| 2005 |
| 15 | EE | Hayri Ardal,
Tom C. Brown,
Peter A. B. Pleasants:
Almost disjoint families of 3-term arithmetic progressions.
J. Comb. Theory, Ser. A 109(1): 75-90 (2005) |
| 2003 |
| 14 | | Tom C. Brown:
On the Canonical Version of a Theorem in Ramsey Theory.
Combinatorics, Probability & Computing 12(5-6): 513-514 (2003) |
| 2002 |
| 13 | EE | Tom C. Brown:
Applications of standard Sturmian words to elementary number theory.
Theor. Comput. Sci. 273(1-2): 5-9 (2002) |
| 1999 |
| 12 | EE | Tom C. Brown:
A Pseudo Upper Bound for the van der Waerden Function.
J. Comb. Theory, Ser. A 87(1): 233-238 (1999) |
| 1997 |
| 11 | EE | Tom C. Brown,
Donovan R. Hare:
Arithmetic Progressions in Sequences with Bounded Gaps.
J. Comb. Theory, Ser. A 77(2): 222-227 (1997) |
| 1990 |
| 10 | EE | Tom C. Brown,
Paul Erdös,
Allen R. Freedman:
Quasi-progressions and descending waves.
J. Comb. Theory, Ser. A 53(1): 81-95 (1990) |
| 1989 |
| 9 | EE | Tom C. Brown,
Allen R. Freedman:
Small sets which meet all the k(n)-term arithmetic progressions in the interval [1, n].
J. Comb. Theory, Ser. A 51(2): 244-249 (1989) |
| 1985 |
| 8 | | Tom C. Brown,
Paul Erdös,
Fan R. K. Chung,
Ronald L. Graham:
Quantitative Forms of a Theorem of Hilbert.
J. Comb. Theory, Ser. A 38(2): 210-216 (1985) |
| 7 | | Tom C. Brown:
Affine and Combinatorial Binary m-Spaces.
J. Comb. Theory, Ser. A 39(1): 25-34 (1985) |
| 6 | | Tom C. Brown:
Monochromatic Affine Lines in Finite Vector Spaces.
J. Comb. Theory, Ser. A 39(1): 35-41 (1985) |
| 1984 |
| 5 | | Tom C. Brown,
J. P. Buhler:
Lines Imply Spaces in Density Ramsey Theory.
J. Comb. Theory, Ser. A 36(2): 214-220 (1984) |
| 1982 |
| 4 | | Tom C. Brown,
J. P. Buhler:
A Density Version of a Geometric Ramsey Theorem.
J. Comb. Theory, Ser. A 32(1): 20-34 (1982) |
| 1981 |
| 3 | | Tom C. Brown:
On van der Waerden's Theorem and the Theorem of Paris and Harrington.
J. Comb. Theory, Ser. A 30(1): 108-111 (1981) |
| 1976 |
| 2 | | Tom C. Brown:
Common Transversals.
J. Comb. Theory, Ser. A 21(1): 80-85 (1976) |
| 1975 |
| 1 | | Tom C. Brown:
Behrend's Theorem for Sequences Containing No k-Element Arithmetic Progression of a Certain Type.
J. Comb. Theory, Ser. A 18(3): 352-356 (1975) |