Nitesh V. Chawla

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

38EEDavid A. Cieslak, Nitesh V. Chawla: A framework for monitoring classifiers' performance: when and why failure occurs? Knowl. Inf. Syst. 18(1): 83-108 (2009)
37EEDarcy A. Davis, Nitesh V. Chawla, Nicholas Blumm, Nicholas Christakis, Albert-László Barabási: Predicting individual disease risk based on medical history. CIKM 2008: 769-778
36EEDavid A. Cieslak, Nitesh V. Chawla: Learning Decision Trees for Unbalanced Data. ECML/PKDD (1) 2008: 241-256
35EEDavid A. Cieslak, Nitesh V. Chawla, Douglas Thain: Troubleshooting thousands of jobs on production grids using data mining techniques. GRID 2008: 217-224
34EEDavid A. Cieslak, Nitesh V. Chawla: Start Globally, Optimize Locally, Predict Globally: Improving Performance on Imbalanced Data. ICDM 2008: 143-152
33EEChristopher Moretti, Karsten Steinhaeuser, Douglas Thain, Nitesh V. Chawla: Scaling up Classifiers to Cloud Computers. ICDM 2008: 472-481
32EENitesh V. Chawla, Douglas Thain, Ryan Lichtenwalter, David A. Cieslak: Data mining on the grid for the grid. IPDPS 2008: 1-5
31EEDavid A. Cieslak, Nitesh V. Chawla: Analyzing PETs on Imbalanced Datasets When Training and Testing Class Distributions Differ. PAKDD 2008: 519-526
30EENitesh V. Chawla, David A. Cieslak, Lawrence O. Hall, Ajay Joshi: Automatically countering imbalance and its empirical relationship to cost. Data Min. Knowl. Discov. 17(2): 225-252 (2008)
29EEQi Liao, David A. Cieslak, Aaron Striegel, Nitesh V. Chawla: Using selective, short-term memory to improve resilience against DDoS exhaustion attacks. Security and Communication Networks 1(4): 287-299 (2008)
28 Nitesh V. Chawla, Kevin W. Bowyer: Actively Exploring Creation of Face Space(s) for Improved Face Recognition. AAAI 2007: 809-814
27EETanu Malik, Randal C. Burns, Nitesh V. Chawla: A Black-Box Approach to Query Cardinality Estimation. CIDR 2007: 56-67
26EEDavid A. Cieslak, Nitesh V. Chawla: Detecting Fractures in Classifier Performance. ICDM 2007: 123-132
25EEGregory R. Madey, Albert-László Barabási, Nitesh V. Chawla, Marta Gonzalez, David Hachen, Brett Lantz, Alec Pawling, Timothy W. Schoenharl, Gábor Szabó, Pu Wang, Ping Yan: Enhanced Situational Awareness: Application of DDDAS Concepts to Emergency and Disaster Management. International Conference on Computational Science (1) 2007: 1090-1097
24EENitesh V. Chawla, Jared Sylvester: Exploiting Diversity in Ensembles: Improving the Performance on Unbalanced Datasets. MCS 2007: 397-406
23EEMichael J. Chapple, Nitesh V. Chawla, Aaron Striegel: Authentication anomaly detection: a case study on a virtual private network. MineNet 2007: 17-22
22EEDavid A. Cieslak, Douglas Thain, Nitesh V. Chawla: Troubleshooting Distributed Systems via Data Mining. HPDC 2006: 309-312
21EEJared Sylvester, Nitesh V. Chawla: Evolutionary Ensemble Creation and Thinning. IJCNN 2006: 5148-5155
20EEAlec Pawling, Nitesh V. Chawla, Amitabh Chaudhary: Evaluation of Summarization Schemes for Learning in Streams. PKDD 2006: 347-358
19EETanu Malik, Randal C. Burns, Nitesh V. Chawla, Alexander S. Szalay: Data management and query - Estimating query result sizes for proxy caching in scientific database federations. SC 2006: 102
18EEYang Liu, Nitesh V. Chawla, Mary P. Harper, Elizabeth Shriberg, Andreas Stolcke: A study in machine learning from imbalanced data for sentence boundary detection in speech. Computer Speech & Language 20(4): 468-494 (2006)
17EENitesh V. Chawla, Kevin W. Bowyer: Random Subspaces and Subsampling for 2-D Face Recognition. CVPR (2) 2005: 582-589
16EENitesh V. Chawla: Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees. MLCW 2005: 41-55
15EENitesh V. Chawla, Kevin W. Bowyer: Designing Multiple Classifier Systems for Face Recognition. Multiple Classifier Systems 2005: 407-416
14 Nitesh V. Chawla: Data Mining for Imbalanced Datasets: An Overview. The Data Mining and Knowledge Discovery Handbook 2005: 853-867
13EENitesh V. Chawla, Grigoris J. Karakoulas: Learning From Labeled And Unlabeled Data: An Empirical Study Across Techniques And Domains. J. Artif. Intell. Res. (JAIR) 23: 331-366 (2005)
12EEPredrag Radivojac, Nitesh V. Chawla, A. Keith Dunker, Zoran Obradovic: Classification and knowledge discovery in protein databases. Journal of Biomedical Informatics 37(4): 224-239 (2004)
11EENitesh V. Chawla, Lawrence O. Hall, Kevin W. Bowyer, W. Philip Kegelmeyer: Learning Ensembles from Bites: A Scalable and Accurate Approach. Journal of Machine Learning Research 5: 421-451 (2004)
10EENitesh V. Chawla, Nathalie Japkowicz, Aleksander Kotcz: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6(1): 1-6 (2004)
9EENitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, Kevin W. Bowyer: SMOTEBoost: Improving Prediction of the Minority Class in Boosting. PKDD 2003: 107-119
8EENitesh V. Chawla, Thomas E. Moore, Lawrence O. Hall, Kevin W. Bowyer, W. Philip Kegelmeyer, Clayton Springer: Distributed learning with bagging-like performance. Pattern Recognition Letters 24(1-3): 455-471 (2003)
7EESteven Eschrich, Nitesh V. Chawla, Lawrence O. Hall: Generalization Methods in Bioinformatics. BIOKDD 2002: 25-32
6EENitesh V. Chawla, Lawrence O. Hall, Kevin W. Bowyer, Thomas E. Moore, W. Philip Kegelmeyer: Distributed Pasting of Small Votes. Multiple Classifier Systems 2002: 52-61
5EENitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Philip Kegelmeyer: SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. (JAIR) 16: 321-357 (2002)
4EENitesh V. Chawla, Thomas E. Moore, Kevin W. Bowyer, Lawrence O. Hall, Clayton Springer, W. Philip Kegelmeyer: Investigation of bagging-like effects and decision trees versus neural nets in protein secondary structure prediction. BIOKDD 2001: 50-59
3EENitesh V. Chawla, Thomas E. Moore, Kevin W. Bowyer, Lawrence O. Hall, Clayton Springer, W. Philip Kegelmeyer: Bagging Is a Small-Data-Set Phenomenon. CVPR (2) 2001: 684-689
2EENitesh V. Chawla, Steven Eschrich, Lawrence O. Hall: Creating Ensembles of Classifiers. ICDM 2001: 580-581
1EELawrence O. Hall, Nitesh V. Chawla, Kevin W. Bowyer, W. Philip Kegelmeyer: Learning Rules from Distributed Data. Large-Scale Parallel Data Mining 1999: 211-220

Coauthor Index

1Albert-László Barabási [25] [37]
2Nicholas Blumm [37]
3Kevin W. Bowyer [1] [3] [4] [5] [6] [8] [9] [11] [15] [17] [28]
4Randal C. Burns [19] [27]
5Michael J. Chapple [23]
6Amitabh Chaudhary [20]
7Nicholas Christakis [37]
8David A. Cieslak [22] [26] [29] [30] [31] [32] [34] [35] [36] [38]
9Darcy A. Davis [37]
10A. Keith Dunker [12]
11Steven Eschrich [2] [7]
12Marta Gonzalez [25]
13David Hachen [25]
14Lawrence O. Hall [1] [2] [3] [4] [5] [6] [7] [8] [9] [11] [30]
15Mary P. Harper [18]
16Nathalie Japkowicz [10]
17Ajay Joshi [30]
18Grigoris J. Karakoulas [13]
19W. Philip Kegelmeyer [1] [3] [4] [5] [6] [8] [11]
20Aleksander Kotcz [10]
21Brett Lantz [25]
22Aleksandar Lazarevic [9]
23Qi Liao [29]
24Ryan Lichtenwalter [32]
25Yang Liu [18]
26Gregory R. Madey [25]
27Tanu Malik [19] [27]
28Thomas E. Moore [3] [4] [6] [8]
29Christopher Moretti [33]
30Zoran Obradovic [12]
31Alec Pawling [20] [25]
32Predrag Radivojac [12]
33Timothy W. Schoenharl [25]
34Elizabeth Shriberg [18]
35Clayton Springer [3] [4] [8]
36Karsten Steinhaeuser [33]
37Andreas Stolcke [18]
38Aaron Striegel [23] [29]
39Jared Sylvester [21] [24]
40Gábor Szabó [25]
41Alexander S. Szalay [19]
42Douglas Thain [22] [32] [33] [35]
43Pu Wang [25]
44Ping Yan [25]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)