ACM SIGMOD Anthology VLDB dblp.uni-trier.de

Discovery of Multiple-Level Association Rules from Large Databases.

Jiawei Han, Yongjian Fu: Discovery of Multiple-Level Association Rules from Large Databases. VLDB 1995: 420-431
@inproceedings{DBLP:conf/vldb/HanF95,
  author    = {Jiawei Han and
               Yongjian Fu},
  editor    = {Umeshwar Dayal and
               Peter M. D. Gray and
               Shojiro Nishio},
  title     = {Discovery of Multiple-Level Association Rules from Large Databases},
  booktitle = {VLDB'95, Proceedings of 21th International Conference on Very
               Large Data Bases, September 11-15, 1995, Zurich, Switzerland},
  publisher = {Morgan Kaufmann},
  year      = {1995},
  isbn      = {1-55860-379-4},
  pages     = {420-431},
  ee        = {db/conf/vldb/HanF95.html},
  crossref  = {DBLP:conf/vldb/95},
  bibsource = {DBLP, http://dblp.uni-trier.de}
}
BibTeX

Abstract

Previous studies on mining association rules find rules at single concept level, however, mining association rules at multiple concept levels may lead to the discovery of more specific and concrete knowledge from data. In this study, a top-down progressive deepening method is developed for mining multiple- level association rules from large transaction databases byextension of some existing association rule mining techniques. A group of variant algorithms are proposed based on the ways of sharing intermediate results, with the relative performance tested on different kinds of data. Relaxation of the rule conditions for finding "level-crossing" associationrules is also discussed in the paper.

Copyright © 1995 by the VLDB Endowment. Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by the permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment.


Online Paper

ACM SIGMOD Anthology

CDROM Version: Load the CDROM "Volume 1 Issue 5, VLDB '89-'97" and ... DVD Version: Load ACM SIGMOD Anthology DVD 1" and ... BibTeX

Printed Edition

Umeshwar Dayal, Peter M. D. Gray, Shojiro Nishio (Eds.): VLDB'95, Proceedings of 21th International Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland. Morgan Kaufmann 1995, ISBN 1-55860-379-4
Contents BibTeX

References

[1]
Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules between Sets of Items in Large Databases. SIGMOD Conference 1993: 207-216 BibTeX
[2]
Rakesh Agrawal, Ramakrishnan Srikant: Fast Algorithms for Mining Association Rules in Large Databases. VLDB 1994: 487-499 BibTeX
[3]
Rakesh Agrawal, Ramakrishnan Srikant: Mining Sequential Patterns. ICDE 1995: 3-14 BibTeX
[4]
Alexander Borgida, Ronald J. Brachman: Loading Data into Description Reasoners. SIGMOD Conference 1993: 217-226 BibTeX
[5]
Wesley W. Chu, Kuorong Chiang: Abstraction of High Level Concepts from Numerical Values in Databases. KDD Workshop 1994: 133-144 BibTeX
[6]
Douglas H. Fisher: Improving Inference through Conceptual Clustering. AAAI 1987: 461-465 BibTeX
[7]
Jiawei Han, Yandong Cai, Nick Cercone: Data-Driven Discovery of Quantitative Rules in Relational Databases. IEEE Trans. Knowl. Data Eng. 5(1): 29-40(1993) BibTeX
[8]
Jiawei Han, Yongjian Fu: Dynamic Generation and Refinement of Concept Hierarchies for Knowledge Discovery in Databases. KDD Workshop 1994: 157-168 BibTeX
[9]
Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, A. Inkeri Verkamo: Finding Interesting Rules from Large Sets of Discovered Association Rules. CIKM 1994: 401-407 BibTeX
[10]
Heikki Mannila, Kari-Jouko Räihä: Dependency Inference. VLDB 1987: 155-158 BibTeX
[11]
...
[12]
Jong Soo Park, Ming-Syan Chen, Philip S. Yu: An Effective Hash Based Algorithm for Mining Association Rules. SIGMOD Conference 1995: 175-186 BibTeX
[13]
Gregory Piatetsky-Shapiro, Christopher J. Matheus: The Interingness of Deviations. KDD Workshop 1994: 25-36 BibTeX
[14]
Gregory Piatetsky-Shapiro: Discovery, Analysis, and Presentation of Strong Rules. Knowledge Discovery in Databases 1991: 229-248 BibTeX
[15]
J. Ross Quinlan: C4.5: Programs for Machine Learning. Morgan Kaufmann 1993, ISBN 1-55860-238-0
BibTeX
[16]
Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, Ramasamy Uthurusamy (Eds.): Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press 1996, ISBN 0-262-56097-6
Contents BibTeX

Referenced by

  1. Flip Korn, Alexandros Labrinidis, Yannis Kotidis, Christos Faloutsos: Quantifiable Data Mining Using Ratio Rules. VLDB J. 8(3-4): 254-266(2000)
  2. Ke Wang, Yu He, Jiawei Han: Mining Frequent Itemsets Using Support Constraints. VLDB 2000: 43-52
  3. Theodore Johnson, Laks V. S. Lakshmanan, Raymond T. Ng: The 3W Model and Algebra for Unified Data Mining. VLDB 2000: 21-32
  4. Ke Wang, Senqiang Zhou, Shiang Chen Liew: Building Hierarchical Classifiers Using Class Proximity. VLDB 1999: 363-374
  5. Sunita Sarawagi: Explaining Differences in Multidimensional Aggregates. VLDB 1999: 42-53
  6. Wen-Chi Hou: A Framework for Statistical Data Mining with Summary Tables. SSDBM 1999: 14-23
  7. Laks V. S. Lakshmanan, Raymond T. Ng, Jiawei Han, Alex Pang: Optimization of Constrained Frequent Set Queries with 2-variable Constraints. SIGMOD Conference 1999: 157-168
  8. Jiawei Han, Guozhu Dong, Yiwen Yin: Efficient Mining of Partial Periodic Patterns in Time Series Database. ICDE 1999: 106-115
  9. Holger Günzel, Jens Albrecht, Wolfgang Lehner: Data Mining in a Multidimensional Environment. ADBIS 1999: 191-204
  10. Ming-Syan Chen, Jong Soo Park, Philip S. Yu: Efficient Data Mining for Path Traversal Patterns. IEEE Trans. Knowl. Data Eng. 10(2): 209-221(1998)
  11. Chan Man Kuok, Ada Wai-Chee Fu, Man Hon Wong: Mining Fuzzy Association Rules in Databases. SIGMOD Record 27(1): 41-46(1998)
  12. Jiawei Han: Towards On-Line Analytical Mining in Large Databases. SIGMOD Record 27(1): 97-107(1998)
  13. Alex G. Büchner, Maurice D. Mulvenna: Discovering Internet Marketing Intelligence through Online Analytical Web Usage Mining. SIGMOD Record 27(4): 54-61(1998)
  14. Charu C. Aggarwal, Philip S. Yu: Mining Large Itemsets for Association Rules. IEEE Data Eng. Bull. 21(1): 23-31(1998)
  15. Sridhar Ramaswamy, Sameer Mahajan, Abraham Silberschatz: On the Discovery of Interesting Patterns in Association Rules. VLDB 1998: 368-379
  16. Yasuhiko Morimoto, Takeshi Fukuda, Hirofumi Matsuzawa, Takeshi Tokuyama, Kunikazu Yoda: Algorithms for Mining Association Rules for Binary Segmentations of Huge Categorical Databases. VLDB 1998: 380-391
  17. Flip Korn, Alexandros Labrinidis, Yannis Kotidis, Christos Faloutsos: Ratio Rules: A New Paradigm for Fast, Quantifiable Data Mining. VLDB 1998: 582-593
  18. KianSing Ng, Huan Liu, HweeBong Kwah: A Data Mining Application: Customes Retention at the Port of Singapore Authority (PSA). SIGMOD Conference 1998: 522-525
  19. Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, Alex Pang: Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD Conference 1998: 13-24
  20. Ashok Savasere, Edward Omiecinski, Shamkant B. Navathe: Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE 1998: 494-502
  21. Rajeev Rastogi, Kyuseok Shim: Mining Optimized Association Rules with Categorical and Numeric Attributes. ICDE 1998: 503-512
  22. Banu Özden, Sridhar Ramaswamy, Abraham Silberschatz: Cyclic Association Rules. ICDE 1998: 412-421
  23. Charu C. Aggarwal, Philip S. Yu: Online Generation of Association Rules. ICDE 1998: 402-411
  24. Dao-I Lin, Zvi M. Kedem: Pincer Search: A New Algorithm for Discovering the Maximum Frequent Set. EDBT 1998: 105-119
  25. Sanjay Goil, Alok N. Choudhary: High Performance Multidimensional Analysis of Large Datasets. DOLAP 1998: 34-39
  26. Tomasz Imielinski, Aashu Virmani: Association Rules... and What's Next? Towards Second Generation Data Mining Systems. ADBIS 1998: 6-25
  27. Jong Soo Park, Ming-Syan Chen, Philip S. Yu: Using a Hash-Based Method with Transaction Trimming for Mining Association Rules. IEEE Trans. Knowl. Data Eng. 9(5): 813-825(1997)
  28. Yasuhiko Morimoto, Hiromu Ishii, Shinichi Morishita: Efficient Construction of Regression Trees with Range and Region Splitting. VLDB 1997: 166-175
  29. Renée J. Miller, Yuping Yang: Association Rules over Interval Data. SIGMOD Conference 1997: 452-461
  30. Jiawei Han, Krzysztof Koperski, Nebojsa Stefanovic: GeoMiner: A System Prototype for Spatial Data Mining. SIGMOD Conference 1997: 553-556
  31. Eui-Hong Han, George Karypis, Vipin Kumar: Scalable Parallel Data Mining for Association Rules. SIGMOD Conference 1997: 277-288
  32. Sergey Brin, Rajeev Motwani, Craig Silverstein: Beyond Market Baskets: Generalizing Association Rules to Correlations. SIGMOD Conference 1997: 265-276
  33. Heikki Mannila: Methods and Problems in Data Mining. ICDT 1997: 41-55
  34. Dimitrios Gunopulos, Heikki Mannila, Sanjeev Saluja: Discovering All Most Specific Sentences by Randomized Algorithms. ICDT 1997: 215-229
  35. David Wai-Lok Cheung, Sau Dan Lee, Ben Kao: A General Incremental Technique for Maintaining Discovered Association Rules. DASFAA 1997: 185-194
  36. Tadeusz Morzy, Maciej Zakrzewicz: SQL-Like Language for Database Mining. ADBIS 1997: 311-317
  37. David Wai-Lok Cheung, Vincent T. Y. Ng, Ada Wai-Chee Fu, Yongjian Fu: Efficient Mining of Association Rules in Distributed Databases. IEEE Trans. Knowl. Data Eng. 8(6): 911-922(1996)
  38. Ming-Syan Chen, Jiawei Han, Philip S. Yu: Data Mining: An Overview from a Database Perspective. IEEE Trans. Knowl. Data Eng. 8(6): 866-883(1996)
  39. Rakesh Agrawal, John C. Shafer: Parallel Mining of Association Rules. IEEE Trans. Knowl. Data Eng. 8(6): 962-969(1996)
  40. Hannu Toivonen: Sampling Large Databases for Association Rules. VLDB 1996: 134-145
  41. Rosa Meo, Giuseppe Psaila, Stefano Ceri: A New SQL-like Operator for Mining Association Rules. VLDB 1996: 122-133
  42. Heikki Mannila: Data Mining: Machine Learning, Statistics, and Databases. SSDBM 1996: 2-9
  43. Ramakrishnan Srikant, Rakesh Agrawal: Mining Quantitative Association Rules in Large Relational Tables. SIGMOD Conference 1996: 1-12
  44. Jiawei Han, Yongjian Fu, Wei Wang, Jenny Chiang, Osmar R. Zaïane, Krzysztof Koperski: DBMiner: Interactive Mining of Multiple-Level Knowledge in Relational Databases. SIGMOD Conference 1996: 550
  45. David Wai-Lok Cheung, Jiawei Han, Vincent T. Y. Ng, C. Y. Wong: Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. ICDE 1996: 106-114
  46. Ramakrishnan Srikant, Rakesh Agrawal: Mining Sequential Patterns: Generalizations and Performance Improvements. EDBT 1996: 3-17
  47. Jiawei Han: Mining Knowledge at Multiple Concept Levels. CIKM 1995: 19-24
BibTeX
ACM SIGMOD Anthology - DBLP: [Home | Search: Author, Title | Conferences | Journals]
VLDB Proceedings: Copyright © by VLDB Endowment,
ACM SIGMOD Anthology: Copyright © by ACM (info@acm.org), Corrections: anthology@acm.org
DBLP: Copyright © by Michael Ley (ley@uni-trier.de), last change: Sat May 16 23:46:06 2009