan [32]
15Frank Schädlich [36] [38] [39]
16Uwe Schöning [27] [32]
17Helmut Seidl [11]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)