2008 |
23 | | Matthias Dehmer,
Michael Drmota,
Frank Emmert-Streib:
Proceedings of the 2008 International Conference on Information Theory and Statistical Learning, ITSL 2008, Las Vegas, Nevada, USA, July 14-17, 2008
CSREA Press 2008 |
22 | | Frank Emmert-Streib,
Andre Ribeiro:
Optimize Observational Time Points to Maximize the Inferability of Gene Networks.
BIOCOMP 2008: 55-60 |
21 | EE | Frank Emmert-Streib,
Hamid R. Arabnia,
Mary Qu Yang:
Preface.
Applied Artificial Intelligence 22(7&8): 617-618 (2008) |
20 | EE | Matthias Dehmer,
Frank Emmert-Streib,
Tanja Gesell:
A comparative analysis of multidimensional features of objects resembling sets of graphs.
Applied Mathematics and Computation 196(1): 221-235 (2008) |
19 | EE | Matthias Dehmer,
Frank Emmert-Streib:
Structural information content of networks: Graph entropy based on local vertex functionals.
Computational Biology and Chemistry 32(2): 131-138 (2008) |
2007 |
18 | | Hamid R. Arabnia,
Matthias Dehmer,
Frank Emmert-Streib,
Mary Qu Yang:
Proceedings of the 2007 International Conference on Machine Learning; Models, Technologies & Applications, MLMTA 2007, June 25-28, 2007, Las Vegas Nevada, USA
CSREA Press 2007 |
17 | EE | Frank Emmert-Streib,
Matthias Dehmer:
Optimization Procedure for Predicting Nonlinear Time Series Based on a Non-Gaussian Noise Model.
MICAI 2007: 540-549 |
16 | | Matthias Dehmer,
Frank Emmert-Streib,
Andreas Zulauf:
A Graph Mining Technique for Automatic Classification of Web Genre Data.
MLMTA 2007: 10-16 |
15 | | Matthias Dehmer,
Alexander Mehler,
Frank Emmert-Streib:
Graph-theoretical Characterizations of Generalized Trees.
MLMTA 2007: 113-117 |
14 | EE | Frank Emmert-Streib,
Matthias Dehmer:
Topological mappings between graphs, trees and generalized trees.
Applied Mathematics and Computation 186(2): 1326-1333 (2007) |
13 | EE | Matthias Dehmer,
Frank Emmert-Streib:
Comparing large graphs efficiently by margins of feature vectors.
Applied Mathematics and Computation 188(2): 1699-1710 (2007) |
12 | EE | Frank Emmert-Streib,
Matthias Dehmer:
Information theoretic measures of UHG graphs with low computational complexity.
Applied Mathematics and Computation 190(2): 1783-1794 (2007) |
11 | EE | Matthias Dehmer,
Frank Emmert-Streib:
Structural similarity of directed universal hierarchical graphs: A low computational complexity approach.
Applied Mathematics and Computation 194(1): 7-20 (2007) |
10 | EE | Frank Emmert-Streib:
The Chronic Fatigue Syndrome: A Comparative Pathway Analysis.
Journal of Computational Biology 14(7): 961-972 (2007) |
2006 |
9 | | Frank Emmert-Streib,
Matthias Dehmer:
Theoretical Bounds for the Number of Inferable Edges in Sparse Random Networks.
BIOCOMP 2006: 472-476 |
8 | | Frank Emmert-Streib,
Matthias Dehmer,
Chris Seidel:
Influence of Prior Information on the Reconstruction of the Yeast Cell Cycle from Microarray Data.
BIOCOMP 2006: 477-482 |
7 | EE | Frank Emmert-Streib:
A Novel Stochastic Learning Rule for Neural Networks.
ISNN (1) 2006: 414-423 |
6 | EE | Matthias Dehmer,
Frank Emmert-Streib,
Jürgen Kilian:
A similarity measure for graphs with low computational complexity.
Applied Mathematics and Computation 182(1): 447-459 (2006) |
5 | EE | Frank Emmert-Streib:
Algorithmic Computation of Knot Polynomials of Secondary Structure Elements of Proteins.
Journal of Computational Biology 13(8): 1503-1512 (2006) |
4 | EE | Frank Emmert-Streib:
Influence of the neural network topology on the learning dynamics.
Neurocomputing 69(10-12): 1179-1182 (2006) |
2005 |
3 | | Frank Emmert-Streib,
Matthias Dehmer,
Jürgen Kilian:
Classification of Large Graphs by a Local Tree Decomposition.
DMIN 2005: 200-207 |
2 | EE | Frank Emmert-Streib:
A Neurobiologically Motivated Model for Self-organized Learning.
MICAI 2005: 415-424 |
2001 |
1 | EE | Jens R. Otterpohl,
Frank Emmert-Streib,
Klaus Pawelzik:
A constrained HMM-based approach to the estimation of perceptual switching dynamics in pigeons.
Neurocomputing 38-40: 1495-1501 (2001) |