2007 |
45 | EE | Amin Coja-Oghlan,
Andreas Goerdt,
André Lanka:
Strong Refutation Heuristics for Random k-SAT.
Combinatorics, Probability & Computing 16(1): 5-28 (2007) |
2006 |
44 | EE | Amin Coja-Oghlan,
Andreas Goerdt,
André Lanka:
Spectral Partitioning of Random Graphs with Given Expected Degrees.
IFIP TCS 2006: 271-282 |
2005 |
43 | EE | Joel Friedman,
Andreas Goerdt,
Michael Krivelevich:
Recognizing More Unsatisfiable Random k-SAT Instances Efficiently.
SIAM J. Comput. 35(2): 408-430 (2005) |
2004 |
42 | EE | Amin Coja-Oghlan,
Andreas Goerdt,
André Lanka:
Strong Refutation Heuristics for Random k-SAT.
APPROX-RANDOM 2004: 310-321 |
41 | EE | Andreas Goerdt,
André Lanka:
On the Hardness and Easiness of Random 4-SAT Formulas.
ISAAC 2004: 470-483 |
40 | EE | André Lanka,
Andreas Goerdt:
An approximation hardness result for bipartite Clique
Electronic Colloquium on Computational Complexity (ECCC)(048): (2004) |
39 | EE | Amin Coja-Oghlan,
Andreas Goerdt,
André Lanka,
Frank Schädlich:
Techniques from combinatorial approximation algorithms yield efficient algorithms for random 2k-SAT.
Theor. Comput. Sci. 329(1-3): 1-45 (2004) |
2003 |
38 | EE | Amin Coja-Oghlan,
Andreas Goerdt,
André Lanka,
Frank Schädlich:
Certifying Unsatisfiability of Random 2k-SAT Formulas Using Approximation Techniques.
FCT 2003: 15-26 |
37 | | Andreas Goerdt,
Tomasz Jurdzinski:
Some Results On Random Unsatisfiable K-Sat Instances And Approximation Algorithms Applied To Random Structures.
Combinatorics, Probability & Computing 12(3): (2003) |
36 | EE | Amin Coja-Oghlan,
Andreas Goerdt,
André Lanka,
Frank Schädlich:
Certifying Unsatisfiability of Random 2k-SAT Formulas using Approximation Techniques
Electronic Colloquium on Computational Complexity (ECCC) 10(030): (2003) |
35 | EE | Andreas Goerdt,
André Lanka:
Recognizing more random unsatisfiable 3-SAT instances efficiently.
Electronic Notes in Discrete Mathematics 16: 21-46 (2003) |
34 | EE | Andreas Goerdt,
Michael Molloy:
Analysis of edge deletion processes on faulty random regular graphs.
Theor. Comput. Sci. 297(1-3): 241-260 (2003) |
2002 |
33 | EE | Andreas Goerdt,
Tomasz Jurdzinski:
Some Results on Random Unsatisfiable k-Sat Instances and Approximation Algorithms Applied to Random Structures.
MFCS 2002: 280-291 |
32 | | Evgeny Dantsin,
Andreas Goerdt,
Edward A. Hirsch,
Ravi Kannan,
Jon M. Kleinberg,
Christos H. Papadimitriou,
Prabhakar Raghavan,
Uwe Schöning:
A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search.
Theor. Comput. Sci. 289(1): 69-83 (2002) |
2001 |
31 | EE | Joel Friedman,
Andreas Goerdt:
Recognizing More Unsatisfiable Random 3-SAT Instances Efficiently.
ICALP 2001: 310-321 |
30 | EE | Andreas Goerdt,
Michael Krivelevich:
Efficient Recognition of Random Unsatisfiable k-SAT Instances by Spectral Methods.
STACS 2001: 294-304 |
29 | EE | Andreas Goerdt:
The giant component threshold for random regular graphs with edge faults H. Prodinger.
Theor. Comput. Sci. 259(1-2): 307-321 (2001) |
28 | EE | Andreas Goerdt:
Random regular graphs with edge faults: Expansion through cores.
Theor. Comput. Sci. 264(1): 91-125 (2001) |
2000 |
27 | EE | Evgeny Dantsin,
Andreas Goerdt,
Edward A. Hirsch,
Uwe Schöning:
Deterministic Algorithms for k-SAT Based on Covering Codes and Local Search.
ICALP 2000: 236-247 |
26 | | Andreas Goerdt,
Michael Molloy:
Analysis of Edge Deletion Processes on Faulty Random Regular Graphs.
LATIN 2000: 38-47 |
1999 |
25 | EE | Andreas Goerdt:
A Remark on Random 2-SAT.
Discrete Applied Mathematics 96-97: 107-110 (1999) |
1998 |
24 | EE | Andreas Goerdt:
Random Regular Graphs with Edge Faults: Expansion through Cores.
ISAAC 1998: 219-228 |
1997 |
23 | | Andreas Goerdt:
The Giant Component Threshold for Random Regular Graphs with Edge Faults.
MFCS 1997: 279-288 |
1996 |
22 | | Andreas Goerdt:
A Threshold for Unsatisfiability.
J. Comput. Syst. Sci. 53(3): 469-486 (1996) |
1993 |
21 | | Andreas Goerdt,
Udo Kamps:
On the Reasons for Average Superlinear Speedup in Parallel Backtrack Search.
CSL 1993: 106-127 |
20 | | Andreas Goerdt:
Regular Resolution Versus Unrestricted Resolution.
SIAM J. Comput. 22(4): 661-683 (1993) |
1992 |
19 | | Andreas Goerdt:
A Treshold for Unsatisfiability.
MFCS 1992: 264-274 |
18 | | Andreas Goerdt:
Davis-Putnam Resolution versus Unrestricted Resolution.
Ann. Math. Artif. Intell. 6(1-3): 169-184 (1992) |
17 | | Andreas Goerdt:
Characterizing Complexity Classes by General Recursive Definitions in Higher Types
Inf. Comput. 101(2): 202-218 (1992) |
16 | | Andreas Goerdt:
Characterizing Complexity Classes by Higher Type Primitive Recursive Definitions.
Theor. Comput. Sci. 100(1): 45-66 (1992) |
15 | | Andreas Goerdt:
Unrestricted Resolution versus N-Resolution.
Theor. Comput. Sci. 93(1): 159-167 (1992) |
1991 |
14 | | Andreas Goerdt:
The Cutting Plane Proof System with Bounded Degree of Falsity.
CSL 1991: 119-133 |
1990 |
13 | | Andreas Goerdt:
Cuting Plane Versus Frege Proof Systems.
CSL 1990: 174-194 |
12 | | Andreas Goerdt:
Comparing the Complexity of Regular and Unrestricted Resolution.
GWAI 1990: 181-185 |
11 | | Andreas Goerdt,
Helmut Seidl:
Characterizing Complexity Classes by Higher Type Primitive Recursive Definitions, Part II.
IMYCS 1990: 148-158 |
10 | | Andreas Goerdt:
Unrestricted Resolution versus N-Resolution.
MFCS 1990: 300-305 |
1989 |
9 | | Andreas Goerdt:
Davis-Putnam Resolution versus Unrestricted Resolution.
CSL 1989: 143-162 |
8 | | Andreas Goerdt:
Characterizing Complexity Classes By Higher Type Primitive Recursive Definitions
LICS 1989: 364-374 |
1988 |
7 | | Andreas Goerdt:
Characterizing Complexity Classes by General Recursive Definitions in Higher Types.
CSL 1988: 99-117 |
6 | | Andreas Goerdt:
On the Expressive Strength of the Finitely Typed Lambda-Terms.
MFCS 1988: 318-328 |
5 | | Andreas Goerdt:
Hoare Calculi for Higher-Type Control Structures and Their Completeness in the Sense of Cook.
MFCS 1988: 329-338 |
1987 |
4 | | Andreas Goerdt:
Hoare Logic for Lambda-Terms as Basis of Hoare Logic for Imperative Languages
LICS 1987: 293-299 |
1986 |
3 | | Werner Damm,
Andreas Goerdt:
An Automata-Theoretical Characterization of the OI-Hierarchy
Information and Control 71(1/2): 1-32 (1986) |
1985 |
2 | | Andreas Goerdt:
A Hoare Calculus for Functions Defined by Recursion on Higher Types.
Logic of Programs 1985: 106-117 |
1982 |
1 | | Werner Damm,
Andreas Goerdt:
An Automata-Theoretic Characterization of the OI-Hierarchy.
ICALP 1982: 141-153 |