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Abstract

Selectvity estimationof queriesis an importantand well-

studiedproblemin relationaldatabaseystems.In this paper

we examineselectvity estimationin thecontext of Geographic
Information Systems,which managespatial data such as
points, lines, poly-linesandpolygons.In particular we focus
on point andrangequeriesover two-dimensionatectangular
data. We proposeseveral technigueshasedon using spatial
indices, histograms,binary spacepatrtitionings (BSPs),and
the novel notion of spatialskew. Our techniquescarefully
partition the input rectanglesinto subsetsand approximate
eachpartition accurately We presenta detailedexperimental
studycomparingthe proposedechniquesndthe bestknown

sampling and parametrictechniques. We evaluate them
using syntheticas well as real-life TIGER datasets. Based
on our experiments,we identify a BSP basedpartitioning
that we call Min-Slew which consistentlyprovides the most
accurateselectvity estimatesfor spatial queries. The Min-

Skew partitioningcanbeconstructeafficiently, occupiesvery
little spaceandprovidesaccurateselectvity estimatever a
broadrangeof spatialqueries.

1 Intr oduction

Geographicinformation Systems(GISs) have gener
atedenormousnterestin the commercialandresearch
database&ommunitiesover the last decade.GISstypi-
cally storeandmanagespatialdatasuchaspoints,lines,
poly-lines, polygons, and surfacesand henceare of-
ten referredto as spatialdatabases.Several commer
cial databasesystemshat managespatialdataare now
available. Theseinclude ESRI's ARC/INFO [ARC93],
InterGraphs MGE [Int97], MaplInfo [Map9g and In-
formix [Ube94. Most otherleadingdatabasevendors
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eitheroffer somekind of supportfor spatialdataor are
in the processof providing suchsupport. GISs have
also beenthe focus of muchresearchmostly towards
efficient manipulation and access[Sam89aSam89lp
andmorerecently towardsresearclprototypes[DeW94
GRSS9T.

As in relational databasesystems,there are mary
modulesof a spatial databasesystemthat require ac-
curateestimatesof queryresultsizes. Suchestimates
areusedin avariety of ways. For example,queryopti-
mizersusequeryresultsize estimatedo determinethe
mostefficient way to executequeries|SACt79]. Esti-
matesare also usedby databasesystemgo give users
feedbaclkaboutthe runningtimesof their queriesbefore
thequeriesareactuallyexecuted.Sinceit is impractical
to runtheentirequeryto computethe resultsizes,most
commercialsystemsusesomeform of statisticsto ap-
proximatethe underlyingdataandestimateresultsizes
basedn thesestatistics.

A variety of techniqueshave beenproposedin the
literature to compute estimatesof query result sizes
in relational databases.The most commononesuse
histagramgKoo8Q Po097, samplef.NS9(], or are
basedon parametrictechniquesthatmodelthe datavia
a standardmathematicatlistribution[CR94 BF95. Of
the varioustechniqueshistograms,in particular have
proved very popularin databasesystemsbecauseahey
can be computedefficiently, usevery little space(on
the order of a few hundredbytes per relation), and
do not requirethat the input distribution be known in
adwance? They work by partitioning the input into
a small number of subsetscalled “buckets”, and by
using approximationsfor each bucket to model the
distribution of tupleswithin. Query result estimates
are then obtainedby processinghe query againstthe
bucketsandthe approximationsisedtherein.

The problem of selectvity estimation for spatial
data is very different from the relational selectvity

aHowever, onecanconstructdistributionsthat cannotbe approxi-
matedwell usinghistogramsn a smallamountof space.



estimationproblemsthat have beenstudiedextensiely
in the databasditerature. Most previous works have
focusedon approximatingthe distributions of single
numerical attributes. Even the ones studying multi-
dimensionaldata[P197, MPS99 have concentrate@n
approximatinghefrequencie®f pointsin space Many
of thesegechniquesreaimedatdatawith highly skewed
frequenciesHowever, they donotperformaswell when
thefrequeng domainis relatively uniform but thevalue
domain(i.e., placemenbf pointsin space)s skewed.

Spatial selectvity estimationdiffers in two impor-
tant aspectdrom traditional selectvity estimation: (i)
The individual spatialentitiesmay differ in shapeand
size; (i) The distribution of frequenciesover the in-
put domaindoesnot vary dramaticallyin spatialdata,
whereaghe valuesare spreadnon-uniformlyin space.
(This correspondso the fact that not mary spatialen-
tities cover the samepoint.) Hence the problemof ap-
proximating spatial datarequirestechniquesfor accu-
ratelyapproximatinghevaluedomainof a distribution.
Evenin the context of uni-dimensionapoint data, this
hasbeenknown to be one of the most difficult prob-
lemsin selectvity estimatiofHNSS95 GG82 Po097.
To the bestof our knowledge,only Belussiand Falout-
sos[BF95] have addressethe problemof spatialselec-
tivity estimatiorandthey concentrat®nly onpointdata
(issue(ii) above).

Motivated by the above reasoning,we study the
problem of selectvity estimationof point and range
selection predicatesover spatial data. In particular
we concentrateon two-dimensionalrectangular data.
Thisis animportantproblembecausét is customaryin
spatialdatabaseystemdo approximatespatialobjects
using their minimumboundingrectangles(MBRs)and
perform query processingwith the MBRs as much as
possible. (Spatial objectsthemseles often needsuch
large representationthatit becomesvery cumbersome
andinefficientto manipulatehemdirectly.) Thoughwe
concentratgrimarily on rectanguladatain this paper
our techniquesreapplicableto point andlineardataas
well.

Our contributionsareasfollows:

¢ We presentseveral novel grouping techniquesfor
approximatingspatialdata.In additionto analogues
of techniquewsedin relationaldatabasesye pro-
posenew techniquedasedon usingspatialindexes
for selectvity estimation. We also proposenovel
techniquesbasedon the notionsof spatial density
andspatial skew. Thesefeaturesof the datacapture
the underlyinginput datadistribution in a concise
mannerandallows usto devise accuratdechniques
for selectvity estimation.

¢ We provideadetailedexperimentaktudycomparing

the varioustechniqueson both syntheticand real-
life datasetsOur resultsshowv thata density-based
techniquethat we call Min-Slew outperformsthe
other techniquesover the entire data and query
spectra.The techniques not only computationally
efficientbut alsohaslow memoryrequirementgven
for large datasetsizes. Our studiesalso shav that
straightforvard applicationof techniquedrom the
one-dimensionalvorld, suchas sampling,are not
effective in the spatialdomain.

e We alsoidentify a seeminglycounterintuitive fact
in spatialselectvity estimation: using the dataat
too fine a level of detail sometimegesultin poor
performancewhen answeringlarge queries! We
usethis obsenation to develop a techniquecalled
progressivespatialrefinemento improve Min-Skew
further.

The restof this paperis organizedasfollows. Sec-
tion 2 containsa formal problemdescription.Section3
offersahigh-level discussiorof possiblesolutionsto the
problemand presentsomebasictechniquedor spatial
selectvity estimation.Section4 presentsnoresophisti-
catedtechniquedor spatialselectvity estimation.Sec-
tion 5 presentghe resultsfrom an extensie seriesof
experimentson real-life and syntheticdata. We iden-
tify Min-Skew asthe clear winner and suggesturther
improvementdo it. We presenbur conclusionsn Sec-
tion 6.

2  Problem Formulation

In this section,we formally definethe specificclassof
selectvity estimationproblemsaddressedh this paper
anddevelopa notationfor describingspatialdata.

Consider a relation R containing an attribute A
whosedomainis the set of (two-dimensional)rectan-
gles. The distribution 7~ of A is the setof rectangles
{7‘1,1"2, s 7TN} wherer; = [(35}, yzl)a (.1'12, y?)] The
two componentof rectangler; specify its lower-left
andupperright cornersrespectiely. Thez;’s andy;’s
are assumedo comefrom an integer or real domain.
We denotethe areaof the minimumboundingrectangle
(MBR) of theinputrectanglesn 7 by Area(T). Wayg
and H,,; denotethe average width and heightof the
rectanglesontainedin 7 respectiely. Finally, denote
thesumof areasof all therectanglesn 7 by T'A.

A rangequery predicateis specifiedas a rectangle
Q = [(gzt, qy'), (¢2?, qy?)]. Note thatthis definition
canbe usedto specify point queriesaswell by setting
gz’ = qx? andgy' = qy®. Theresultsize|Q| is the
numberof rectanglesn theinputthathave anon-empty
intersectiorwith the queryrectangle.The selectivityof
query @ is the fraction |Q|/N. Computingthe exact



selectvity of a query requiresus to either scanthe
input datasetor to usean index to find the numberof
input rectangleghat intersectwith the query Clearly,
both of theseoptionsaretoo expensve to be usefulin
most contexts (including query optimization), because
they may require several disk accessesnd involve a
significantamountof processing Hence,oneis forced
to summarizeor approximateheinputdatasothatit can
berepresentedompactly The approximationsarethen
usedto estimateselectvities. We definethe problemof
selectvity estimationfor rectanguladatato be that of
estimating|@| for anarbitraryrangequery @ givenan
input distribution 7. This problemis the focus of this
paper

3  Techniquesfor Approximating Spatial
Data

In this section,we examinevarioustechniquedor ap-
proximatingspatialdata.Ourmainfocusis onthebroad
classof non-paametrictechniquesvhich approximate
thedatausinga smallamountof spacetypically in tab-
ularform. Firstwe presentavery simpletechniquehat
is analogougo the traditional uniform distribution as-
sumptionmadein relationaldatabasefSACt 79].

3.1 Uniformity Assumptionfor Spatial Data

Thesimplesttechniquefor approximatingspatialdatais
to assumehattheinputrectanglesreof identicalwidth
and height, and are distributed uniformly in the input
space. The formulasfor estimatingthe resultsizesof
pointandrangequeriesunderthis assumptioraregiven
below.

Point Queries: For point queries,one hasto return
thenumberof rectangleghatoverlapa particularpoint.
One appliesthe uniformity assumptiorby calculating
the average numberof rectangleshit by a point query
within the input MBR. The averagehereis over all the
point querieswithin the MBR. It is easily showvn that
this averagecan be obtainedby taking the ratio of the
total areaof theall theinputrectanglego theareaof the
input's MBR (A_T%:}'T))' _ _

Range Queries: For rangequeries,the naturaluni-
formity assumptionis that rectanglesare of identi-
cal width and height uniformly distributed within the
input MBR. The number of rectanglesthat a query
Q = [(g=',qyt), (g%, qy?)] intersectscan be calcu-
latedasfollows: Definegz' = min(z}-, (gz' —Wayg)).
This extendsthe left side of the query by the average
width subjectto the constraintthat the left side cannot
crossthe left input boundary Define gz'2, ¢yt and
gy'? similarly. Then, the extendedareaof the query,
Area(Q) is: (qz? — qz'™) x (qy”? — qy''). Thenum-
ber of rectangledntersectingwith @ is thenestimated

asnxArea(Q)/Area(T). Notethatsimply usingthe
areaof the query @ without extendingit is inaccurate
becausehis assumeshatonly rectanglesvhosecenters
lie in the queryareaintersectwith the query Thatdoes
notaccounfor inputrectanglesvith centersoutsidethe
gueryareathatintersecthequery

Of coursejn real-life data,thereis oftenconsiderable
skew in the placementf input rectangledn the input
space. Thereis also skew in the size of the input
rectangle® Hence,the applicationof the uniformity
assumptioncan resultin highly inaccurateselectvity
estimates.

At a high level, both placementskew andsize skew
problemscanbe mitigatedby “grouping” theinputrect-
anglesnto smallersubset®r budketsandthenapplying
the uniformity assumptiorto eachsubsetindividually.
If, asaresultof thegrouping,the skew within eachsub-
setis small, it is clearthat making the uniformity as-
sumptionover the subsetsncurssubstantiallylesserror
thanmakingthe uniformity assumptiorover the entire
input. We thereforfocuson developingaccurateyroup-
ing techniquedor spatialdata.

3.2 Approximating Spatial Data by Grouping

There are two issuesto be addressedn developing
a grouping-basedechniqué for approximatingspatial
data: a) the criteria for groupingrectanglesnto buck-
etsand b) the techniquefor using the resultingset of
bucketsto estimatethe resultsizes. Thelatteris solved
by observingthat, oncethe buckets are identified, the
problemof selectvity estimationreducedo solving se-
lectivity estimatiornovertheindividualbuckets(because
the buckets are disjoint). We apply the uniformity as-
sumption(andthecorrespondindgormulaedevelopedn
Section3.1) individually to eachbucket.

The primary issuein developing a grouping based
technique therefore,is the criterion for groupingrect-
anglesinto buckets. We have identified the following
threeclassef fundamentallydifferentgroupingsthat
canbeappliedto approximatespatialdata.

e Equi Partitionings: In thesepartitionings,the goal
is to partitiontheinput spacesuchthattheresulting
bucketsareidenticalundersomemeasuree.g.,they
all have equalareasor equalnumberof rectangles.

e Index Partitionings: These partitionings are pro-
ducedby a spatialindex structurdik e the R-tree.

e Slew-Aware Partitionings: Thesepartitioningswhich
are more sophisticateduse binary spacepartition-
ings (BSPs)andthe notion of spatial skew (defined

bHowever, placemenskew tendsto dominatesizeskew in real-life
datasets.

¢Throughouthepaperwe usethetermsgroupingandpartitioning
interchangeably
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Figurel: CharminarDataset

in Section4) to grouprectanglesnto bucketssuch
that the negative effects of making the uniformity
assumptiorareminimized.

Next, we presentthe equi-partitioningand index-
partitioning techniquesand identify their advantages
and drawbacks. We then presentthe fundamentally
differentskew-awareapproach.

3.3 Equi-Partitioning of Spatial Data

In these partitionings, the goal is to partition the
input spacesuchthat somepropertyis identicalacross
the resulting partitions. We studied the following
two criteria for equi-partitionings,namely Equi-Area
and Equi-Count which are analogousto the Equi-
Wdth and Equi-Height histogramsin relational data
approximationgKk 008Q PSC83.

Equi-Area Groupings: The goal of the Equi-Area
grouping is to create budkets whose MBRs have the
samearea. This approactclearly minimizesthe max-
imum areaamongthe buckets. Sincelarge bucketspo-
tentially incur highererrors(thoughthis is not always
true), the Equi-Area groupingscan be seenas an at-
temptto minimize the worst caseerrors. We construct
the partitioningby startingwith a singlebucket consist-
ing of the MBR of all the input rectangles.The MBR
of the bucket is split along the longer dimensioninto
two equalhalves. Rectanglesre groupedinto the two
halvesbasednwheretheircenterdie. MBRsarecalcu-
latedfor thetwo new bucketsandonceagainthelongest
dimension(amongthe four choicesavailable now) is
choserandthe correspondindpucket split. The process
is repeateduntil the desirednumberof bucketsare ob-
tained. The recalculationof the MBRs ensureghatthe
bucketsproducedry to approximatehe input datadis-
tribution ratherthansimply sub-dvide the MBR of the
whole input into regions of equalsize. This is useful
whenthereis a lot of empty spacein the MBR of the
input.

Equi-Count Groupings: In an Equi-Countgrouping
thegoalisto createbucketscontainingthesamenumber
of rectangles. Since buckets with a large number of

rectanglespotentially incur large errors (this is not
alwaystrue either), the Equi-Countgroupingscanalso
be seenas an attemptto boundthe worst caseerrors.
The algorithmfor obtainingthis groupingis similar to
the algorithm for Equi-Area with one difference: the
dimensionwith the highestprojectedrectanglecount
is chosenfor splitting. The projectedrectanglecount
of a dimensiond in bucket B is the numberof distinct
centerof all therectangledn thebucketwhenprojected
ondimensiond.

The above partitioningsareillustratedin the follow-
ing example.
Example 1: Considerthe datasetepictedin Figurel.
This dataset,which we call the Charminar sef, is
describedin more detail in Section5 as part of our
experiments Notethatthis setcontainsmorerectangles
in the cornersthanin the center Figures2 and3 depict
theEqui-AreaandEqui-Counigroupingonthis dataset,
with eachgrouping using 50 buckets. As expected,
Equi-Areahasnearlyidenticalbucketsdistributedmore
or lessuniformly, whereasEqui-Countcontainsmore
bucketsin the“denser”areas. |

3.4 R-treelndex BasedGrouping

The R-tree[Gut85SRF87 BKSS9( is a popularindex
structure for spatial data. While building an index
structure,an R-treeinsert algorithmtries to minimize
oneor moreof theareamamin, and/ortheoverlap,etc.,
of the summedover the boundingboxesof the internal
nodes. It standsto reasonthat partitions producedby
R-treescan be usedto summarizethe input datawell
usingthe MBRs of theinternalnodes gffectively giving
us anotherway to constructa spatialpartitioning (The
idea of using indexesto obtain summaryinformation
abouta datasehasbeenexaminedby otherresearchers
before. See [Ant92, Aok97].) We usedthe R*-
tree[BKSS9(, which is known to be one of the most
efficientmemberof theR-treefamily of datastructures.
The partitioningresultingfrom usingthe R-treeon the
Charminardatasefis givenin Figure4. Note thatthis
partitioningis drasticallydifferentfrom thosegiven by
the Equi-Partitioningtechniques.

3.5 Disadvantagesof Equi-Partitioning and
Index-BasedGrouping Schemes

The equi-partitioningand index-basedschemessuffer
from fundamentadisadwantages.Thesedisadwantages
canbebroadlyclassifiedbasedon how they affecttheir
accurag andcomputatiorcost.

Accuracy: Thekey drawbackof theequi-partitioning
schemess thatthey oftenproducebucketsthathave sig-
nificantplacemenandsizeskew within. The Equi-Area

4The nameis derived from a famousstructurein India calledthe
Charminarwhich hasfour minarets(pillars) in its corners.
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Figure2: Equi-AreaPartitioning

groupingdoesnot at all considerskew in the distribu-
tion of input rectanglesvhen producingbuckets. The
Equi-Countgrouping does attack skew by producing
more bucketsin regionswherethereare a lot of rect-
angles.However, if theregionis relatively uniform, this
is not beneficialand wastesbuckets. R-treeinsertion
algorithmsessentiallymalke local decisionsaboutcre-
ating new nodes,with the resultthat the final buckets
producedareoftenfairly skewed. However, recentpro-
posalsto minimize the numberof disk readsperformed
by theR-treeby takingthedatadistributioninto account
can be expectedto producepartitionswhich are more
conducveto selectvity estimationTS96§.

Computation: A further disadwantageof the three
groupingschemesaboveis thatthey arecomputationally
expensve. The equi-partitioningsrequire that all the
input databe keptin memory (They canbe modifiedto
uselessmemory but they still make severalpassesver
the input data.) The R-treetechniquedoesnot require
theindex anddatato fit in memory but still makesthe
equivalentof severalpassesvertheinputdata.A naive
algorithmfor constructingan R-treebasedon repeated
insertionwill take O(N logg N) I/O’stoinsertN items
while a moresophisticatedulk-loadingalgorithmwiill
take O(% logg N) 1/O’s. (Here, B is the disk block
size.)

Motivatedby thedeficienciesf thesetechniqueswe
developedanew classof techniqueshatdirectlyaddress
skew and computationakfficiency. We describethese
techniquesn thenext section.

4  AdvancedSpatial Grouping
Techniques

Any techniquefor addressingthe skew problem has
to focus on reducingplacementand size skew within
a bucket. Sincewe make the uniformity assumption
within a bucket, the more uniform the intra-bucket
distribution, the more accuratethe estimationwill be.
We formalizethis notionasfollows.

Definethe spatialdensityof ary pointin the spaceto
bethenumberof rectanglesontainingthat point. (Note

4000
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Figure3: Equi-CountPartitioning
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Figure4: R-TreePartitioning

that the uniform distribution assumptionessentially
replacesall the spatial densitieswithin a bucket by a

single number equal to their average.) Then, it is

clearthat an accurateapproximationgroupsrectangles
suchthat all points in a bucket have similar spatial
densities. Similar to the notion of V-Optimality in

histogramliterature[PIHS94, we definethe following

metricto capturethis notionof groupingerror.

Definition 4.1 Consider a grouping G with budkets
B;,1 < i < . Letn; bethe numberof pointsin
B;. Thespatial-slew s; of a bucket B; is the statistical
variancé of the spatial densitiesof all points grouped
within that bucket. The spatial-slkew S of the entire
groupingis the weightedsumof spatial-slkews of all the
buckets: Zf n; X 8. [

It is clearthatapartitioningwith smallspatial-slew is
likely to be highly accuratén approximatingthe given
data. Unfortunately building optimal partitionings,
which minimizethe spatial-skew usinga givenamount
of space is a difficult problemthat is provably NP-
hardfor evensimpleinstancegMPS99 KMS97]. One
techniquefor reducingthe complexity of constructing
goodpartitioningss to restrictoursehesto binary space
partitionings(BSP) The partitioningof aregionis said
to bea BSPif we canfind a vertical or horizontalline
that dividesthe input region into two sub-regionssuch
that the partitioningsof the two sub-reions are also
BSPs.

Thebestknown algorithmsfor constructindBSPsuse
dynamicprogrammingandhave acompleity of atleast
O(N%%) [MPS99 and also requirethe input to be in
memory Clearly this is infeasiblefor large GIS data.
To make the problemof finding good BSPstractable,
we proposethefollowing two heuristics:

1. Use a compactapproximationof the input datain
placeof the original in orderto build the grouping
in memory

evariance v of a set of numbers f1, f2,.., fn is equal to

S (=2 .
=l heref istheaverageof all f;s.
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2. Usea greedyapproachand reducethe complexity
of the computatiorby makinglocally optimaldeci-
sions,thusachieving lineartime complexity for the
partitioning.

In the rest of this sub-section,we focus on the
problemof reducingthe effective input size.In the next
section,we develop a novel algorithmfor constructing
goodBSPsbasedn theabove two points.

Oneapproacho reducetheinput sizeis to divide the
input MBR evenly into a uniform grid of rectangular
regions Eachgrid region is associatedvith its spatial
density the numberof input rectanglesthat intersect
with it. We thenusethe grid regionsand their spatial
densitiesasinputsto aBSPconstructioralgorithm.The
grid sizeis chosersuchthattheall the grid regionsand
the spatialdensitiescaneasilyfit in memory Notethat
the spatialdensitiescan be obtainedeasilyin a single
sweepof theinput data. We illustratetheseconceptsn
thefollowing example.

Example 2: Consideranapproximatiorof the Charmi-
nar dataseof Figure 1 usinga 50 x 50 grid. Figure5
depictsthe spatialdensitiesof theseregions alongthe
z-dimension. |

Choosingthe correctgranularityfor the grid of rect-
angularregionspresenta tradeof. Ononehand,afine
grid captureshe detailsof the underlyingdistribution
and lets us approximatet well. On the otherhand,a
fine grid implies a higherprocessingandmemorycost.
We examinethisissueempiricallyin Section5 andshowv
thatin certainsituations averyfine grid canactuallybe
detrimentako the constructiorof a goodpartition.

4.1  The Min-Skew Partitioning

We now proposea novel techniquefor constructing
skew-resistantbinary spacepartitionings. This tech-
nigue usesa uniform grid of regions and their spatial
densitiesasinput. Thealgorithmpartitionsthegrid into
bucketswhile trying to minimize the spatial-skew (Def-

inition 4.1) of the grouping. We call the resultingparti-
tioning the Min-Slew Partitioning.

The constructionalgorithm for the Min-Skew parti-
tioning repeatedlypartitions the given set of regions
suchthat the spatial-skew is minimized at eachstep.
Sinceit always partitionsan existing region into two,
the resultis a BSP partitioning. The pseudo-codéor
thealgorithmis below:

Algorithm Min-Skew
Computetheaggreyatedensityof theinputrectangle
distribution by using a uniform grid of rectangles
andtheir spatialdensity

Start with a single bucket consisting of all the
regions.

while therearelessbucketsthanneeded

For eachcurrentbucketdo

Computethe spatialskew of the bucket (Defi-
nition 4.1) andthe split point alongits dimen-
sionsthatwill producethemaximumreduction
in spatial-slew.
Pick the bucket whose split will lead to the
greatestreduction in spatial-skew.  Split the
bucket into two and assignregionsfrom the old
bucketsinto the new buckets.

endwhile
Assign eachrectanglein the input to the bucket
whoseMBR containghe centerof therectangle.

In ourimplementationwe furtherreducethe compu-
tationalcompleity at eachstepof the greedyapproach
by basingthe splitting decisionson mamginal frequeny
distributions along eachdimensionratherthanthe full
two-dimensionalnput distribution. Figure6 illustrates
the preprocessingf the spatial inputs and highlights
oneiterationof the algorithm. Also, the 50-bucket par
titioning of the Charminardatasetis alsogivenin Fig-
ure7.

The Min-Skew partitioning hasmary desirablefea-
tures.Sincetheconstructioralgorithmtriesto minimize
spatial-skew (albeitin alocal, uni-dimensionaimanner),
the partitioning tendsto have significantly less skew
overall thanotheralgorithms. Further the construction
algorithm doesnot require the entire datadistribution
to fit in main memory which is a significantadvantage.
Thusit addresseboth the issuesof skew and compu-
tationtime thatwerethe disadantage®f the grouping
techniquesonsideredn thelastsection.

5 Experimental Results

In this section,we studythe performanceof the various
techniquesn estimatingspatialselectvity. Theresults
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presentedn this sectionarebasedon an extensve ex-
perimentalstudy on both real-life and syntheticspatial
data.

This sectionis organizedasfollows. We first describe
the datasetsandthe querymodel. This is followed by

the performanceavaluation of the varioustechniques.

Finally, we explorethe championtechnique Min-Slew,
in greaterdetailandstudysomeof its tradeofs.

In comparingthe various techniques,we usedthe
following metrics:

e Average Relative Error: This is the ratio of the
errorin an estimateto the actualsize of the query
result averagedover a set of queries. If e; is the
estimatedanswerand r; is the actualanswerfor a
givenqueryg;, theaveragerelative errof for aquery
setQ is givenas:

(Cgiealri —el)/(XCgeqri)-

e PreprocessingTime: Thisis thetime taken by the
constructioralgorithmfor eachtechniqueto prepro-
cessthe data,build appropriatedatastructuresand
generatéhe bucketsusedto processpatialqueries.

5.1 Datasets

We studiedthe performanc®f thevarioustechniquesn
bothreallife andsyntheticdatasetsywhicharedescribed
below.

5.1.1 Real-Life Datasets

For real-life data, we usedtwo datasetswidely used
in spatial databaseaesearch: TIGER [tig92] and the

SequoiadatasefSFGM93. In this paper dueto space
constraintswe only presentresultsfrom the NJ Road
datasetfrom TIGER, which gives the road data for

the state of New Jersg as line segments. For our

experimentsye computedheboundingboxesof all the
line sgmentg(414, 442 in this set)andusedthemasthe
spatialinputs. The resultsusingthe otherdatasetsare
availablein thefull papefAPR99].

fThis metricis undefinedf all queriesin the querysetproduceno
output.However, thisis not a casewe encountein our datasets.
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Figure 7: Min-Skew Partitioning for
the CharminarDataset

5.1.2 Synthetic Datasets

We systematicallygeneratedseveral syntheticdatasets
varying in size, sparsity placementskew, and size
skew. Sparsitywas controlledby adjustingthe dataset
size relative to the total input area. Size skew was
modeledby generatingwidths and heights from the
Zipf Distribution[Zip49]. Placemenskew wasmodeled
usingtwo-dimensionakipf distributions. In this paper
we presentresultsfrom one set, the Charminar set,
which was introducedin Section 3.3 (Figure 1). It
contains40000 rectangle®f identicalheightandwidth
of 100 units distributedin a 10000 x 10000 space.As
can be seen,most of the rectanglesare concentrated
in the four cornerscreatingareasof varying levels of
spatialdensities.

5.2 Query Sets

The query setsconsistof a large number(10000) of
rectangleslying within the MBR of the input. The
centerof therectanglesverechosermrandomlyfrom the
setof centeroof theinputrectanglesThe averagewidth
(height)of thequeryrectanglgreferredto asparameter
@Si ze in theexperimentsvasvariedfrom 2% to 25%
of the width (height) of the input boundingbox, which
variesthe queryareafrom 0.04% to 6.25% of theinput
MBR size. A desiredaveragearea,a, for the query
rectanglesggenerateds achieved by settingthe height
andwidth of the rectanglego be uniformly distributed
in therange[0.5x+/a, 1.5x+/a).

5.3 TechniquesStudied

In additionto studyingthe four new techniqueghatwe
propose,namely Equi-Count Equi-Area, R-Tree and
Min-Slew, we alsoincludedsamplingandthe paramet-
ric techniquedueto BelussiandFaloutso§BF95] in our
experiments.

We apply samplingasfollows. We collecta sample
of the input rectangles Givena query we computethe
selectvity of thequeryonthesample Wethenscalethe
resultappropriatelyto obtainan estimatefor the query



selectvity. Thatis, if the size of the sampleif n, the
input sizeis N, andthe numberof samplerectangles
thatsatisfythe givenpredicateis m, thenthe estimated
resultsizeis m x % This techniqueis referredto as
Samplean thegraphs.

Thefractal-basegarametricechniquen [BF95] was
proposedor pointdataonly. The papershavsthatspa-
tial datacan be describedusingfractalshaving a non-
integer fractal dimension. In that context, selectvity
for suchpoint setscanbe describedusinga power law
with the correlationfractal dimensionasthe exponent.
For comparisonye extendedhistechniqueo rectangle
databy usingthecentroidsof therectanglessrepresen-
tatives.

In addition to thesetechniques,we also usedthe
uniform assumptior(Section3.1) over the entireinput,
i.e., a single bucket approximationand call it the
Uniformtechnique.

5.4  SpaceAllocation

The key parametethatinfluencesthe costand perfor
manceof the non-parametri¢echniquesds the number
of buckets (or samples)llowed in the approximation.
Typically, queryprocessorallocateafew hundredbytes
for statisticson eachattribute (which translatesnto hav-
ing 50 to 200 buckets). In this study we considerallo-
catingbetweerb0 and750buckets.

The spaceoverheadf eachof thebucket-basedech-
nigues(Equi-Count Equi-Area, R-Tree and Min-Slew)
is eighttimesthe numberof buckets— four wordsfor
the boundingbox of the bucket and the averageden-
sity of the bucket, and the number the averagewidth
andthe averageheightof the rectanglesn the bucket.
The Sampletechniquerequireshalf that sinceit needs
to only storethe boundingbox of eachsamplerectan-
gle. Consequentlyin termsof spaceoverhead2n rect-
angledfor the Samplegechniquecorrespondo n buckets
for the bucket-basedechniques.However, in the fol-
lowing experimentswe liberally give Samplewice the
fair amount.In otherwords,whenSampleis compared
to the othertechniquesit is giventwice the spacethat
is givento the othertechniquegandthus,four timesas
mary rectanglesasbuckets).

A complicationwith usingan R-treeto build parti-
tionsis thedifficulty in controllingthe numberof buck-
etsproducedy it. We addressethis problemby tweak-
ing the branchingfactorto producecloseto the number
we desiredout ensuringve neverexceededheallocated
guota(in orderto befair to the othertechniques).

5.5 Experimental Results

In this section, we comparethe performanceof the

varioustechniquedor spatialselectvity estimation.We

first study the performanceof the varioustechniques

with respecto thequerysizeandthenumberof budkets
In each experiment, we vary one of the parameters
over its entire set of valuesand keep the remaining
parametersfixed at their default values. For these
experiments,the numberof regions usedby the Min-
Slew constructioralgorithmwassetto 10, 000.

5.5.1 Experiment 1: Impact of Query Size

This experimentstudiesthe performanceof the various
techniquegor differentquerysizes(onx-axis). Figure8

shaws relative error as a function of query size when

using100 bucketsto approximatehe NJ Roaddataset.
The results for the other datasetsare qualitatively

similar. Here,we chopthey-axisin boththe graphsto

keepthemin scale. The errorfor the Sampletechnique
is 82% for 2% QSi ze.

The generalobsenation from the graphis that the
relative errordecreasewith increasingyuerysize. This
is becausethe error in an estimationarisesonly from
those buckets that are partly containedin the query
Sinceeachbucket storesthe exactnumberof rectangles
belongingto it, thosebucketsthatfall entirelywithin the
gueryrectanglecontributeno error. Sincemorebuckets
are fully covered by bigger queries, relatively fewer
bucketscontributeto the error. Thus,all thetechniques
shav betteraccurag as we move to the right of the
graph.

The fractal techniqueof [BF95] was closeto being
the leasteffective techniquefor all the datasetshatwe
studied. Averagerelative error for the NJ Roaddataset
was consistentlycloseto 90% for mostquerysizes. It
must be said in defenseof the techniquethat it was
developedfor point data,while we have examinedit for
rectangledata.ln therestof the experimentswe do not
shav the performanceof the fractal techniquesinceit
did not performcompetitvely.

The numbersfor Uniform were alsovery poor. For
the NJ Road dataset,Uniform had errorsin the range
80% (QSi ze = 2%)—57% (QSi ze = 25%). This
high rangeof errorswas obsened acrossall the data
sets. This shaws thatreal-life spatialdatais inherently
skewed andthus, cannotbe capturedby atrivial single
bucketapproximationIn therestof theexperimentswe
do not shaw the performanceof the Uniform technique
aswell.

The graphalso shaws that samplingperformsquite
poorly. Thisresultis borneoutfor all the casesstudied.
This is becausdt makes an implicit assumptionthat
eachrectanglechosenin the sampleis representatie of
both the spatial distribution and the size of the other
rectanglesin its neighborhood(i.e., it makes a local
uniformity assumption). Obviously, this is not the
casefor spatialdata. Thus, thesenumbersshav that
approximatingspatial data distributions requiresmore
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Figure8: Performancess. QuerySize,Buckets= 100

sophisticategbartitioningtechniquesvhich accountfor
theimplicit featuresof thedata.

The Equi-Area Equi-Countand R-Tree techniques
have very similar error valueswith Equi-Countdoing
slightly better

It is clearthat, the Min-Skew techniqueis a winner
by a huge mamgin. It improves the averagerelative
error of its closestcompetitorsby over 50% in most
of the cases.Recallthat the Min-Skew techniqueaims
to createbuckets that have the least variancein the
densitywithin eachbucket. In otherwords,it explicitly
accountdor the spatialskew in thedata.Consequently
the error from a bucket partially coveredby a queryis
significantly lower with the Min-Skew techniquewhen
comparedo the othertechniqueghatdo not take skew
into account.

5.5.2 Experiment 2: Impact of Bucket Size

In this experiment,we studythe impactof the number
of bucketsontheperformancef thevarioustechniques.
Figure9 plots averagerelative erroragainsthe number
of bucketsallowedfor theNJ RoaddatasetTheleft and
right graphsin the figure plot valuesfor two different
querysizes.

As expectedallowing morespacedor theapproxima-
tion helpsreducethe errors. The Min-Slew technique
againgivestheleasterrorsovertheentirerangestudied.
Its performancés especiallynotevorthywhenrelatively
few buckets (e.g.,50 or 100) are used. Having only a
few bucketsposeghe greatestifficulty onary approx-
imation technique. Performingwell in this scenariois
particularlygoodfrom thestandpoinbf queryoptimiza-
tion, sincequeryprocessorsypically allow only asmall
numberof bucketsbecaus®f spaceconstraints.

As the techniquesuse more buckets, they are able
to approximatethe input in greaterdetail. This lowers
the effect of skew on their performancewhich in turn
diminishesthe performancedifferencesbetweenthe

varioustechniques.

The performanceof Equi-Area and Equi-Countare
similar, with Equi-Counthaving slightly betterperfor
mancein somecasesR-Treeis consistentlyworseover
the entire spacestudied. However, the numbersfor R-
Treeareslightly pessimistic As pointedoutin earlier, it
is difficult to controlthe numberof bucketsproducedyy
the R-treetechniqueandthus, it often generatedewer
bucketsthanits allocatedquota. As before, Sampleis
againineffective evenwhenmorespaceds available.

Basedntheaboreexperimentalesultswe conclude
thatMin-Slew is thetechniqueof choiceto approximate
spatialdistributions and the ideal techniqueto usefor
spatialselectvity estimation.As highlightedin Sec4.1,
it is fast, computationallyefficient, and unlike mary
of the othertechnigqueshaslow memoryrequirements.
We thereforeexplore the Min-Skew techniquen greater
detail and look at the various factors that affect its
performance.

5.5.3 Experiment 3: Min-Skew: Sensitvity to
Regions
In this experimentwe studytheinfluenceof thenumber
of regionsin the uniform grid usedto approximatethe
underlyinginput spaceon the performanceof the Min-
Slew technique As pointedoutin Sectior4, thereis an
inherentcostversusaccurag trade-of in choosingthe
correctgranularityfor thegrid. In thefollowing graphs,
we analyzethis tradeof quantitatiely.

Figure 10(a) plots averagerelative error versusthe
numberof input regions for the Min-Skew technique.
The graphis for the NJ Roaddatasetwith the number
of buckets setto 100. The graphsshov two lines
correspondingo the two query sizesin Figure 9 (5%
and25%). As we move to the right on the x-axis, the
numberof regionsincreaseandthesizeperregiondrops
correspondingly This implies thatthe underlyinginput
distribution is capturednoreaccurately

As thegraphsshaw, increasinghenumberof regions
decreasesrrorsup to a pointbeyondwhich they flatten
out. The flatteningis due to the natureof the real-
life data. They arenon-uniformandhave variationsin
density This causes big improvementin performance
on the left side of the graph. However, sincethe data
is not extremelyskewed, further sub-dviding the space
finely doesnot captureary additional featuresof the
data.

Thesegraphsshav thatwhile increasinghe number
of regionsusedto capturetheoriginalinputis necessary
for performance creatingtoo mary regions doesnot
necessarilyhelp. Moreover, it also increaseghe run
time overhead. Clearly, thereis a correlationbetween
the input datadistribution, the query size, the number
of regionsandthe estimationerror—finding the correct
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numberof regionswhich providestheleasterroris thus
an interestingproblemfor further explorationand part
of ourfuturework.

Studyingthe sameproblem spacefor the Synthetic
dataset, however, producesa very counterintuitive
result. Figure 10(b) showvs the sameproblemspaceas
Figure 10(a) for the Syntheticdataset.With increasing
numberof regions, performancefor the small queries
(QSi ze = 5%) improvesasexpected.However, unlike
in the lastsetof graphsthe error for Min-Skew for the
large queriesactually get worsewith more regiond

Whena large numberof regionsareusedto approx-
imate the syntheticdataset,a considerablenumberof
regions also spanthe skewed cornerareas(Figure 5).
Theseregions, therefore, have highly varying spatial
densities. This forcesthe Min-Skew constructionalgo-
rithm to allocatemary bucketsto thoserelatively com-
pactareasn orderto reducethe skew. Thisin turnim-
pliesthatthereareveryfew bucketsfor thelargeinterior
areaswhich arelessskewed. The netresultis thatsuch
agroupingis likely to performpoorly for large queries
which frequentlyspantherelatively uniforminterior ar
eas. Allocating too mary bucketsto the small corners,

while improving performanceor small queries,is un-
likely to improve performancemuch for large queries
becausethose areasare likely to be included wholly
within a large query Thus, having too mary regions
hasanadwerseeffect on Min-Skew for large queries.

In the next section, we provide a solution called
ProgressiveRefinemento addresghis problem.

5.6 Progressve Refinementfor Min-Skew

It is clearfrom thediscussionn theprevioussectionthat
a large numberof regionsmainly benefitsmall queries.
Using a smallernumberof regionshelpslarge queries.
To handlebothcasesorrectly andhave the bestof both
worlds, we proposeprogressiverefinemeniof regions
in Min-Slew. We implementprogressie refinementy
startingthe constructioralgorithmwith a smallnumber
of (coarse)regions. At equalintervals of buckets, we
refine the regions by splitting eachregion into four
identicalregions. Thenewly createdegionsreplacethe
original regions. Propertiesof the buckets neededby
the constructioralgorithm(skew, mamginal frequencies,
etc.) are recalculatedusing the new regions. The
rest of the Min-Slew algorithm continuesas before.



The numberof refinementgo be usedis an important
parameterthat we examine empirically in the next
section.
Example 3: Supposethat we want to perform 2
refinementssuch that the final grid size is 16,000
regions. Let the numberof buckets requiredbe 60.
Sincewerefinetheregionsby afactorof four eachtime,
we startMin-Skew with agrid consistingof 16000/42 =
1000 regionsandrunit till it produce<0 (60/(2 + 1))
buckets. At that point, we refinethe numberof regions
to 16,000/4' = 4000 and produce20 more buckets,
bringingthetotal numberupto40. We refinetheregions
again,producing16, 000 regionsand produce20 more
buckets,bringing the total numberup to the 60 buckets
needed. ]
OntheCharminardatasetprogressierefinemenhas
the following qualitatve effect. Initially, the datais
beingobsenedcoarselyandhencebucketsareallocated

to cover even the relatively lessskewed middle areas.

This takes care of large queries. Towardsthe end, a
large numberof regionsareproducedwhich highlights
the high skew in the four corners. This causesMin-
Slew to allocatethe remainderof the bucketsto those
areas. This takes care of small queries. In effect,
progressie refinementallocatesbuckets uniformly to
the entire spaceand then selectvely drills-down and
allocatesmore bucketsto the high-skew regionswhich
requirethem.

5.6.1 Experiment 4: Min-Skew: Impact of

Progressve Refinement

In this sectionwe quantitatvely studytheaccurag im-
provementproducedby progressie refinement. Fig-
ure 11 plots error for the datapoint from Figure 10(b)
thathad30, 000 regions. The numberof refinementss
shavn on the x-axis andthe numbersare for the large
query(QSi ze =25%). Thehorizontalline in thefigure
shavsthe minimumvalueof errorthatwasachiezedfor
large queriesin Figure10(b).

At a high level, it is clear that refinementshelp
considerably They causethe error to drop by over
55%. However, they do not causethe errorto drop to
the absoluteminimal level achievable by picking the
correctregion size, thoughthey do comeclose. Note

that the error startsincreasingafter a few refinements.

Thisis becausdnaving too mary refinementwill leave
too few bucketstowardsthe endfor approximatingthe
skewedregions,thuscausingsomeerror. Givena query
and data distribution, an interestingopen questionis
to determinethe optimal numberof refinementsand/or
regions. A detailed sensitvity study on progressie
refinementsis beyond the scopeof this paperand is
partof our future work. In our experimentswe found
that the bestnumberof refinementvariesfrom 2 to 6
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Time Taken(in seconds)
Partitioning InputSize= 50K Input Size= 400K
Technique || =100 | =750 | =100 [ B =750
Min-Slew 5.2 15.9 20.8 33.1
Equi-Area 9.1 15.2 140.9 180.5
Equi-Count 8.1 11.3 140.8 190.3
R-Tree 3.9 6.0 57.7 891.7
Uniform 0.5 0.6 0.9 0.9

Tablel: Time for ComputingVariousPartitionings

dependingnthe querysizeandtheinputdata.

5.7 Experiment 5: Construction Times

In this experiment, we look at the constructiontime
taken by the differenttechniques.Table 1 shavs these
times for differentinput sizesand bucket counts(3).

Thesetimes were measuredon a Sparc ULTRA-30
machinewith 256 M B memory It can be seenthat
the number of buckets has only a minor effect on

constructiortime. However, all techniquesexceptMin-

Slew and Uniform, take significantly more time with

increasingdatasize. As mentionedearlier, this is one
of thebenefitsof Min-Slew. RecallalsothatEqui-Area,

Equi-Count and R-Treerequirethe entire dataseto fit

in memorywhich the Min-Skew techniquedoesnot.

6 Conclusions

Selectvity estimationis a critical componenf query
processingn databasedDespitetheincreasingoopular
ity of spatialdatabasegherehasbeenvery little work
in providing accurateand efficient techniquedor spa-
tial selectvity estimation. Spatial datadiffers so sig-
nificantly from relationaldatathatrelationaltechniques
simply do not performwell in this domain. In this pa-
per, we have proposedseveralnew techniquegor spatial
selectvity estimation. Thesetechniquesare basedon
spatialindices,binaryspacepartitionings,andthe novel
notion of spatialskew. Basedon our extensie experi-
mentalanalysisof the new techniquesand adaptations



of previously known techniqueswe are able to shov

that: (a) Samplingand parametrictechniqueswhich

work well in the relational one-dimensionaWorld do

not work well for spatialdata. (b) A BSP basedpar

titioning that we call Min-Skew outperformsthe other
techniquesover a broadrangeof queryworkloadsand

datasets.A Min-Slew partitioning can be constructed
efficiently and hasthe addedadvantageof having low

memoryrequirementsluringconstructionln summary
our resultsshov that spatialselectvity estimationcan

be solved accuratelyand efficiently for large spatial
databases.
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