| 2009 |
| 28 | EE | James D. Currie,
Ali Aberkane:
A cyclic binary morphism avoiding Abelian fourth powers.
Theor. Comput. Sci. 410(1): 44-52 (2009) |
| 2008 |
| 27 | EE | James D. Currie:
Palindrome positions in ternary square-free words.
Theor. Comput. Sci. 396(1-3): 254-257 (2008) |
| 26 | EE | James D. Currie,
Terry I. Visentin:
Long binary patterns are Abelian 2-avoidable.
Theor. Comput. Sci. 409(3): 432-437 (2008) |
| 2007 |
| 25 | EE | James D. Currie,
Terry I. Visentin:
On Abelian 2-avoidable binary patterns.
Acta Inf. 43(8): 521-533 (2007) |
| 24 | EE | M. Mohammad-Noori,
James D. Currie:
Dejean's conjecture and Sturmian words.
Eur. J. Comb. 28(3): 876-890 (2007) |
| 2006 |
| 23 | EE | James D. Currie,
Narad Rampersad,
Jeffrey Shallit:
Binary Words Containing Infinitely Many Overlaps.
Electr. J. Comb. 13(1): (2006) |
| 2005 |
| 22 | EE | Ali Aberkane,
James D. Currie:
The Thue-Morse word contains circular 5/2+ power free words of every length.
Theor. Comput. Sci. 332(1-3): 573-581 (2005) |
| 21 | EE | James D. Currie:
Pattern avoidance: themes and variations.
Theor. Comput. Sci. 339(1): 7-18 (2005) |
| 2004 |
| 20 | EE | Ali Aberkane,
James D. Currie:
There Exist Binary Circular 5/2+; Power Free Words of Every Length.
Electr. J. Comb. 11(1): (2004) |
| 19 | EE | James D. Currie:
The number of binary words avoiding abelian fourth powers grows exponentially.
Theor. Comput. Sci. 319(1-3): 441-446 (2004) |
| 2003 |
| 18 | | James D. Currie:
What Is the Abelian Analogue of Dejean's Conjecture?
Grammars and Automata for String Processing 2003: 237-242 |
| 17 | EE | James D. Currie,
Erica Moodie:
A word on 7 letters which is non-repetitive up to mod 5.
Acta Inf. 39(6-7): 451-468 (2003) |
| 16 | EE | James D. Currie,
Cameron W. Pierce:
The Fixing Block Method in Combinatorics on Words.
Combinatorica 23(4): 571-584 (2003) |
| 15 | EE | James D. Currie,
Robert O. Shelton:
The set of k-power free words over sigma is empty or perfect, .
Eur. J. Comb. 24(5): 573-580 (2003) |
| 2002 |
| 14 | EE | James D. Currie,
D. Sean Fitzpatrick:
Circular Words Avoiding Patterns.
Developments in Language Theory 2002: 319-325 |
| 13 | EE | James D. Currie:
No iterated morphism generates any Arshon sequence of odd order.
Discrete Mathematics 259(1-3): 277-283 (2002) |
| 12 | EE | James D. Currie,
Jamie Simpson:
Non-Repetitive Tilings.
Electr. J. Comb. 9(1): (2002) |
| 11 | EE | James D. Currie:
There Are Ternary Circular Square-Free Words of Length n for n >= 18.
Electr. J. Comb. 9(1): (2002) |
| 10 | EE | James D. Currie,
Terry I. Visentin:
Counting Endomorphisms of Crown-like Orders.
Order 19(4): 305-317 (2002) |
| 1999 |
| 9 | EE | Julien Cassaigne,
James D. Currie:
Words Strongly Avoiding Fractional Powers.
Eur. J. Comb. 20(8): 725-737 (1999) |
| 8 | | James D. Currie,
Holger Petersen,
John Michael Robson,
Jeffrey Shallit:
Seperating Words with Small Grammars.
Journal of Automata, Languages and Combinatorics 4(2): 101-110 (1999) |
| 1998 |
| 7 | EE | Jean-Paul Allouche,
James D. Currie,
Jeffrey Shallit:
Extremal Infinite Overlap-Free Binary Words.
Electr. J. Comb. 5: (1998) |
| 1996 |
| 6 | | James D. Currie:
Non-Repetitive Words: Ages and Essences.
Combinatorica 16(1): 19-40 (1996) |
| 5 | | James D. Currie,
Robert O. Shelton:
Cantor Sets and Dejean's Conjecture.
Journal of Automata, Languages and Combinatorics 1(2): 113-128 (1996) |
| 1995 |
| 4 | | James D. Currie,
Robert O. Shelton:
Cantor Sets and Dejean's Conjecture.
Developments in Language Theory 1995: 35-43 |
| 3 | EE | James D. Currie:
A Note on Antichains of Words.
Electr. J. Comb. 2: (1995) |
| 1992 |
| 2 | EE | James D. Currie:
Connectivity of distance graphs.
Discrete Mathematics 103(1): 91-94 (1992) |
| 1991 |
| 1 | EE | James D. Currie:
Which graphs allow infinite nonrepetitive walks?
Discrete Mathematics 87(3): 249-260 (1991) |