
The WASA2 Object-Oriented Work
ow Management System

Gottfried Vossen, Mathias Weske

University of M�unster, Germany

http://wwwmath.uni-muenster.de/informatik/u/dbis/index.html

1 Introduction

Work
ow management has gained increasing attention
recently as an important technology to improve infor-
mation system development in dynamic and distributed
organizations. To develop a work
ow application, se-
lected business processes of an organization are mod-
elled, optimized and speci�ed as work
ow schemas, us-
ing work
ow languages [2]. Work
ow schemas are used
by work
ow management systems to control the ex-
ecution of work
ow instances, i.e., representations of
real-world business processes [3]. The �rst generation
of work
ow management systems (WFMS) were de-
veloped mainly to model and control the execution of
business processes with fairly static structures, to be
executed in homogeneous environments. Recently, the
need for enhanced 
exibility of work
ow modeling and
execution and the integration of applications in het-
erogeneous environments emerged in the work
ow con-
text [1]. The WASA project aims at supporting 
ex-
ible and distributed work
ows in heterogeneous envi-
ronments [4]. This paper brie
y overviews the concep-
tual design and implementation of the object-oriented
work
owmanagement systemWASA2, and sketches the
proposed demo. References to work that relates to ours
or that we started from are given in the cited WASA
papers.

2 Design of the WASA2 Work
ow

Management System

This section sketches the design goals of WASA2, and it
discusses its conceptual design by brie
y presenting the
WASA2 work
ow meta schema. We primarily focus the
use of CORBA Common Object Services to implement

the system.
In order to be suitable for a broad spectrum of

work
ow applications, there are di�erent requirements
that have to be met by a work
ow management system.
While there are numerous requirements of this kind,
like the need for functional decomposition and modeling
the technical and organization environment of work
ow
executions, we put our emphasis on the following:

� Reuse of work
ow schemas: In order to allow ef-
�cient work
ow modeling and to minimize redun-
dancy in work
ow modeling, it is important that
work
ow schemas are de�ned once to be used mul-
tiple times.

� Integration: An important functionality of a work-

ow management system is the integration of ex-
isting software systems in a single work
ow applica-
tion. A recent trend towards developing information
systems is using business objects. A work
ow man-
agement system should support the integration of
business objects in work
ow applications.

� Flexibility: Support for partially speci�ed or dynam-
ically changing application processes is not avail-
able in �rst generation work
ow management sys-
tems. This limitation creates one of the main ob-
stacles for the deployment of work
ow applications,
because work
ow users and work
ow administrators
often encounter situations which require a dynamic
change, i.e., a change of the work
ow schema while
the respective work
ow runs. Dynamic changes al-
low rapid reactions to changes in the market envi-
ronment, thus increasing the competitiveness of the
organization.

� Distribution and Scalability: Traditionally, work
ow
management systems are client/server-based such
that the server corresponds to a centralized work
ow
engine and the clients refer to the work
ow users.
Since work
ow management is inherently performed
in distributed settings, a centralized work
ow engine
can become a performance bottleneck of the system,

1



Workflow

Complex Atomic 

WF-SubWF
Relationship

Parameter

Output
Parameter

Input
Parameter

Horizontal Data
Connector

Control
Connector

Figure 1: WASA2 Work
ow Meta Schema (simpli�ed
version).

and the availability of the work
ow system then
depends on the functionality of a single site.

� Persistency: The success of organizations nowadays
relies to a considerable extent on the availability
and fault tolerance of its information infrastructure.
In particular, a system failure should not leave
running work
ow instances and data manipulated
by them in an unde�ned state. In contrast, up-to-
date information on the state of running work
ow
instances has to be stored in stable storage in
order to be able to continue these work
ows after
a system restart. A key prerequisite to developing a
functional work
ow restart procedure is to maintain
explicit state information of work
ow instances and
accompanying data in stable storage.

The WASA2 work
ow meta schema is shown in Figure 1
using the Uniform Modeling Language (UML). UML is
an object-oriented modeling and design language, which
we use for modeling work
ow schemas and work
ow
instances; in UML, classes are represented by marked
rectangles. In terms of terminology, that �gure shows a
class diagram of work
ows and work
ow-related entities
and their relationships. From a work
ow modeling
point of view it shows a work
ow meta schema,
since it describes how work
ow schemas (and work
ow
instances) are modelled.
The Work
ow class is the central class of the WASA2

work
ow meta model. It contains work
ow objects
which are either work
ow schema objects or work
ow
instance objects; we use the term work
ow to indicate
both work
ow schemas and work
ow instances. As
described above, work
ows can be either atomic or

complex, and atomic work
ows can be executed either
automatically or manually. This structural property
of work
ows is re
ected in the work
ow meta schema
by de�ning Complex work
ow and Atomic work
ow
as sub-classes of class Work
ow (and Automatic and
Manual as sub-classes of the Atomic work
ow class).
The work
ow hierarchy, i.e., the relationship between
a complex work
ow and its sub-work
ows, is modeled
by the WF-SubWF Relationship between a complex
work
ow and a (complex or atomic) work
ow.

The software architecture is directly based on the
WASA2 work
ow meta schema presented above. How-
ever, there are additional, implementation-speci�c prop-
erties, which are brie
y discussed next. Since our sys-
tem is based on a CORBA infrastructure, we make ex-
tensive use of Corba Common Object Services to imple-
ment the system; in particular, we have used OrbixWeb
by Iona and Java Development Kit 1.1.6.

The overall design of the WASA2 prototype is shown
in Figure 2. The application level is the top level of
the architecture. Users access work
ow applications via
the graphical user interface (GUI). To perform work
ow
activities, the GUI can start various applications, as
de�ned in the work
ow schema, e.g., o�ce applications
or existing domain-speci�c applications. We remark
that the graphical user interface is con�gurable to
support the needs of di�erent user groups or tasks. In
addition, there are integrated tools for the speci�cation
of work
ow schemas and the monitoring and dynamic
modi�cation of work
ow instances. The middle level
comprises the facilities used to provide support for
work
ow applications. Due to the object-oriented
approach we have taken, at this level there are work
ow
objects and related objects, as described in the WASA2

work
ow meta schema. In addition, business objects
reside at the Facilities level. The data and functionality
provided by business objects can be used by WASA2

work
ow object in an integrated fashion. As the system
is based on CORBA, work
ow objects, business objects,
and the graphical user interface can communicate by the
use of a CORBA Object Request Broker. To implement
work
ow objects and related objects, a set of CORBA
Common Object Services can be used.

The Persistency Service is used to store arbitrarily
structured objects, mainly work
ow objects. This
service provides transactional capabilities such as the
well-known ACID properties and nested transactions.
Work
ow objects are generally persistent to provide
a high degree of fault tolerance. In particular, when
a work
ow object which is currently down is sent a
message, the ORB at the respective site consults the
persistency service, which in turn reloads the requested
work
ow object into main memory and sends the
request to that object.

The Life Cycle Service is used to create, copy, move,

2



Object Request Broker

Persistency Relationship Trading Event

GUI GUI

Office
Apps

Specific
Apps

Word
Processing

Spread−
sheet

Workflow
Objects

Workflow
Objects

Business
Objects

ApplicationsApplications

FacilitiesFacilities

CORBACORBA
Life Cycle

Figure 2: Architecture of WASA2 system.

and delete CORBA objects. In WASA2, this service
is used to create work
ow objects. In particular, a
work
ow schema object is created when a new work-

ow schema is de�ned during the work
ow modeling
phase. A work
ow instance object is created when-
ever a work
ow is instantiated, typically followed by
an external event, for instance the receipt of an order
in an order-processing work
ow. Moving work
ow ob-
jects between di�erent sites of a CORBA environment
is another function of the Life Cycle Service; this func-
tionality is required whenever a work
ow object has to
be transferred to the location of a work
ow execution.

There are complex relationships between di�erent
work
ow objects and between work
ow objects and re-
lated objects, for instance role objects or agent objects.
Whenever a work
ow instance is created, for instance,
there is an instance-of relationship between the work-

ow instance object and the respective work
ow schema
object; this relationship is maintained by functionalities
provided by the Relationship Service. This service al-
lows to de�ne role objects, i.e., objects which explicitly
represent di�erent roles a work
ow objects can be in.
Roles are a powerful mechanism to manage complex re-
lationships, and roles are extensively used in the Corba
Relationship Service.

In complex CORBA-based applications, objects with
di�erent properties reside in di�erent locations of the
CORBA environment. To support 
exible queries in
locating objects relative to speci�c properties, a trader
is used. This component is implemented using the
Trading Object Service. In WASA2, this service is used
to locate speci�c agents in distributed and complex
organizations. This functionality can be utilized for

exible role resolution, which is based on the properties
and availability of agents. The trader functionality is
important since our approach is fully distributed, which
implies the lack of a centralized agent that keeps track of

the system state, or of the availability of agents capable
to perform work
ow activities.
The Event Service implements complex event noti�-

cation mechanisms between CORBA objects. WASA2

uses push communication, for instance, in work
ow
monitoring. Each work
ow instance sends relevant
events to an event channel, for instance the start of
a sub-work
ow instance. The work
ow monitoring tool
is a consumer of these events. When the start event of
a sub-work
ow instance occurs, the event is pushed to
the work
ow monitoring tool using the event channel
and the functionality provided by the Event Service.
On receiving the event, the work
ow monitoring tool
learns from the state change of the work
ow instance it
is monitoring.

3 About the Demo

The demo is based on a sample work
ow schema, which
can be instantiated multiple times to present di�erent
work
ow instances. The graphical user interface
of the WASA2 system is able to display and to
allow editing of work
ow schemas. In addition,
the progress of running work
ow instances can be
monitored using a coloring scheme which is based
on states of work
ow instances. To demonstrate
the 
exibility of the system, we present dynamic
modi�cations of work
ow instances, i.e., we show how
the structure of a running work
ow instance can be
changed to allow to adapt work
ow instances to changes
in the environment of the work
ow. The application
we present is taken from the emerging domain of
electronic commerce, where work
ow management �ts
as an embedded technology.

References

[1] G. Vossen, M. Weske. The WASA Approach to

Work
ow Management for Scienti�c Applications. In:
A. Dogac et al. (eds.): Work
ow Management Systems

and Interoperability. ASI NATO Series F, Vol. 164, pp.
145-164. Berlin: Springer 1998

[2] M. Weske, G. Vossen. Work
ow Languages. In: P.
Bernus et al. (eds.): Handbook on Architectures of

Information Systems, pp. 359-379. Berlin: Springer
1998

[3] Weske, M., T. Goesmann, R. Holten, R. Striemer.
A Reference Model for Work
ow Application Develop-

ment Processes. In Proc. Int. Joint Conf. on Work Ac-
tivities Coordination and Collaboration (WACC), San
Francisco, February 1999, pp. 1{10

[4] M. Weske.Work
ow Management Through Distributed

and Persistent CORBA Work
ow Objects. To appear
in Proc. 11th Int. Conf. on Advanced Information
Systems Engineering (CAiSE), Heidelberg, Germany,
June 1999

3


