
Optimization of Constrained Frequent Set Queries with

2-variable Constraints

Laks V.S. Lakshmanan

IIT Bombay

laks@math.iitb.ernet.in

(Currently on leave from Concordia U.)

Raymond Ng

U. of British Columbia

rng@cs.ubc.ca

Jiawei Han

Simon Fraser U.

han@cs.sfu.ca

Alex Pang

U. of British Columbia

cpang@cs.ubc.ca

Abstract

Currently, there is tremendous interest in providing ad-hoc
mining capabilities in database management systems. As a
�rst step towards this goal, in [15] we proposed an archi-
tecture for supporting constraint-based, human-centered,
exploratory mining of various kinds of rules including asso-
ciations, introduced the notion of constrained frequent set
queries (CFQs), and developed e�ective pruning optimiza-
tions for CFQs with 1-variable (1-var) constraints.

While 1-var constraints are useful for constraining the an-
tecedent and consequent separately, many natural examples
of CFQs illustrate the need for constraining the antecedent
and consequent jointly, for which 2-variable (2-var) con-
straints are indispensable. Developing pruning optimiza-
tions for CFQs with 2-var constraints is the subject of this
paper. But this is a di�cult problem because: (i) in 2-
var constraints, both variables keep changing and, unlike
1-var constraints, there is no �xed target for pruning; (ii) as
we show, \conventional" monotonicity-based optimization
techniques do not apply e�ectively to 2-var constraints.

The contributions are as follows. (1) We introduce a notion
of quasi-succinctness, which allows a quasi-succinct 2-var
constraint to be reduced to two succinct 1-var constraints
for pruning. (2) We characterize the class of 2-var con-
straints that are quasi-succinct. (3) We develop heuristic
techniques for non-quasi-succinct constraints. Experimen-
tal results show the e�ectiveness of all our techniques. (4)
We propose a query optimizer for CFQs and show that
for a large class of constraints, the computation strategy
generated by the optimizer is ccc-optimal, i.e., minimizing
the e�ort incurred w.r.t. constraint checking and support
counting.

1 Introduction

Since the introduction of association rules [1], the develop-
ment of e�ective mechanisms for mining large databases has
been the subject of numerous studies, which can be broadly

divided into two groups. The �rst group includes stud-
ies focusing on performance and e�ciency issues, e.g., the
Apriori framework [2, 11], partitioning [16], sampling [24],
incremental updating [6], etc. The second group includes
studies that go beyond the initial notion of association rules
to other kinds of mined rules, e.g., multi-level rules [8, 21],
quantitative and multi-dimensional rules [22, 7, 14, 10],
rules with item constraints [23], mining long patterns [3],
correlations and causal structures [4, 20], ratio rules [12],
etc.

Recently it has been recognized that the integration of data
mining technologies with database management systems is
of crucial importance [5]. Furthermore, it has been argued
that the fundamental distinction of a data mining system
from a statistical analysis program or a machine learning
system should be that the former: (i) o�ers an ad-hoc min-
ing query language and (ii) supports e�cient processing
and optimization of mining queries [9, 19]. Sarawagi et al.
[18] study the suitability of di�erent architectures for the
integration of association mining with DBMS and study
the relative performance tradeo�s. Tsur et al. [25] explore
the question of how techniques like the well-known Apriori
algorithm can be generalized beyond their current appli-
cations to a generic paradigm called query ocks. While
these are important results toward enabling the integration
of association mining and DBMS, we contend that ad-hoc
mining still cannot be supported until the following funda-
mental problems in the present-day model of mining, �rst
identi�ed in [15], are addressed satisfactorily: (i) lack of
user exploration and guidance (e.g., expensive computation
undertaken without user's approval), and (ii) lack of focus
(e.g., cannot limit computation to just a subset of rules that
are of interest to the user). In e�ect, this model functions
as a black box, admitting little user interaction in between.

To address these problems, in [15], we proposed a 2-phase
architecture that opens up the black box, and introduced
the paradigm of constrained mining queries, which together
support constraint-based, human-centered exploratory min-
ing of various kinds of rules, including associations. The
foundation for the �rst phase of the architecture is a rich set
of constraint constructs, including domain, class, and SQL-
style aggregate constraints, which enable users to specify
what kind of mined rules are to be computed. The core part
in processing constrained mining queries is computing fre-
quent sets that satisfy the speci�ed constraints. This leads
to the notion of constrained frequent set queries (CFQ). For-

mally, a CFQ 1 is a query of the form: f(S; T) j Cg, where
S; T are set variables, and C is a set of constraints imposed
on S; T , including the usual frequency constraints. The an-
swer to the CFQ consists of all pairs of frequent sets (S; T)
satisfying C. The primary reason why (constrained) fre-
quent sets are chosen to be the intermediate results for the
�rst phase of the computation is that frequent sets repre-
sent a common denominator for many kinds of rules of the
form S) T , where) can mean association rules, corre-
lations, etc. Furthermore, the computation cost of �nding
(constrained) frequent sets far dominates the cost of form-
ing the �nal rules (which is done in the second phase of
our architecture [15]). Thus, optimizing the computation
of (constrained) frequent sets is critical to the success of a
system that supports ad-hoc mining.

We illustrate CFQs using the market-basket domain. Apart
from the transaction database trans(TID, Itemset), sup-
pose there is auxiliary information stored in the relation
itemInfo(Item, Type, Price), which gives the type and
price of each item. The CFQ:

f(S; T) j S � Item & T � Item & freq(S) & freq(T) &
sum(S:Price) � 100 & avg(T:Price) � 200g

intends to �nd pairs of frequent itemsets (S; T), where S
has a total price no more than $100 and T has an average
price no less than $200. Subsequently, such pairs may be
used to compute rules of the form S) T , suggesting that
the purchase of cheaper items \leads to" the purchase of
more expensive ones. Here, freq(S) says that itemset S
has a support above the user speci�ed threshold. In the
sequel, we will drop constraints of the form S � Item or
freq(S) and will assume them implicitly. Constraints such
as sum(S:Price) � 100 and avg(T:Price) � 200 are called
1-var constraints, because each constraint involves one set
variable, and one side of the constraint is a constant. 1-var
constraints are useful in conditioning the antecedent and/or
consequent separately. The CFQ:

f(S; T) j sum(S:Price) � avg(T:Price)g

is di�erent from the �rst query. It uses a 2-var constraint {
involving two set variables. 2-var constraints are useful in
constraining the antecedent and consequent jointly.

The main technical results reported in [15] are pruning opti-
mizations { for 1-var constraints { that guarantee a level of
performance that is commensurate with the selectivities of
the constraints in the user speci�ed query. Those optimiza-
tions are based on two key properties of 1-var constraints,
namely anti-monotonicity and succinctness. These prop-
erties are exploited in an algorithm called CAP, by pushing
the constraints deeply in an Apriori-style levelwise algo-
rithm. We showed in [15] that CAP is e�ective in bring-
ing about a very signi�cant speedup (e.g., up to 80 times
faster) compared with the naive extension to the Apriori
algorithm, Apriori+, which �nds all frequent sets �rst and
then checks them for constraint satisfaction.

As the examples in Section 2 will show, 2-var constraints
are natural, ubiquitous, and indispensable in constraining
the consequent and antecedent jointly. However, CAP can

1In [15], CFQs were called constrained association queries
(CAQs). As explained here, CFQs represent a more accurate de-
scription of the computation than CAQs.

only optimize 1-var constraints, and its treatment of 2-var
constraints is no smarter than the naive algorithm. This
is the subject of this paper. The key question here is: If
there are pruning optimizations that are so e�ective for 1-
var constraints, could there be optimizations as e�ective for
2-var constraints? As a preview, this paper provides the
following answers to this question:

1. Many association mining algorithms (e.g., the Apri-
ori algorithm and its variants) depend critically on
some kind of monotonicity property for their e�-
ciency. The �rst contribution of this paper is a neg-
ative, but rather important, result { few 2-var con-
straints are monotone (or anti-monotone). This re-
veals the reality that developing pruning optimization
for 2-var constraints is a di�cult problem, and mono-
tonicity is not the answer this time.

2. Anti-monotonicity and succinctness play a substan-
tial role in optimizing 1-var constraints. Unfortu-
nately, (anti-)monotonicity does not work any more
and succinctness does not apply to 2-var constraints
directly. To this end, the second contribution of this
paper is the concept of quasi-succinctness for 2-var
constraints. Given a 2-var constraint C(S; T), we
reduce it to two 1-var succinct constraints of the
form C1(S; qc1) and C2(T; qc2), where qc1; qc2 are
constants, not given in the query, but can be very
e�ciently computed. A key technical result is a com-
plete characterization of the class of all quasi-succinct
constraints allowed in the CFQ language. Experi-
mental results will show that the speedup achievable
for 2-var quasi-succinct constraints is comparable to
that achieved for 1-var succinct constraints in [15],
while incurring minimal additional overhead.

3. While quasi-succinctness is e�ective in the optimiza-
tion of domain and class constraints and aggrega-
tion constraints involving min() and max(), it does
not handle 2-var constraints involving sum() and/or
avg(). The third contribution of this paper is two-
fold. First, given such a non-quasi-succinct constraint,
we show how we can induce a weaker 2-var constraint
that is quasi-succinct, and can therefore be exploited
in optimization as before. Second, because the opti-
mization e�ected by the weaker induced constraints
may be inadequate for some constraint combinations,
we develop a heuristic iterative pruning algorithm for
those situations. The algorithm is based on a com-
binatorial analysis of the question: given all the fre-
quent sets of size k for some k � 2, what is a good
upper bound on the size of the largest frequent set?
Even though CFQs with sum() and avg() constraints
are the hardest to optimize, experimental results will
show that the proposed heuristics are e�ective.

4. The last contribution of this paper is the development
of a query optimizer for CFQs. To measure the qual-
ity of the computation strategies generated by the op-
timizer, we propose the notion of ccc-optimality. This
notion captures the intuition that the e�ort spent by
a strategy in invoking the two fundamental opera-
tions { support counting and constraint checking {
should be minimized. We will establish that for a
large class of constraints, the query optimizer gener-
ates strategies that are ccc-optimal.

Section 2 gives more examples of CFQs with 2-var con-
straints, and summarizes the concepts of anti-monotonicity
and succinctness for 1-var constraints. Section 3 introduces
and examines anti-monotonicity for 2-var constraints. Sec-
tion 4 introduces and analyzes quasi-succinctness, and de-
velops pruning optimizations for such constraints. Section 5
develops pruning optimizations for non-quasi-succinct con-
straints. Section 6 introduces ccc-optimality and presents
a query optimizer that generates ccc-optimal strategies for
a large class of constraints. Section 7 presents experimen-
tal results demonstrating the e�ectiveness of the optimiza-
tions. Section 8 discusses open research problems. For lack
of space, the reader is referred to [13] for complete details
of the proofs.

2 Background

Readers familiar with [15] can skip this section. A CFQ is
a query of the form f(S; T) j Cg, where C is a conjunction of
domain, class, and aggregation constraints. For our exam-
ples below, we assume the transaction database trans(TID,
Itemset) with auxiliary information in itemInfo(Item,
Type, Price). The CFQ

f(S; T) j count(S:Type) = 1 & count(T:Type) = 1 &
S:Type 6= T:Typeg

asks for pairs of frequent sets containing items of di�erent
types (but each set, on its own, containing items of the
same type, e.g., count(S:Type) = 1). Similarly, the CFQ

f(S; T) j S:Type \ T:Type = ;g

asks for frequent itemsets whose associated type sets are
disjoint. The CFQ

f(S; T) j S:Type = fSnacksg & T:Type = fBeersg &
max(S:Price) � min(T:Price)g

�nds pairs of frequent sets of cheaper snack items and of
more expensive beer items.

De�nition 1 (1-var anti-monotonicity) A 1-var
constraint C is anti-monotone i� for any set S: S does not
satisfy C =) 8S0 � S, S0 does not satisfy C.

When a 1-var constraint is anti-monotone, it can be opti-
mized in exactly the same way as the frequency constraints
are optimized in the well-known Apriori algorithm. A key
result in [15] is the characterization of all 1-var anti-monotone
constraints, among those allowed in the CFQ language. For
any 1-var constraint C, its solution space satC(Item) is the
set consisting of all the subsets of Item that satisfy C. We
refer to elements of satC(Item) as valid sets w.r.t. C.

De�nition 2 (Succinctness) 1. I � Item is a suc-
cinct set if it can be expressed as �p(Item) for some
selection predicate p.

2. SP � 2Item is a succinct powerset if there is a �xed
number of succinct sets Item1; : : : ; Itemk � Item such
that SP can be expressed in terms of the strict pow-
ersets of Item1; : : : ; Itemk using union and minus.

3. A 1-var constraint C is succinct provided satC(Item)
is a succinct powerset.

The key property of a succinct 1-var constraint C is that its
solution space can be expressed using a succinct description,

which yields a member generating function that generates
exactly the solution space satC(Item) of C. In this manner,
a succinct constraint can simply operate in a generate-only
environment { and need not be in a generate-and-test envi-
ronment. This leads to signi�cant speedup (e.g., 10 times
faster). The following lemma from [15] is important to the
subject matter of this paper.

Lemma 1 1-var domain, class, and aggregation constraints
involving only min() and/or max() are succinct; 1-var con-
straints involving sum() and/or avg() are not.

3 Anti-monotonicity for 2-var

Constraints

Many association mining techniques depend critically on
some kind of monotonicity property for e�ciency. Given
how successful anti-monotone 1-var constraints are in prun-
ing, it is natural to try to imitate the same success in prun-
ing 2-var constraints. There is, however, a huge complica-
tion. A 1-var constraint C(S), by de�nition, only has one
variable S, and has one side of the constraint constant. Be-
cause this side of the constraint never changes, there is a
�xed target for the pruning of S to take e�ect. In contrast,
a 2-var constraint C(S; T) has two variables, representing
two \degrees of freedom." Pruning S is complicated by the
fact that T may change, and vice versa for pruning T . The
following analysis will con�rm this observation.

To begin, we need to formalize the notion of the solution
space satC of a 2-var constraint C(S; T). Throughout this
paper, for simplicity and concreteness, we assume that S
ranges over the set of items, i.e. S � Item, and that T
ranges over some domain Dom. But for the sake of general-
ity, we will refer to instances of variable S (resp., variable
T) as S-sets (resp., T -sets). Obviously, the de�nitions are
applicable if both variables range over the same domain,
i.e. Dom � Item. But assuming that the two variables come
from di�erent domains makes it clearer whether S or T is
being discussed. 2 More importantly, this shows the gener-
ality of the framework in allowing two di�erent domains to
interact in the same constraint. Furthermore, we assume
that there is an attribute A of elements of Item and an at-
tribute B of elements of Dom, such that S:A and T:B are
in the same domain, to facilitate the interaction of the two
domains. In general, A and/or B could be absent. For ex-
ample, if T ranges over the Type domain, then we can speak
of a constraint with S:Type and T , such as S:Type � T .

With S and T de�ned as above, the solution space of a
2-var constraint C(S; T) is given by:

satC(Item; Dom) = f(S0; T0) j S0 � Item & T0 � Dom &
(S0; T0) satis�es Cg

In the sequel, we refer to these (S0; T0) pairs that together
satisfy C as the valid pairs w.r.t. C. For the subject matter
discussed later on, we often consider only one variable at a
time. This leads to the following de�nition.

De�nition 3 (Valid S-sets) For a given 2-var constraint
C, the set of all valid S-sets w.r.t. C is: satSC(Item) =
fS0 j 9T0 : freq(T0) & (S0; T0) 2 satC(Item; Dom)g.

2It is also possible that even though S and T range over the same
domain, their associated 1-var constraints may ultimately force them
to di�erent parts of the domain. For example, we could have a CFQ
with min(S:Price) � 100 & min(T:Price) � 200 or another CFQ
with min(S:Price) � 100 & T:Type = fSnacksg.

The set of all valid T -sets w.r.t. C can be de�ned similarly.
Note that in the earlier de�nition of satC(Item; Dom), the
valid pairs (S0; T0) need not be frequent. But in De�ni-
tion 3, a valid S-set is one-sided in its use of frequency con-
straints, since the S-set need not be frequent. The reason
for this asymmetry will become clear in the next section. A
valid S-set that is also frequent, is referred to as a frequent
valid S-set.

The spirit of pruning boils down to a smart computation
of the set of all frequent, valid pairs that does not require
an exhaustive enumeration of all possibilities. In particu-
lar, for anti-monotonicity, the hope is that if there is an
S-set S0 that does not satisfy the constraint in conjunc-
tion with all T -sets examined so far, then all supersets of
S0 cannot possibly satisfy the constraint, and hence, can
be safely discarded, regardless of what lies ahead in fu-
ture computation. This motivates the following de�nition
of anti-monotonicity for 2-var constraints. In the de�nition,
we use the notation sat

S
C;j(Item) to denote the set of solu-

tions S0 related to some frequent T -set T0 of size � j, i.e.
sat

S
C;j(Item) = fS0 j 9T0 : freq(T0) & jT0j � j & (S0; T0) 2

satC(Item; Dom)g. By De�nition 3, satSC(Item) is identical
to
S
j
sat

S
C;j(Item).

De�nition 4 (2-var anti-monotonicity) A 2-var
constraint C(S; T) is anti-monotone with respect to S i� for
any S-set S0 such that for some integer j, the pair (S0; T)
violates C, for all frequent T -sets T of size � j, it is the
case that for all supersets S0 of S0, the pair (S0; T 0) vio-
lates C, for all frequent T -sets T 0 of any size, i.e. S0 62
sat

S
C;j(Item) =) 8S0 � S0; S

0 62 sat
S
C(Item):

Anti-monotonicity w.r.t. T can be similarly de�ned. For
example, S:A \ T:B = ; is an anti-monotone 2-var con-
straint w.r.t. both S and T . Consider a set S0 such that
it is not in sat

S
C;j(Item). This implies S0:A \ T:B 6= ;

for all T -sets of size � j. It is obvious that this violation
relationship is preserved when S0 grows bigger and/or T
grows bigger. Anti-monotonicity w.r.t. T has an identi-
cal argument. Another example of an anti-monotone 2-var
constraint is max(S:A) � min(T:B).

Anti-monotone 2-var constraints can lead to e�ective prun-
ing. Once S0 is veri�ed not to be in sat

S
C;j(Item) for some

j (e.g., j = 1), all its supersets can be removed from con-
sideration. As an e�ective pruning mechanism for 2-var
constraints, this is not the problem with anti-monotonicity.
The problem with anti-monotonicity is that there are very
few 2-var constraints that are anti-monotone. This state-
ment is based on a detailed analysis we have conducted,
from which we have identi�ed the class of all 2-var con-
straints that are anti-monotone. For space limitations, we
do not provide an exhaustive list of combinations and only
summarize in Figure 1 the results for a representative sub-
set of 2-var constraints. The second column of the ta-
ble in Figure 1 identi�es which 2-var constraints are anti-
monotone. (The third column does the same for quasi-
succinctness, which will be discussed in the next section.)
Among the domain and class constraints, S:A\ T:B = ; is
the only anti-monotone 2-var constraint. Among the con-
straints involving max() and/or min() shown in the table,
max(S:A) � min(T:B) is the only instance. And none
of the constraints involving sum() and avg() shown in the
table is anti-monotone. We have the following result ascer-
taining the correctness of the table in Figure 1.

2-var Constraint Anti-Monotone Quasi-Succinct

S:A \ T:B = ; yes yes
S:A \ T:B 6= ; no yes
S:A � T:B no yes
S:A 6� T:B no yes
S:A = T:B no yes
max(S:A) � min(T:B) yes yes
min(S:A) � min(T:B) no yes
max(S:A) � max(T:B) no yes
min(S:A) � max(T:B) no yes
sum(S:A) � max(T:B) no no
sum(S:A) � sum(T:B) no no
avg(S:A) � avg(T:B) no no

Figure 1: Characterization of 2-var Constraints: Anti-
Monotonicity and Quasi-Succinctness

Theorem 1 For each constraint C listed in Figure 1, C is
anti-monotone i� the table says so.

Proof Sketch. We have already argued why S:A\T:B = ;
is anti-monotone. Here we only show the proof of one
negative case, namely C � min(S:A) � min(T:B). Con-
sider a set S0 such that it is not in sat

S
C;j(Item) for some

integer j. In other words, min(S0:A) > min(T:B) for
all T -sets of size � j. However, for all supersets S0 of
S0, min(S0:A) � min(S0:A). Thus, it is possible that
there may be a T0 such that min(S0:A) � min(T0:B), thus
putting (S0; T0) in the solution space.

Though not exhaustive, Figure 1 captures the reality that
few 2-var constraints are anti-monotone. This is a negative,
but important, result, showing the di�culty in optimizing
2-var constraints.

4 Quasi-succinctness

The analysis conducted in the previous section reveals that
when pruning for a variable in a 2-var constraint, it is im-
portant to have the other variable present a �xed target
{ not one that keeps on changing. This forms the basis
for the concept of quasi-succinctness to be introduced be-
low. Intuitively, a 2-var constraint C(S; T) is quasi-succinct
if it can be reduced to two 1-var succinct constraints of
the form C1(S; qcs) and C2(T; qct), where qcs; qct are con-
stants such that the set of all valid S-sets and the set of
all valid T -sets are preserved under the reduction. The
motivation for such a de�nition is that we would like to de-
couple the dependency or the constraint binding the two
variables together so that pruning for S and T can occur
independently, and as soon as possible. In this section,
we �rst present a detailed analysis of one particular con-
straint so as to introduce the various concepts associated
with quasi-succinctness. Then we simply summarize our
quasi-succinctness results for many other constraints.

4.1 The Non-overlapping Constraint: a Case

Study

As a concrete example, we consider the constraint C(S; T) �
S:A \ T:B = ;. Throughout this paper, we use the no-
tation LSj to denote the set of all elements contained in

any frequent S-set of size j, i.e. LSj = fe j 9S : S �

Item & freq(S) & jSj = j & e 2 Sg. Similarly, LTj denotes
the set of all elements contained in any frequent T -set of
size j. As usual, the notation LSj :A denotes fe:A j e 2 LSj g.

Given the constraint S:A \ T:B = ;, the goal is to �nd
1-var succinct constraints for pruning candidate S- and T -
sets. The following lemma shows that for a candidate set
CS � Item to be a valid S-set w.r.t. S:A \ T:B = ;, it is
necessary that CS:A does not contain all elements in LT1 :B.

Lemma 2 Let CS be a candidate S-set, i.e. CS � Item.
Then:

9 a frequent T -set T such that CS:A \ T:B = ; =)
CS:A 6� LT1 :B.

Proof Sketch. Suppose CS:A � LT1 :B. Let T be a fre-
quent T -set of any size. By the de�nition of frequent sets,
we have T � LT1 , and thus T:B � CS:A. This implies
CS:A \ T:B 6= ;.

The 1-var constraint, C1(S) � CS:A 6� LT1 :B, can be re-
garded as a pruning condition for candidate S-sets. The
above lemma gives a sound pruning condition for candidate
S-sets. A pruning condition C1 is sound w.r.t. the original
2-var constraint C, if it does not prune away any valid S-
set, i.e., CS 2 sat

S
C(Item) =) CS 2 satC1

(Item). Con-
versely, a pruning condition C1 for S-sets is tight 3 w.r.t.
the original 2-var constraint C, if it prunes away every S-
set that is not valid, i.e., CS 2 satC1

(Item) =) CS 2
sat

S
C(Item). The following lemma shows that, apart from

being sound, the condition CS:A 6� LT1 :B is also a tight
pruning condition for candidate S-sets.

Lemma 3 Let CS be a candidate S-set, i.e. CS � Item.
Then:

CS:A 6� LT1 :B =) 9 a frequent T -set T such that
CS:A \ T:B = ;.

Proof Sketch. CS:A 6� LT1 :B implies that there exists an
element t 2 LT1 such that t:B 62 CS:A. But by de�nition
of LT1 , the set ftg is frequent. Thus, there exists a frequent
set { namely, ftg { such that CS:A \ ftg:B = ;.

Recall that in De�nition 3, valid S-sets are de�ned based
on frequent T -sets. If they were de�ned without requiring
T -sets to be frequent, the above two lemmas would not be
true, and the given constraint would not be a sound and
tight pruning condition. This explains why in De�nition 3,
there is the one-sided use of the frequency constraints. The
following corollary gives a sound and tight condition for
pruning candidate sets for variable T .

Corollary 1 Let CT be a candidate T -set, i.e. CT � Dom.
Then: 9 a frequent S-set S such that S:A\CT:B = ; ()
CT:B 6� LS1 :A

De�nition 5 (Quasi-succinctness) Constraint C(S; T)
is quasi-succinct if it can be reduced to two 1-var constraints
C1(S); C2(T) such that: (i) C1, involving only the variable
S, is succinct, and is a sound and tight pruning condition for
candidate S-sets; and (ii) C2, involving only T , is succinct,
and is a sound and tight pruning condition for candidate
T -sets.

The above two lemmas and corollary show that the con-
straint C � S:A \ T:B = ; is quasi-succinct, because as
summarized in Lemma 1, the reduced constraints C1(S) �
S:A 6� LT1 :B and C2(T) � T:B 6� LS1 :A are succinct 1-
var constraints. This is great news from a computational

3Note that soundness and tightness are de�ned w.r.t. pruning {
not satisfaction { which explains the direction of the implications.

2-var constraint C sound & tight C1(S) sound & tight C2(T)

S:A \ T:B = ; CS:A 6� LT
1
:B CT:B 6� LS

1
:A

S:A \ T:B 6= ; CS:A \ LT
1
:B 6= ; CT:B \ LS

1
:A 6= ;

S:A � T:B CS:A � LT
1
:B LS

1
:A \CT:B 6= ;

S:A 6� T:B (CS 6= ;) LS
1
:A 6� CT:B

S:A = T:B CS:A � LT
1
:B CT:B � LS

1
:A

Figure 2: Quasi-succinctness: Reduction of 2-var Domain
Constraints

standpoint. This is because succinct 1-var constraints can
operate in a generate-only environment, thus avoiding a
generate-and-test environment. Consequently, signi�cant
speedup can be achieved. Now, thanks to quasi-succinctness,
the speedup that can be achieved for 1-var succinct con-
straints is directly applicable to optimizing 2-var quasi-
succinct constraints. Furthermore, in C1(S) and C2(T)
above, the constants in the constraints are the sets LT1 :B
and LS1 :A respectively. A key point here is that these sets
LS1 and LT1 are computed in any event for frequency veri-
�cation purposes. Thus, the de-coupling process in quasi-
succinctness requires little extra cost. Last but not least, in
a customary, levelwise computational framework, the sub-
script 1 in both LS1 and LT1 implies that immediately after
the �rst iteration of counting, the 2-var constraint can be
de-coupled to e�ect separate pruning.

4.2 Other Domain Constraints

Based on the notion of quasi-succinctness illustrated so far,
we have conducted a detailed analysis of 2-var constraints.
Column 3 of the table in Figure 1 gives a complete charac-
terization of a representative subset of quasi-succinct con-
straints among those allowed in our CFQ language. Basi-
cally, all domain 2-var constraints are quasi-succinct. We
will comment on the other 2-var constraints shortly. For
the domain constraints shown in Figure 1, the table in Fig-
ure 2 shows their corresponding 1-var succinct constraints
C1(S) and C2(T). We have the following formal result to
ascertain the correctness of the entries in Figure 2.

Theorem 2 For each 2-var constraint C listed in the table
in Figure 2, the following holds:

� C1(S) is a succinct, sound and tight pruning condi-
tion for candidate S-sets; and

� C2(T) is a succinct, sound and tight pruning condi-
tion for candidate T -sets.

The �rst entry in the table is proved by Lemmas 2, 3 and
Corollary 1. For lack of space, we do not include other
proofs here. But concerning the other entries in the table,
we make one observation: some of the 1-var constraints
shown in the table actually have less pruning power than
others. An extreme example is S:A 6= T:B, in which case
the corresponding 1-var constraint for S is CS 6= ;, which
has virtually no pruning power.

4.3 Aggregation Constraints Involving Only

min() and max()

Next we turn our attention to 2-var aggregate constraints.
First, we focus on 2-var constraints of the form: agg1(S:A) �
agg2(T:B), where agg1; agg2 are either min() or max(), �

2-var constraint C sound & tight C1(S) sound & tight C2(T)

min(S:A) � min(T:B) min(CS:A) � min(CT:B) �

max(LT
1
:B) min(LS

1
:A)

min(S:A) � max(T:B) min(CS:A) � max(CT:B) �

max(LT
1
:B) min(LS

1
:A)

max(S:A) � min(T:B) max(CS:A) � min(CT:B) �

max(LT
1
:B) min(LS

1
:A)

max(S:A) � max(T:B) max(CS:A) � max(CT:B) �

max(LT
1
:B) min(LS

1
:A)

Figure 3: Quasi-succinctness: Reduction of min() and
max() Constraints

is one of =;�; �, and S:A and T:B are in the same do-
main. Again because there are many combinations, we only
summarize a few cases in Figures 1 and 3. Other cases
not shown can be handled similarly [13]. In terms of for-
mal results, as shown in the theorem below, in each case,
the accompanying 1-var constraints are guaranteed to be
succinct, sound and tight pruning conditions. For lack of
space, we only show a proof sketch for one 2-var constraint,
C � max(S:A) � max(T:B). It will become obvious later
why we pick this constraint for elaboration.

Theorem 3 For each 2-var constraint C(S; T) listed in
Figure 3, the following holds:

� C1(S) is a succinct, sound and tight pruning condi-
tion for candidate S-sets; and

� C2(T) is a succinct, sound and tight pruning condi-
tion for candidate T -sets.

Proof Sketch. Consider C � max(S:A) � max(T:B).
The following is to show that: (i) CS is a valid S-set w.r.t.
C i� CS satis�es the constraintmax(CS:A) � max(LT1 :B);
and (ii) CT is a valid T -set w.r.t. C i� CT satis�es
max(CT:B) � min(LS1 :A).

(For CS:) Suppose CS satis�esmax(CS:A) > max(LT1 :B).
For any frequent T -set T , it is the case that max(LT1 :B) �
max(T:B), because T � LT1 . Thus, there will never be
a frequent T -set T0 such that the pair (CS; T0) satis�es
constraint C, so CS cannot be valid. Now suppose CS
satis�es max(CS:A) � max(LT1 :B). Then there exists an
element t 2 LT1 such that max(CS:A) � t:B. Now consider
the set ftg. It is frequent, and the pair (CS; ftg) satis�es
C, implying CS is valid.

(For CT :) Suppose CT satis�esmax(CT:B) < min(LS1 :A).
Then as argued above, it is clear that for any frequent S-
set S, min(LS1 :A) � max(S:A). Thus, there cannot be
a frequent S-set S0 such that the pair (S0; CT) satis�es
constraint C. Now suppose CT satis�es max(CT:B) �
min(LS1 :A). Then there exists an element s 2 LS1 such that
max(CT:B) � s:A. This makes CT a valid T -set.

There are two reasons why we choose to include the above
proof here. First, this serves as a concrete example of the
arguments showing the soundness and tightness of the prun-
ing conditions given in Figure 3. Second, the proof explains
many interesting regularities that exist among the condi-
tions given in the �gure. For instance, the succinct con-
straint C1(S) is identical in the third and fourth rows of
the table. The observation here is that the proof for CS
given above works for either of the two 2-var constraints

max(S:A) � min(T:B) or max(S:A) � max(T:B). Simi-
larly, notice the similarity between the succinct constraints
C2(T) for the same two constraints. The term min(LS1 :A)
appears in both succinct constraints, and min(T:B) in the
2-var constraint corresponds to min(CT:B) in the succinct
1-var constraint, and vice versa for max(T:B). Again the
proof for CT above explains why.

5 Optimizing 2-var Constraints

Involving sum() and avg()

In the previous section, we have analyzed quasi-succinct
constraints. Next we turn to non-quasi-succinct constraints.
These are constraints involving sum() and avg(). Specif-
ically, we develop a two-pronged approach for optimizing
non-quasi-succinct constraints. First, we show how such
a constraint can induce weaker 2-var constraints that are
quasi-succinct, thereby making use of the results presented
in the previous section. Second, because for some constraint
combinations, the induced constraints may not always yield
adequate pruning by themselves, we develop an iterative
heuristic pruning algorithm of a di�erent avor.

5.1 Inducing Weaker Quasi-succinct

Constraints

To illustrate, consider the constraint C � sum(S:A) �
max(T:B). Constraint C implies the weaker constraint
C0 � max(S:A) � max (T:B), in the sense that CS 2
sat

S
C(Item) =) CS 2 sat

S
C0 (Item), and similarly for CT .

Intuitively, for any candidate S-sets CS violating C0, CS
must also violate C. (The results in this section assume that
the domains of A and B are non-negative.) We know from
Section 4 that C0 is quasi-succinct. Thus, we can use the
1-var succinct constraints C1(S) and C2(T) (see the table
in Figure 3) as pruning conditions for C. Notice that even
though C1(S) and C2(T) are sound and tight w.r.t. C0,
they are only sound pruning conditions for candidate S-
sets and T -sets w.r.t. C. Because the pruning is not tight,
when eventually the valid pairs w.r.t. C are computed, an
additional veri�cation against C must be performed.

Based on the idea of inducing weaker constraints, the table
in Figure 4 shows the sound pruning conditions C1(S) and
C2(T) w.r.t. C for a representative subset of aggregate
constraints involving sum() and/or avg(). In general, with
agg() denoting any aggregation allowed in our language,
(i) C � avg() � agg() induces C0 � min() � agg(); (ii)
C � sum() � agg() induces C0 � max() � agg(); and (iii)
C � agg() � avg() induces C0 � agg() � max(). We have
the following lemma.

Lemma 4 For each 2-var aggregate constraint C given in
the table of Figure 4, we have:

� C1(S) is a succinct and sound pruning condition for
candidate S-sets; and

� C2(T) is a succinct and sound pruning condition for
candidate T -sets.

Induced weaker constraints can be quite e�ective in pruning
for many cases. But sometimes they may be too \loose",
particularly for constraints involving only sum() and/or
avg(). A perfect example is the constraint C � sum(S:A) �
sum(T:B). It is not di�cult to show that a sound pruning

2-var constraint C induced weaker constraint C0 sound C1(S) sound C2(T)

avg(S:A) � min(T:B) min(S:A) � min(T:B) min(CS:A) � max(LT
1
:B) min(CT:B) � min(LS

1
:A)

sum(S:A) � max(T:B) max(S:A) � max(T:B) max(CS:A) � max(LT
1
:B) max(CT:B) � min(LS

1
:A)

avg(S:A) � avg(T:B) min(S:A) � max(T:B) min(CS:A) � max(LT
1
:B) max(CT:B) � min(LS

1
:A)

Figure 4: Induced Weaker Constraints for Constraints involving sum() and/or avg()

1. Set Nk
i to be the number of frequent sets of size k con-

taining ti.

2. Set Jki to be the largest j with: Nk
i � (k+j�1

k�1
) (1)

3. Set Jkmax to be maxfJki j 1 � i � mg.

Figure 5: Computing an Upper Bound on Largest Frequent
T -set, Jkmax.

condition C1(S) is sum(CS:A) � sum(LT1 :B). But the con-
stant sum(LT1 :B) can be too large. The following numerical
example, which we will reuse later, illustrates this situa-
tion. Suppose LT1 = ft1; : : : ; t100g. Suppose ti:B = i for all
1 � i � 100. Then the pruning condition sum(CS:A) �
sum(LT1 :B) yields sum(CS:A) � (1 + : : : + 100) = 5050.
Below we develop another pruning technique primarily for
constraints involving only sum() and/or avg().

5.2 Heuristic Iterative Pruning with Jkmax

The problem we have just seen about pruning sum(S:A) �
sum(T:B) raises the following question: if we cannot pro-
duce tight pruning conditions with one constraint and one
constant, can we produce a series of constraints with in-
creasingly stronger pruning power? Let us �rst observe
that between S and T , the pruning condition for S, hav-
ing the form sum(S:A) � VA, is likely to be of more value,
because the latter constraint is also anti-monotone (cf: Def-
inition 1), which permits e�ective optimization. Thus, let
us focus our attention on the S side, in the rest of this sec-
tion. An obvious { but ine�ective { choice for the value VA
is sum(LT1 :B). Instead, in the following, we show how to

generate a series of values V 2
A; : : : ; V

k
A based on the frequent

T -sets of size 2 through k. To do so, we must �rst answer
the following question: given all the frequent T -sets of size
k for some k � 2, what is an upper bound on the size of
the largest (in the cardinality sense) frequent T -set?

The procedure given in Figure 5 provides such a bound.
Given all the frequent T -sets of size k, let t1; : : : ; tm be an
enumeration of all the elements contained in any frequent
T -set of size k, i.e., elements in LTk . The intuition behind
Equation (1) in Figure 5 is that in order for the element ti
to appear in at least one frequent T -set of size k+j, it must
appear in at least (k+j�1k�1) frequent sets of size k. Thus, Jki ,
being the maximum of all j's satisfying Equation (1), gives
an upper bound on the largest frequent T -set containing ti.
Hence, given all frequent T -sets of size k, Jkmax is an upper
bound on the size of the largest frequent T -set.

To continue with our earlier numerical example, suppose
there are 17 frequent sets of size 4 containing element t1,
i.e., N4

1 = 17. Then it is not possible to have a frequent
set of size 7 containing t1, because otherwise, there should

1. For an arbitrary element ti 2 LT
k
, among all frequent T -

sets of size k containing ti, let the set T
k
i be the one with

the maximum value of sum(T:B). Let that sum be Sumk
i .

2. Let Ek
i be the set of all elements of LT

k
that are not in

T ki but co-occurring with ti in some frequent set of size
k. Let e1; : : : ; ew be an enumeration of all the elements
in Ek

i in descending order of their B-values, i.e. e1:B �
: : : � ew:B.

3. Set MaxSumk
i to be Sumk

i +
PJk

max

u=1
eu:B.

4. Set V k to be maxfMaxSumk
i j 1 � i � mg.

Figure 6: Iterative Pruning Using Jkmax.

at least be (7�14�1) = 20 frequent sets of size 4 containing
t1. In other words, the largest frequent set containing t1
is of size at most 6, i.e., J41 = 2. Depending on the actual
distribution of the elements in the 17 frequent sets of size
4, and the frequency counts of the sets, the actual largest
frequent set containing t1 may in fact have size smaller than
6. But the point is that the best estimate we can make from
the given information is 6.

The following lemma says that for each element, as we in-
crease our knowledge from knowing all frequent sets of size
k to knowing all frequent sets of size k+1, we can sharpen
our upper bound.

Lemma 5 For all k � 2, it is necessary that for all 1 �
i � m, Jk+1i < Jki and Jk+1max < Jkmax.

Before we return to the discussion of optimizing 2-var con-
straints involving sum() and avg(), we point out that Jkmax

can be computed very e�ciently. All the quantities Nk
i can

be computed with one pass over all the frequent T -sets of
size k. These \counters" may best be maintained on-the-y
as the frequent sets are computed. Regarding Steps 2 and
3 in Figure 5, it is easy to see that we can execute Step
3 only once based on the maximum Nk

i value, instead of
solving Equation (1) m times for each i, 1 � i � m. Thus,
the time taken to �nd Jkmax is negligible.

Recall that our objective is to e�ect iterative pruning for
the constraint sum(S:A) � sum(T:B), by producing a se-
ries of 1-var constraints sum(S:A) � V i, 1 � i � k, where
the upper bounds get tighter as i increases. Figure 6 shows
how this series can be produced. To continue with our
earlier example, suppose for the element t100, that the fre-
quent T -set of size 4 containing t100 that has the maximum
sum(T:B) value, is the set ft10; t50; t80; t100g. This set gives
a total sum of Sum4

100 = 240. (Recall that we are assum-
ing, for simplicity, that ti:B = i.) Suppose that J4max is 2,
and that among the other elements co-occurring with t100

��
��

��
@@��
@@

...
.............
.............
..............
.............
.

��
@@��
@@-

-

6

-

6

-

?

?

-

Reduction
(Sec. 4)

Jk

Form �nal

+
CAP

max pruning
(Sec. 5)

pairs

CFQ

1-var constraints

constraints
2-var

non-quasi-succinct constraints

query

1-var succinct
constraints

quasi-succinct
constraints

frequent, valid
S-, T-sets

frequent, valid
pairs

Figure 7: A Schematic Diagram of the CFQ Query Optimizer

in any frequent T -set of size 4, the elements with the top-2
B-values are t90 and t70. Then the value of MaxSum4

100 is
given by 240 + 90 + 70 = 400. It is easy to see that for
any frequent T -set T containing t100, sum(T:B) is bounded
from above by 400.

Lemma 6 For any value of k � 2, if CS is a valid S-
set w.r.t. the constraint sum(S:A) � sum(T:B), then it
necessarily satis�es sum(CS:A) � V k.

Lemma 7 For all k � 2, it is necessary that V k+1 � V k.

In closing this section, we o�er three extra comments. First,
we have discussed how to use Jkmax to derive a series of V k

values for sum(S:A) � V k. Given the constraint avg(S:A) �
agg(T:B), where agg() is sum() or avg(), we can derive a
series of Ak values for avg(S:A) � Ak.

Second, iterative pruning with Jkmax makes sense only when
the lattice computations for S and T are \dovetailed", in
that computing one level of the lattice for S is followed by
one level of T and vice versa. An attentive reader would
raise the following objection to dovetailing. Suppose the
only constraint in a given CFQ is sum(S:A) � sum(T:B).
Then, as argued above, we can expect to do very little
pruning on the T side for this constraint. One reasonable
strategy is to compute all frequent T -sets, �nd the global
maximum M = maxfsum(T:B) j freq(T)g, and then use
the condition sum(S:A) � M as a pruning condition for
candidate S-sets. Purely from the viewpoint of pruning,
this is convincing. However, this argument ignores the I/O
cost. In general, dovetailing between the lattices for S and
T allows for sharing of scans on the transaction database,
from which frequency constraints are veri�ed. While it re-
mains an open problem as to what the optimal strategy for
computing a CFQ is, counting both CPU and I/O costs,
we believe dovetailing is reasonable under many circum-
stances. In those cases, iterative pruning based on Jkmax is
an attractive strategy.

Finally, we note that using induced weaker constraints and
iterative pruning with Jkmax are complementary and work at
di�erent times. Induced weaker constraints e�ect pruning

once and for all right after iteration 1 in frequency counting,
whereas pruning with Jkmax comes into e�ect multiple times
in subsequent iterations.

6 A CFQ Query Optimizer

So far our focus has been on how to optimize di�erent kinds
of 2-var constraints on an individual basis. In this section,
we tie all these di�erent pieces together into a query opti-
mization framework. Speci�cally, we present a CFQ query
optimizer which given a CFQ, produces an optimized com-
putation strategy for the CFQ, considering both 1-var and
2-var constraints. To evaluate the quality of the strategy
produced by the optimizer, we introduce the notion of ccc-
optimality. This notion seeks to capture the e�ort spent by
a strategy in invoking two fundamental operations { sup-
port counting and constraint checking. We show that for a
large class of constraints, the strategy is ccc-optimal.

6.1 A Schematic Diagram of the Optimizer

Figure 7 shows how the CFQ query optimizer operates when
presented with a set C of constraints. It �rst separates the
1-var and 2-var constraints, i.e. C = C1 [C2. This sepa-
ration is purely syntactic. The set C2 of 2-var constraints
is then further divided into two subsets Cqs; Cnqs, as fol-
lows. Cqs contains every quasi-succinct constraint in C2,
while Cnqs = C2 �Cqs. Using the ideas in Section 5.1, from
each constraint in Cnqs, a weaker quasi-succinct constraint
is induced and added to the set Cqs. Then based on the
material in Section 4, each quasi-succinct 2-var constraint
in Cqs is reduced to two 1-var succinct constraints. This
transforms Cqs into the corresponding Cqs;1. The latter is
then put together with the set of 1-var constraints from
the initial CFQ, i.e. Cqs;1 [C1. Together these constraints
are exploited by the CAP algorithm which provides opti-
mized execution of 1-var constraints [15]. If the set Cnqs
of non-quasi-succinct constraints is not empty, then the
iterative pruning strategy developed in Section 5.2 is ap-
plied. Speci�cally, at each level of the lattice computation
by CAP (and for that matter, Apriori as well), a candidate
set is only counted for frequency veri�cation if it satis�es
the constraint induced by Jkmax. This additional �ltering

step is depicted in Figure 7 as an add-on to the CAP mod-
ule, which produces all frequent, valid S- and T -sets (cf:
De�nition 3). 4 Finally, from among these sets, the fre-
quent, valid pairs are formed. This �nal step is trivial if
there is no 2-var constraint in the CFQ to begin with.

6.2 Performance Guarantee: CCC-Optimality

The query optimizer outlined in Figure 7 generates a spe-
ci�c strategy for computing a given CFQ. We evaluate be-
low the quality of this strategy. As shown in Figure 7, to
�nd all the frequent, valid pairs (S; T) for a given CFQ,
there are two steps involved: (i) �nding all the frequent,
valid S- and T -sets; and (ii) forming the pairs. The dia-
gram in Figure 7 suggests that the �rst step requires a lot
more computational e�ort than the second step. Indeed,
experimental results indicate that the �rst step typically
requires a total runtime many orders of magnitude higher
than what the second step needs. Thus, in the ensuing
discussion, we only focus on the performance of the �rst
step.

To measure performance, we consider two cost components:
(i) the e�ort needed for constraint checking, and (ii) that
for support counting. The level of granularity of our cost
model is such that for constraint checking, we count the
number of invocations of the constraint checking operation,
and for support counting we count the number of sets for
which support is counted. This leads to the notion of ccc-
optimality, where \ccc" stands for constraint checking and
counting. We say that a candidate S-set CS is valid w.r.t.
a set of constraints C if CS is valid w.r.t. all 1-var and 2-var
constraints in C in the sense de�ned in Sections 2 and 3.

De�nition 6 (ccc-optimality) A computation strategy
is ccc-optimal for a class of constraints provided for every
set C of constraints from that class, it satis�es the following
conditions:
(1) the strategy counts for the support of a candidate

set CS i�: all subsets of CS are frequent, and CS is
valid;

(2) the strategy invokes the constraint checking opera-
tion on a candidate S-set CS, only if jCSj = 1.

The �rst condition of ccc-optimality guarantees that when
a set CS is counted for its support: (i) all subsets of CS are
frequent, (ii) CS satis�es all 1-var constraints in C involving
S, and (iii) for every 2-var constraint C in C involving S
and T , there necessarily exists a frequent T -set CT , such
that (CS;CT) is a valid pair w.r.t. C.5 At this stage,
the frequency constraint is the only remaining requirement
that could possibly prevent CS from becoming a frequent,
valid S-set. Thus, in a bottom-up levelwise computational
framework, the �rst condition, in some sense, represents
the minimum number of sets that need to be counted for
support veri�cation.

Given a set C of constraints, the naive algorithm, called
Apriori+ in [15], can compute all frequent, valid sets by

4If induced weaker constraints are used for non-quasi-succinct
constraints, as described in Section 5.1, the output of CAP may
include, in addition to all the valid S- and T -sets, some S- and T -
sets not valid for the original constraints. Those will be discarded
when the �nal step of forming valid pairs is executed.

5We stress that we may not, and need not, know what exactly
CT is, as long as we know some such CT must exist. This is the
power of the material on quasi-succinctness in Section 4.

�rst computing all frequent sets, and then verifying whether
these frequent sets satisfy C. It is easy to see that for most
instances of C, Apriori+ is not ccc-optimal because it vio-
lates the �rst condition by counting sets that are invalid.
Surprisingly, there are instances of C for which Apriori+ is
ccc-optimal; we will characterize those instances shortly.

The �rst condition alone, however, does not necessarily
guarantee that the invocation of the constraint checking op-
eration is done a minimal number of times. As a counter-
example, consider the following \full-materialized" (FM)
strategy. FM �rst computes all valid sets by generating all
possible subsets and verifying each and every one against
the set C of constraints. Then among all the subsets that
satisfy C, it counts the support in ascending cardinality.
Clearly, FM satis�es the �rst condition above, as it counts
the minimum number of sets for support. Equally clearly,
FM leaves much to be desired as it performs constraint
checking too many times, indeed 2N times in the worst
case, where N is the size of the active domain (e.g., the
number of items).

This motivates the second condition in De�nition 6, namely
that the number of invocations of constraint checking is re-
stricted to at most N . In a bottom-up levelwise compu-
tational framework, we believe this is a reasonable lower
bound, since it is not clear how one can do with fewer con-
straint checking invocations in that framework. With this
motivation, we contend that ccc-optimality is a very desir-
able goal for a computation strategy for CFQ to achieve.

Theorem 4 Algorithm CAP is ccc-optimal for the class of
1-var succinct constraints.

Recall from Figure 7 that Algorithm CAP is used to pro-
cess 1-var constraints. The above theorem states that CAP
achieves ccc-optimality for C if the set consists of only 1-var
succinct constraints. While the details of a proof are given
in [13], the general idea is that to any set of 1-var succinct
constraints, including those which are not anti-monotone,
there is a corresponding function, called the member gen-
erating function (MGF) in [15], that can generate exactly
those sets that satisfy the constraints. The MGF operates
in such a way that the second condition of ccc-optimality
is satis�ed. Together with the MGF, CAP then guarantees
that the �rst condition of ccc-optimality is also met.

Corollary 2 The strategy generated by the CFQ query
optimizer is ccc-optimal for the class of constraints consist-
ing of 1-var succinct and 2-var quasi-succinct constraints.

Recall from Theorems 2 and 3 that each 2-var quasi-succinct
constraint can be reduced to two 1-var succinct constraints
preserving the valid S- and T -sets. These reduced 1-var
succinct constraints can be set up appropriately after all
the sets in the �rst levels of the lattices for S and T have
been counted for their support. This ensures that the sec-
ond condition of ccc-optimality is satis�ed. Then by virtue
of Theorem 4, the computation strategy given by the CFQ
query optimizer makes use of CAP to guarantee that ccc-
optimality is achieved w.r.t. the reduced 1-var succinct
constraints. This then, by De�nition 6, implies that this
strategy is ccc-optimal w.r.t. the 2-var quasi-succinct con-
straints as well.

In general, Apriori+ is not ccc-optimal for 1-var succinct
constraints, and hence not for 2-var quasi-succinct con-
straints. However, in some situations, Apriori+ may indeed

1

2

3

4

16.6 33.3 50 66.7 83.4

re
la

ti
v
e

s
p

e
e

d
u

p

% selectivity

(a) 2-var Constraints only

1

3

5

7

9

11

13

15

17

19

20 40 60 80

re
la

ti
v
e

s
p

e
e

d
u

p

% selectivity

1-var + 2-var
1-var only

none

(b) 2-var on top of 1-var Constraints

Figure 8: Performance Speedup: Exploiting Quasi-succinctness

be ccc-optimal (as will the strategy given by the optimizer).
If C consists of only 2-var quasi-succinct constraints where
the variables S and T e�ectively point to the same lat-
tice computation, then Apriori+ is ccc-optimal. For exam-
ple, suppose C consists of a single constraint fmin(S:A) �
min(T:A)g with both S; T as variables over the domain,
say Item. The two 1-var constraints given in the �rst entry
of the table in Figure 3 become trivial (e.g., min(CS:A) �
max(LT1 :A) = max(LS1 :A)). Thus, every subset of Item is
a valid S- and T -set! In this case, the strategy used by the
optimizer e�ectively reduces to Apriori+.

As for non-quasi-succinct constraints, the computation strat-
egy given by the optimizer (and trivially, Apriori+) is not
ccc-optimal because the strategy violates both conditions
of ccc-optimality. While the two-pronged approach pro-
posed in Section 5 can be e�ective in cutting down the
number of sets counted for support and the number of
invocations of constraint checking, it does not guarantee
ccc-optimality. Developing ccc-optimal strategies for non-
quasi-succinct constraints is an open problem.

7 Experimental Evaluation

To evaluate the e�ectiveness of the various optimizations
presented in this paper, we implemented all of them in C.
We used the program developed at IBM Almaden Research
Center [2] to generate the transaction databases. While
we experimented with various databases, the results cited
below are based on a database of 100,000 records and a do-
main of 1000 items. The page size was 4Kbytes. All exper-
iments were run in a time-sharing SPARC-10 environment,
and the speedup shown is w.r.t. total CPU + I/O time.
For comparisons, we include the results for the \baseline"
algorithm Apriori+, which �rst generates all frequent sets
and then checks them for constraint satisfaction. Whenever
appropriate, we include the results for the CAP algorithm
proposed in [15]. CAP optimizes 1-var constraints by push-
ing them deeply in an Apriori-style bottom-up framework.
This algorithm does not optimize the 2-var constraints an-
alyzed in this paper.

7.1 Quasi-succinctness: 2-var Constraints

Only

In this set of experiments, we consider a single 2-var quasi-
succinct constraint max(S:Price) � min(T:Price). As
shown in Figure 3, it can be reduced to the two succinct
1-var constraints: max(CS:Price) � max(LT1 :Price) and
min(CT:Price) � min(LS1 :Price). The e�ciency gain by
using these two 1-var constraints as a replacement of the
original 2-var constraint depends on the Price ranges of
S and T . The curve shown in Figure 8(a) corresponds to
the case when S:Price is in the range [400,1000]. (We will
comment on the e�ect on changing this range shortly.) On
the other hand, T:Price is in the range [0; v]. The x-axis
of the graph in Figure 8(a) shows the results for various
values of v. For easier comparisons among di�erent ranges
of Price, the x-coordinate is expressed in terms of the per-
centage overlap between the range of S:Price and the range
of T:Price, i.e., x = 100% � (v � 400)=(1000 � 400), where
v � 400. For instance, v equal to 500 and 700 correspond to
the overlap percentage of 16.6% and 50% respectively. The
y-axis shows the speedup of exploiting quasi-succinctness
relative to Algorithm Apriori+. The graph in Figure 8(a)
shows that the speedup is about 4 times when there is a
16.6% overlap. In general, as there is more overlap, the
constraint max(S:Price) � min(T:Price) itself becomes
less selective and the speedup is reduced. But even for the
large percentage overlap of 83.4%, there is a speedup of over
1.5 times.

The e�ectiveness of the pruning achieved by exploiting quasi-
succinctness is best explained by the following table (for the
situation of 16.6% overlap). The columns of the table cor-
respond to the sizes of the frequent sets. The two rows
describe the situations for variable S and T . Each entry is
of the form a=b, where a is the number of frequent sets sat-
isfying the corresponding 1-var succinct constraint, and b is
simply the total number of frequent sets of that size. For
example, without taking advantage of quasi-succinctness,
Apriori+ �nds 372, 122 and 8 frequent sets of sizes 2, 4 and
6 respectively for variable S. With quasi-succinctness ex-
ploited, our optimized strategy only needs to compute 153,

21 and 1 frequent sets of the corresponding sizes. For vari-
able T , our optimized strategy stops after 3 levels, whereas
Apriori+ needs to go to 6 levels.

L1 L2 L3 L4 L5 L6

for S 425/425 153/372 54/179 21/122 6/48 1/8
for T 402/402 112/414 8/181 0/123 0/48 0/8

The graph shown in Figure 8(a) is based on S:Price falling
in the range [400,1000]. Enlarging (and shrinking respec-
tively) this range makes the constraint less (more) selective
and the speedup less (more) prominent. The following table
shows the speedup for a percentage overlap of 50%, when
the S:Price falls in the ranges of [300,1000], [400,1000] and
[500,1000] respectively.

Range of S:Price Speedup for 50% overlap

[300,1000] 1.52 times
[400,1000] 1.84 times
[500,1000] 2.07 times

7.2 Quasi-succinctness: 2-var constraints

Together with 1-var constraints

In this set of experiments, we consider the constraints:
T:Price � 600 & S:Price � 400 & S:Type = T:Type.
We compare the relative e�ciency of three strategies: (i)
the baseline Apriori+; (ii) the CAP algorithm which only
optimizes the �rst two 1-var constraints; and (iii) the strat-
egy of exploiting the quasi-succinct 2-var constraint, as well
as optimizing the 1-var constraints as in CAP (which is ex-
actly the strategy prescribed by the optimizer). Thus, the
di�erence in performance between the last two strategies is
purely based on the way quasi-succinctness is exploited.

The x-axis of the graph in Figure 8(b) gives the percentage
overlap between the Types of items of T (i.e., those items
satisfying T:Price � 600) and the Types of items of S (i.e.,
those items satisfying S:Price � 400). The y-axis again
shows the speedup relative to the Apriori+ algorithm. This
explains the horizontal line at y = 1 in the �gure. Because
the CAP algorithm only optimizes the 1-var constraints and
only checks the 2-var constraint S:Type = T:Type at the
end, the percentage overlap variation has no bearing on the
relative performance of CAP. Thus, its performance curve
also gives a horizontal line, but this time at y = 1:5. In
other words, optimizing the 1-var constraints alone gives a
speedup of 1.5 times. In addition to this optimization, if
quasi-succinctness is applied to the 2-var constraint, very
signi�cant additional speedup is achieved. For example, for
a 40% overlap in Type values, the total speedup is 6 times,
as compared with 1.5 times with only optimizations for 1-
var constraints. For a 20% overlap, the total speedup is
about 20 times.

The graph shown in Figure 8(b) is based on S:Price falling
in the range [400,1000] and T:Price in [0,600]. Enlarging
these ranges reduces the speedup of both curves relative to
Apriori+. The reason is that the larger the ranges, the less
selective the 1-var constraints are. However, the algorithm
CAP, optimizing only 1-var constraints, is more seriously
a�ected by these changes. Consequently, the gap between
whether quasi-succinctness is exploited or not is even wider.
The following table shows this phenomenon with a 40%

overlap in Type values. The third and fourth columns of the
table give the speedup for optimizing 1-var constraints only,
and for optimizing both kinds of constraints respectively.
The last column gives the ratio of the fourth column over
the third column.

S:Price T:Price Speedup for Speedup for Ratio
1-var only 1- and 2-var

[100,1000] [0,900] 1.2 times 5 times 4.17
[400,1000] [0,600] 1.5 times 6 times 4.0
[800,1000] [0,200] 20 times 37.5 times 1.875

7.3 Optimizing sum() and avg() Constraints
with Jkmax

Section 5 gives two ways to optimize non-quasi-succinct
constraints. The experimental results presented so far al-
ready give an idea of the e�ciency of the �rst approach of
inducing weaker constraints. Below we focus on the second
approach of iterative pruning with Jkmax. In this experi-
ment, we consider sum(S:Price) � sum(T:Price). Recall
from Section 5 that pruning is achieved by �nding a series
of V 2; : : : ; V k upper bounding sum(S:Price). In order for
the series to develop, we pick a low support threshold for
S so that there are frequent sets on the S side that are of
high cardinality, and the e�ect of the pruning can be appre-
ciated. For the results reported below, the highest cardinal-
ity is 14. Furthermore, values of S:Price and T:Price are
made normally distributed, with di�erent means but the
same variance. For the results reported below, the items
corresponding to S have a mean Price value of 1000 and
a variance of 100. The following table shows the speedup
with di�erent mean T:Price values.

Mean of T:Price Speedup with Jkmax

400 3.14 times
600 1.91 times
800 1.36 times
1000 1.11 times

When the mean Price value on the T side is much lower
than that on the S side, the constraint sum(S:Price) �
sum(T:Price) is reasonably selective. In this case, the it-

erative pruning strategy using Jkmax helps bring about a
proportionate amount of speedup. For instance, when the
mean Price value on the T side is 400, the speedup is about
3 times. But when the mean Price value increases, the
constraint itself is less selective. Consequently, the speedup
obtained is modest, e.g., only 1.4 times when the mean is
900. Compared with quasi-succinctness, pruning with Jkmax

delivers less spectacular results. We attribute this to the
relatively non-selective nature of the sum() and avg() con-
straints. The point is that iterative pruning does deliver a
level of performance commensurate with the selectivities of
these constraints that are hard to optimize.

8 Conclusions

Towards the eventual goal of supporting ad-hoc mining of
various kinds of rules, we proposed in [15] constrained fre-
quent set queries. The main contribution of [15] was in de-
veloping pruning optimizations for 1-var constraints. In this
paper, we consider 2-var constraints and develop pruning

optimizations for them. We establish a negative result that
few 2-var constraints are anti-monotone, thus underscoring
the challenge posed by 2-var constraints w.r.t. pruning op-
timization. We introduce the notion of quasi-succinctness
and completely characterize the class of all such constraints
among those allowed in the CFQ language. Quasi-succinct
constraints can be reduced to two succinct 1-var constraints
which are sound and tight w.r.t. pruning away candidate S-
sets and T -sets. For constraints that are not quasi-succinct,
we develop a two-pronged approach consisting of: (i) induc-
ing weaker quasi-succinct constraints and exploiting them,
and (ii) adopting an iterative pruning strategy. Finally, we
propose a query optimizer for CFQs and show that for the
large class of 1-var succinct and 2-var quasi-succinct con-
straints, the strategy generated by the optimizer achieves
the very desirable goal of ccc-optimality. This notion cap-
tures the idea that the e�ort spent by the strategy in in-
voking support counting and constraint checking is mini-
mized. We establish the e�ectiveness of the optimizations
developed in the paper with experiments, which show sig-
ni�cant speedup, compared with Apriori+ on the one hand,
and compared with CAP (which optimizes only 1-var con-
straints) on the other.

Many questions remain open, but we mention three here.
(1) As mentioned in Section 5, the strategies developed for
non-quasi-succinct constraints are not ccc-optimal. Devel-
oping such a strategy is an open problem. (2) The \cost
model" corresponding to ccc-optimality represents only a
�rst attempt to explore optimality issues. Developing more
detailed cost models for CFQs, as well as optimizers in-
corporating such models, is an interesting problem. (3) Ex-
panding the constraint language to incorporate more power-
ful, yet useful, constraint classes is another important prob-
lem.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-
tion rules between sets of items in large databases. In Proc.

1993 ACM-SIGMOD, pp 207{216.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. In Proc. 1994 VLDB, pp 487{499.

[3] R. J. Bayardo. E�ciently mining long patterns from
databases. In Proc. 1998 ACM-SIGMOD, pp 85{93.

[4] S. Brin, R. Motwani, and C. Silverstein. Beyond market
basket: Generalizing association rules to correlations. In
Proc. 1997 ACM-SIGMOD, pp 265{276.

[5] S. Chaudhuri. Data mining and database systems: Where
is the intersection? Bulletin of the Technical Committee on

Data Engineering, 21:4{8, March 1998.

[6] D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Mainte-
nance of discovered association rules in large databases: An
incremental updating technique. In Proc. 1996 ICDE, pp
106{114.

[7] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama.
Data mining using two-dimensional optimized association
rules: Scheme, algorithms, and visualization. In Proc. 1996

ACM-SIGMOD, pp 13{23.

[8] J. Han and Y. Fu. Discovery of multiple-level association
rules from large databases. In Proc. 1995 VLDB, pp 420{
431.

[9] T. Imielinski and H. Mannila. A database perspective on
knowledge discovery. Communications of ACM, 39:58{64,
1996.

[10] M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided
mining of multi-dimensional association rules using data
cubes. In Proc. 3rd KDD'97, pp 207{210.

[11] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen,
and A.I. Verkamo. Finding interesting rules from large sets
of discovered association rules. In Proc. 3rd Int. Conf. In-

formation and Knowledge Management, pp 401{408, 1994.

[12] F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio
rules: A new paradigm for fast, quanti�able data mining.
In Proc. 1998 VLDB, pp 582{593.

[13] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Op-
timization of constrained frequent set queries: 2-var con-
straints. Technical Report, Department of Computer Sci-
ence, University of British Columbia, 1998.

[14] R.J. Miller and Y. Yang. Association rules over interval
data. In Proc. 1997 ACM-SIGMOD, pp 452{461.

[15] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Ex-
ploratory mining and pruning optimizations of constrained
associations rules. In Proc. 1998 ACM-SIGMOD, pp. 13{
24.

[16] J.S. Park, M.S. Chen, and P.S. Yu. An e�ective hash-based
algorithm for mining association rules. In Proc. 1995 ACM-

SIGMOD, pp 175{186.

[17] S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the
discovery of interesting patterns in association rules. In
Proc. 1998 VLDB, pp 368{379.

[18] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating as-
sociation rule mining with relational database systems: Al-
ternatives and implications. In Proc. 1998 ACM-SIGMOD,
pp 343{354.

[19] A. Silberschatz and S. Zdonik. Database systems { breaking
out of the box. SIGMOD Record, 26, pp 36{50, 1997.

[20] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scal-
able techniques for mining causal structures. In Proc. 1998

VLDB, pp 594{605.

[21] R. Srikant and R. Agrawal. Mining generalized association
rules. In Proc. 1995 VLDB, pp 407{419.

[22] R. Srikant and R. Agrawal. Mining quantitative associa-
tion rules in large relational tables. In Proc. 1996 ACM-

SIGMOD, pp 1{12.

[23] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules
with item constraints. In Proc. KDD'97, pp 67{73.

[24] H. Toivonen. Sampling large databases for association rules.
In Proc. 1996 VLDB, pp 134{145.

[25] D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Mot-
wani, and S. Nestorov. Query ocks: A generalization of
association-rule mining. In Proc. 1998 ACM-SIGMOD, pp
1{12.

