1998 | ||
---|---|---|
15 | EE | G. F. Clements: Yet another generalization of the Kruskal-Katona theorem. Discrete Mathematics 184(1-3): 61-70 (1998) |
1997 | ||
14 | EE | G. F. Clements: The cubical poset is additive. Discrete Mathematics 169(1-3): 17-28 (1997) |
13 | EE | G. F. Clements: Characterizing Profiles ofk-Families in Additive Macaulay Posets. J. Comb. Theory, Ser. A 80(2): 309-319 (1997) |
1994 | ||
12 | G. F. Clements: Another Generalization of the Kruskal - Katona Theorem. J. Comb. Theory, Ser. A 68(1): 239-245 (1994) | |
1988 | ||
11 | EE | G. F. Clements: On multiset k-families. Discrete Mathematics 69(2): 153-164 (1988) |
10 | EE | G. F. Clements: Multiset antichains having minimal downsets. J. Comb. Theory, Ser. A 48(2): 255-258 (1988) |
1987 | ||
9 | EE | G. F. Clements: An extremal problem for antichains of subsets of a multiset. Discrete Mathematics 63(1): 1-14 (1987) |
1985 | ||
8 | EE | G. F. Clements: Antichains in the set of subsets of a multiset. Discrete Mathematics 54(3): 347 (1985) |
1984 | ||
7 | EE | G. F. Clements: Antichains in the set of subsets of a multiset. Discrete Mathematics 48(1): 23-45 (1984) |
6 | G. F. Clements: A Generalization of the Kruskal-Katona Theorem. J. Comb. Theory, Ser. A 37(1): 91-97 (1984) | |
1981 | ||
5 | EE | G. F. Clements, Hans-Dietrich O. F. Gronau: On maximal antichains containing no set and its complement. Discrete Mathematics 33(3): 239-247 (1981) |
1978 | ||
4 | G. F. Clements: The Minimal Number of Basic Elements in a Multiset Antichain. J. Comb. Theory, Ser. A 25(2): 153-162 (1978) | |
1977 | ||
3 | G. F. Clements: An Existence Theorem for Antichains. J. Comb. Theory, Ser. A 22(3): 368-371 (1977) | |
1976 | ||
2 | G. F. Clements: The Kruskal-Katona Method Made Explicit. J. Comb. Theory, Ser. A 21(2): 245-249 (1976) | |
1974 | ||
1 | G. F. Clements: Inequalities Concerning Numbers of Subsets of a Finite Set. J. Comb. Theory, Ser. A 17(2): 227-244 (1974) |
1 | Hans-Dietrich O. F. Gronau | [5] |