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Abstract
Selectivity estimationof queriesis an important and well-
studiedproblemin relationaldatabasesystems.In this paper,
weexamineselectivity estimationin thecontext of Geographic
Information Systems,which managespatial data such as
points,lines,poly-linesandpolygons.In particular, we focus
on point andrangequeriesover two-dimensionalrectangular
data. We proposeseveral techniquesbasedon usingspatial
indices, histograms,binary spacepartitionings(BSPs),and
the novel notion of spatial skew. Our techniquescarefully
partition the input rectanglesinto subsetsand approximate
eachpartitionaccurately. We presenta detailedexperimental
studycomparingtheproposedtechniquesandthebestknown
sampling and parametric techniques. We evaluate them
using syntheticas well as real-life TIGER datasets. Based
on our experiments,we identify a BSP basedpartitioning
that we call Min-Skew which consistentlyprovides the most
accurateselectivity estimatesfor spatialqueries. The Min-
Skew partitioningcanbeconstructedefficiently, occupiesvery
little space,andprovidesaccurateselectivity estimatesover a
broadrangeof spatialqueries.

1 Intr oduction
GeographicInformation Systems(GISs) have gener-
atedenormousinterestin the commercialandresearch
databasecommunitiesover the last decade.GISstypi-
cally storeandmanagespatialdatasuchaspoints,lines,
poly-lines, polygons, and surfacesand henceare of-
ten referredto as spatialdatabases.Several commer-
cial databasesystemsthatmanagespatialdataarenow
available. TheseincludeESRI’s ARC/INFO [ARC93],
InterGraph’s MGE [Int97], MapInfo [Map98] and In-
formix [Ube94]. Most other leadingdatabasevendors�
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eitheroffer somekind of supportfor spatialdataor are
in the processof providing suchsupport. GISs have
alsobeenthe focus of much research,mostly towards
efficient manipulation and access[Sam89a, Sam89b]
andmorerecently, towardsresearchprototypes[DeW94,
GRSS97].

As in relational databasesystems,there are many
modulesof a spatialdatabasesystemthat requireac-
curateestimatesof query result sizes. Suchestimates
areusedin a varietyof ways. For example,queryopti-
mizersusequeryresultsizeestimatesto determinethe
mostefficient way to executequeries[SAC� 79]. Esti-
matesarealsousedby databasesystemsto give users
feedbackabouttherunningtimesof theirqueriesbefore
thequeriesareactuallyexecuted.Sinceit is impractical
to run theentirequeryto computetheresultsizes,most
commercialsystemsusesomeform of statisticsto ap-
proximatetheunderlyingdataandestimateresultsizes
basedon thesestatistics.

A variety of techniqueshave beenproposedin the
literature to computeestimatesof query result sizes
in relational databases.The most commononesuse
histograms[Koo80, Poo97], samples[LNS90], or are
basedon parametrictechniquesthatmodelthedatavia
a standardmathematicaldistribution[CR94, BF95]. Of
the varioustechniques,histograms,in particular, have
proved very popularin databasesystemsbecausethey
can be computedefficiently, usevery little space(on
the order of a few hundredbytes per relation), and
do not requirethat the input distribution be known in
advance.a They work by partitioning the input into
a small number of subsetscalled “buckets”, and by
using approximationsfor each bucket to model the
distribution of tuples within. Query result estimates
are then obtainedby processingthe query againstthe
bucketsandtheapproximationsusedtherein.

The problem of selectivity estimation for spatial
data is very different from the relational selectivity

aHowever, onecanconstructdistributionsthatcannotbeapproxi-
matedwell usinghistogramsin a smallamountof space.
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estimation� problemsthathave beenstudiedextensively
in the databaseliterature. Most previous works have
focusedon approximatingthe distributions of single
numericalattributes. Even the ones studying multi-
dimensionaldata[PI97, MPS99] have concentratedon
approximatingthefrequenciesof pointsin space.Many
of thesetechniquesareaimedatdatawith highlyskewed
frequencies.However, they donotperformaswell when
thefrequency domainis relatively uniformbut thevalue
domain(i.e.,placementof pointsin space)is skewed.

Spatial selectivity estimationdiffers in two impor-
tant aspectsfrom traditional selectivity estimation: (i)
The individual spatialentitiesmay differ in shapeand
size; (ii) The distribution of frequenciesover the in-
put domaindoesnot vary dramaticallyin spatialdata,
whereasthe valuesarespreadnon-uniformly in space.
(This correspondsto the fact that not many spatialen-
tities cover thesamepoint.) Hence,theproblemof ap-
proximatingspatialdatarequirestechniquesfor accu-
ratelyapproximatingthevaluedomainof adistribution.
Even in the context of uni-dimensionalpoint data,this
hasbeenknown to be one of the most difficult prob-
lemsin selectivity estimation[HNSS95, GG82, Poo97].
To thebestof our knowledge,only BelussiandFalout-
sos[BF95] haveaddressedtheproblemof spatialselec-
tivity estimationandthey concentrateonly onpointdata
(issue(ii) above).

Motivated by the above reasoning,we study the
problem of selectivity estimationof point and range
selectionpredicatesover spatial data. In particular,
we concentrateon two-dimensionalrectangulardata.
This is animportantproblembecauseit is customaryin
spatialdatabasesystemsto approximatespatialobjects
using their minimumboundingrectangles(MBRs)and
perform query processingwith the MBRs as much as
possible. (Spatialobjectsthemselves often needsuch
large representationsthat it becomesvery cumbersome
andinefficient to manipulatethemdirectly.) Thoughwe
concentrateprimarily on rectangulardatain this paper,
our techniquesareapplicableto point andlineardataas
well.

Our contributionsareasfollows:

� We presentseveral novel grouping techniquesfor
approximatingspatialdata.In additionto analogues
of techniquesusedin relationaldatabases,we pro-
posenew techniquesbasedon usingspatialindexes
for selectivity estimation. We also proposenovel
techniquesbasedon the notionsof spatial density
andspatialskew. Thesefeaturesof thedatacapture
the underlyinginput datadistribution in a concise
mannerandallows usto deviseaccuratetechniques
for selectivity estimation.

� Weprovideadetailedexperimentalstudycomparing

the varioustechniqueson both syntheticand real-
life datasets.Our resultsshow thata density-based
techniquethat we call Min-Skew outperformsthe
other techniquesover the entire data and query
spectra.The techniqueis not only computationally
efficientbut alsohaslow memoryrequirementseven
for large datasetsizes. Our studiesalso show that
straightforward applicationof techniquesfrom the
one-dimensionalworld, suchas sampling,are not
effective in thespatialdomain.

� We also identify a seeminglycounter-intuitive fact
in spatial selectivity estimation: using the dataat
too fine a level of detail sometimesresult in poor
performancewhen answeringlarge queries! We
usethis observation to develop a techniquecalled
progressivespatialrefinementto improveMin-Skew
further.

The restof this paperis organizedas follows. Sec-
tion 2 containsa formal problemdescription.Section3
offersahigh-leveldiscussionof possiblesolutionsto the
problemandpresentssomebasictechniquesfor spatial
selectivity estimation.Section4 presentsmoresophisti-
catedtechniquesfor spatialselectivity estimation.Sec-
tion 5 presentsthe resultsfrom an extensive seriesof
experimentson real-life and syntheticdata. We iden-
tify Min-Skew as the clear winner and suggestfurther
improvementsto it. We presentour conclusionsin Sec-
tion 6.

2 ProblemFormulation
In this section,we formally definethe specificclassof
selectivity estimationproblemsaddressedin this paper
anddevelopanotationfor describingspatialdata.

Consider a relation � containing an attribute �
whosedomain is the set of (two-dimensional)rectan-
gles. The distribution 	 of � is the set of rectangles��

����
�������������
�� � where


�������� � �� ��! ��
" ���#� �� ��! ��
"%$
. The

two componentsof rectangle

��

specify its lower-left
andupper-right cornersrespectively. The

�&�
’s and

!'�
’s

are assumedto comefrom an integer or real domain.
We denotetheareaof theminimumboundingrectangle
(MBR) of theinput rectanglesin 	 by � 

(�)*� 	 "

. +-,/.10
and 23,/.10 denotethe average width and height of the
rectanglescontainedin 	 respectively. Finally, denote
thesumof areasof all therectanglesin 	 by 45� .

A rangequery predicateis specifiedas a rectangle6 �7�8� 9�� � ��9�! � " ���:9�� � ��9�! � "/$
. Note that this definition

canbe usedto specifypoint queriesaswell by setting9�� � �;9�� �
and

9�! � �;9�! �
. The resultsize < 6 < is the

numberof rectanglesin theinput thathaveanon-empty
intersectionwith thequeryrectangle.Theselectivityof
query

6
is the fraction < 6 < =?> . Computingthe exact
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selecti@ vity of a query requiresus to either scan the
input datasetor to usean index to find the numberof
input rectanglesthat intersectwith the query. Clearly,
both of theseoptionsaretoo expensive to be useful in
mostcontexts (including queryoptimization),because
they may require several disk accessesand involve a
significantamountof processing.Hence,oneis forced
to summarizeor approximatetheinputdatasothatit can
berepresentedcompactly. Theapproximationsarethen
usedto estimateselectivities. We definetheproblemof
selectivity estimationfor rectangulardatato be that of
estimating < 6 < for an arbitraryrangequery

6
givenan

input distribution 	 . This problemis the focusof this
paper.

3 Techniquesfor Approximating Spatial
Data

In this section,we examinevarioustechniquesfor ap-
proximatingspatialdata.Ourmainfocusis onthebroad
classof non-parametrictechniqueswhich approximate
thedatausingasmallamountof space,typically in tab-
ular form. First we presenta very simpletechniquethat
is analogousto the traditionaluniform distribution as-
sumptionmadein relationaldatabases[SAC� 79].

3.1 Uniformity Assumption for Spatial Data
Thesimplesttechniquefor approximatingspatialdatais
to assumethattheinputrectanglesareof identicalwidth
and height, and are distributed uniformly in the input
space. The formulasfor estimatingthe result sizesof
pointandrangequeriesunderthis assumptionaregiven
below.

Point Queries: For point queries,onehasto return
thenumberof rectanglesthatoverlapa particularpoint.
One appliesthe uniformity assumptionby calculating
the average numberof rectangleshit by a point query
within the input MBR. Theaveragehereis over all the
point querieswithin the MBR. It is easily shown that
this averagecanbe obtainedby taking the ratio of the
totalareaof theall theinputrectanglesto theareaof the
input’sMBR ( A&BBDCFEHG�I8JLK ).RangeQueries: For rangequeries,the naturaluni-
formity assumptionis that rectanglesare of identi-
cal width and height uniformly distributed within the
input MBR. The number of rectanglesthat a query6 �M�8� 9�� � �N9�! � " ��� 9�� � ��9�! � "%$

intersectscan be calcu-
latedasfollows: Define

9��&O � �QP3R8ST� � �
J

��� 9�� �
U +V,/.10 "�" .
This extendsthe left side of the query by the average
width subjectto the constraintthat the left sidecannot
crossthe left input boundary. Define

9��*O �
,

9�!WO �
and9�!WO �

similarly. Then, the extendedareaof the query,� 

(�)X� 6 "
is:

� 9��*O �5U 9��*O � "ZY � 9�!WO �5U 9�![O � "
. Thenum-

ber of rectanglesintersectingwith
6

is thenestimated

as \ Y � 
�(�)X� 6 " =?� 

(�)X� 	 "
. Note that simply usingthe

areaof the query
6

without extendingit is inaccurate
becausethisassumesthatonly rectangleswhosecenters
lie in thequeryareaintersectwith thequery. Thatdoes
notaccountfor input rectangleswith centersoutsidethe
queryareathatintersectthequery.

Of course,in real-lifedata,thereis oftenconsiderable
skew in the placementof input rectanglesin the input
space. There is also skew in the size of the input
rectanglesb. Hence,the applicationof the uniformity
assumptioncan result in highly inaccurateselectivity
estimates.

At a high level, both placementskew andsizeskew
problemscanbemitigatedby “grouping” theinput rect-
anglesinto smallersubsetsor bucketsandthenapplying
the uniformity assumptionto eachsubsetindividually.
If, asa resultof thegrouping,theskew within eachsub-
set is small, it is clear that making the uniformity as-
sumptionover thesubsetsincurssubstantiallylesserror
thanmakingthe uniformity assumptionover the entire
input. Wethereforefocusondevelopingaccurategroup-
ing techniquesfor spatialdata.

3.2 Approximating Spatial Data by Grouping
There are two issuesto be addressedin developing
a grouping-basedtechniquec for approximatingspatial
data: a) the criteria for groupingrectanglesinto buck-
ets and b) the techniquefor using the resultingset of
bucketsto estimatetheresultsizes.Thelatter is solved
by observingthat, oncethe bucketsare identified, the
problemof selectivity estimationreducesto solvingse-
lectivity estimationovertheindividualbuckets(because
the bucketsaredisjoint). We apply the uniformity as-
sumption(andthecorrespondingformulaedevelopedin
Section3.1) individually to eachbucket.

The primary issuein developing a grouping based
technique,therefore,is the criterion for groupingrect-
anglesinto buckets. We have identified the following
threeclassesof fundamentallydifferentgroupingsthat
canbeappliedto approximatespatialdata.

� Equi Partitionings: In thesepartitionings,the goal
is to partitiontheinput spacesuchthat theresulting
bucketsareidenticalundersomemeasure:e.g.,they
all haveequalareasor equalnumberof rectangles.

� Index Partitionings: Thesepartitionings are pro-
ducedby a spatialindex structurelike theR-tree.

� Skew-AwarePartitionings: Thesepartitionings,which
are moresophisticated,usebinary spacepartition-
ings (BSPs)andthenotionof spatialskew (defined

bHowever, placementskew tendsto dominatesizeskew in real-life
datasets.

cThroughoutthepaper, weusethetermsgroupingandpartitioning
interchangeably.
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Figure1: CharminarDataset

in Section4) to grouprectanglesinto bucketssuch
that the negative effects of making the uniformity
assumptionareminimized.

Next, we presentthe equi-partitioningand index-
partitioning techniquesand identify their advantages
and drawbacks. We then presentthe fundamentally
differentskew-awareapproach.

3.3 Equi-Partitioning of Spatial Data
In these partitionings, the goal is to partition the
input spacesuchthat somepropertyis identicalacross
the resulting partitions. We studied the following
two criteria for equi-partitionings,namely Equi-Area
and Equi-Count, which are analogousto the Equi-
Width and Equi-Height histogramsin relational data
approximations[Koo80, PSC84].

Equi-Area Groupings: The goal of the Equi-Area
grouping is to create buckets whoseMBRs have the
samearea. This approachclearly minimizesthe max-
imum areaamongthebuckets. Sincelargebucketspo-
tentially incur highererrors(thoughthis is not always
true), the Equi-Area groupingscan be seenas an at-
temptto minimize the worst caseerrors. We construct
thepartitioningby startingwith a singlebucketconsist-
ing of the MBR of all the input rectangles.The MBR
of the bucket is split along the longer dimensioninto
two equalhalves. Rectanglesaregroupedinto the two
halvesbasedonwheretheircenterslie. MBRsarecalcu-
latedfor thetwo new bucketsandonceagainthelongest
dimension(amongthe four choicesavailable now) is
chosenandthecorrespondingbucket split. Theprocess
is repeateduntil the desirednumberof bucketsareob-
tained.Therecalculationof theMBRs ensuresthat the
bucketsproducedtry to approximatetheinput datadis-
tribution ratherthansimply sub-divide the MBR of the
whole input into regionsof equalsize. This is useful
whenthereis a lot of emptyspacein the MBR of the
input.

Equi-Count Groupings: In anEqui-Countgrouping,
thegoal is to createbucketscontainingthesamenumber
of rectangles. Since buckets with a large numberof

rectanglespotentially incur large errors (this is not
alwaystrue either),the Equi-Countgroupingscanalso
be seenas an attemptto boundthe worst caseerrors.
The algorithmfor obtainingthis groupingis similar to
the algorithm for Equi-Area with one difference: the
dimensionwith the highestprojectedrectanglecount
is chosenfor splitting. The projectedrectanglecount
of a dimension̂ in bucket _ is the numberof distinct
centersof all therectanglesin thebucketwhenprojected
ondimension̂ .

The above partitioningsareillustratedin the follow-
ing example.
Example 1: Considerthe datasetdepictedin Figure1.
This dataset,which we call the Charminar setd, is
describedin more detail in Section5 as part of our
experiments.Notethatthissetcontainsmorerectangles
in thecornersthanin thecenter. Figures2 and3 depict
theEqui-AreaandEqui-Countgroupingsonthisdataset,
with eachgrouping using `�a buckets. As expected,
Equi-Areahasnearlyidenticalbucketsdistributedmore
or lessuniformly, whereasEqui-Countcontainsmore
bucketsin the“denser”areas.

3.4 R-tr eeIndex BasedGrouping
TheR-tree[Gut85, SRF87, BKSS90] is a popularindex
structure for spatial data. While building an index
structure,an R-tree insert algorithm tries to minimize
oneor moreof thearea,margin,and/ortheoverlap,etc.,
of thesummedover theboundingboxesof the internal
nodes. It standsto reasonthat partitionsproducedby
R-treescan be usedto summarizethe input datawell
usingtheMBRsof theinternalnodes,effectively giving
us anotherway to constructa spatialpartitioning(The
idea of using indexes to obtain summaryinformation
abouta datasethasbeenexaminedby otherresearchers
before. See [Ant92, Aok97].) We used the Rb -
tree[BKSS90], which is known to be one of the most
efficientmembersof theR-treefamilyof datastructures.
The partitioningresultingfrom usingthe R-treeon the
Charminardatasetis given in Figure4. Note that this
partitioningis drasticallydifferentfrom thosegivenby
theEqui-Partitioningtechniques.

3.5 Disadvantagesof Equi-Partitioning and
Index-BasedGrouping Schemes

The equi-partitioningand index-basedschemessuffer
from fundamentaldisadvantages.Thesedisadvantages
canbebroadlyclassifiedbasedon how they affect their
accuracy andcomputationcost.

Accuracy: Thekey drawbackof theequi-partitioning
schemesis thatthey oftenproducebucketsthathavesig-
nificantplacementandsizeskew within. TheEqui-Area

dThe nameis derived from a famousstructurein India calledthe
Charminarwhichhasfour minarets(pillars) in its corners.
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Figure2: Equi-AreaPartitioning
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Figure3: Equi-CountPartitioning
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Figure4: R-TreePartitioning

groupingdoesnot at all considerskew in the distribu-
tion of input rectangleswhenproducingbuckets. The
Equi-Countgrouping doesattack skew by producing
more buckets in regionswherethereare a lot of rect-
angles.However, if theregion is relatively uniform,this
is not beneficialand wastesbuckets. R-tree insertion
algorithmsessentiallymake local decisionsaboutcre-
ating new nodes,with the result that the final buckets
producedareoftenfairly skewed. However, recentpro-
posalsto minimizethenumberof disk readsperformed
by theR-treeby takingthedatadistributioninto account
can be expectedto producepartitionswhich are more
conduciveto selectivity estimation[TS96].

Computation: A further disadvantageof the three
groupingschemesaboveis thatthey arecomputationally
expensive. The equi-partitioningsrequire that all the
input databekeptin memory. (They canbemodifiedto
uselessmemory, but they still makeseveralpassesover
the input data.) The R-treetechniquedoesnot require
the index anddatato fit in memory, but still makesthe
equivalentof severalpassesovertheinputdata.A naive
algorithmfor constructingan R-treebasedon repeated
insertionwill take d � >fe8g'h[i�> "

I/O’s to insert > items
while a moresophisticatedbulk-loadingalgorithmwill
take d � � i e8g'hji�> "

I/O’s. (Here, _ is the disk block
size.)

Motivatedby thedeficienciesof thesetechniques,we
developedanew classof techniquesthatdirectlyaddress
skew andcomputationalefficiency. We describethese
techniquesin thenext section.

4 AdvancedSpatial Grouping
Techniques

Any techniquefor addressingthe skew problem has
to focus on reducingplacementand size skew within
a bucket. Since we make the uniformity assumption
within a bucket, the more uniform the intra-bucket
distribution, the more accuratethe estimationwill be.
We formalizethis notionasfollows.

Definethespatialdensityof any point in thespaceto
bethenumberof rectanglescontainingthatpoint. (Note

that the uniform distribution assumptionessentially
replacesall the spatialdensitieswithin a bucket by a
single number, equal to their average.) Then, it is
clearthat an accurateapproximationgroupsrectangles
such that all points in a bucket have similar spatial
densities. Similar to the notion of V-Optimality in
histogramliterature[PIHS96], we definethe following
metricto capturethis notionof groupingerror.

Definition 4.1 Consider a grouping k with buckets_ � ��lnmpoqmpr
. Let \ �

be the numberof points in_ �
. Thespatial-skew s � of a bucket _ �

is thestatistical
variancee of the spatial densitiesof all pointsgrouped
within that bucket. The spatial-skew t of the entire
groupingis theweightedsumof spatial-skewsof all the
buckets: uwv � \ � Y s � .

It is clearthatapartitioningwith smallspatial-skew is
likely to behighly accuratein approximatingthegiven
data. Unfortunately, building optimal partitionings,
which minimizethe spatial-skew usinga givenamount
of space, is a difficult problem that is provably NP-
hardfor evensimpleinstances[MPS99, KMS97]. One
techniquefor reducingthe complexity of constructing
goodpartitioningsis to restrictourselvesto binaryspace
partitionings(BSP). Thepartitioningof a region is said
to be a BSPif we canfind a vertical or horizontalline
that dividesthe input region into two sub-regionssuch
that the partitioningsof the two sub-regions are also
BSPs.

Thebestknown algorithmsfor constructingBSPsuse
dynamicprogrammingandhaveacomplexity of at leastd � > �1x y "

[MPS99] and also requirethe input to be in
memory. Clearly this is infeasiblefor large GIS data.
To make the problemof finding good BSPstractable,
weproposethefollowing two heuristics:

1. Use a compactapproximationof the input datain
placeof the original in order to build the grouping
in memory.

evariance z of a set of numbers {�|?}~{F��}�����}:{N� is equal touQ��8�j�F��� �/����?���� , here �{ is theaverageof all {N� s.

5



0

100

200

300

400

500

600

X Dimension
Y Dimension

Spatial Density

Figure5: SpatialDensitiesin Charminar

2. Usea greedyapproachand reducethe complexity
of thecomputationby makinglocally optimaldeci-
sions,thusachieving linear time complexity for the
partitioning.

In the rest of this sub-section,we focus on the
problemof reducingtheeffective input size.In thenext
section,we developa novel algorithmfor constructing
goodBSPsbasedon theabovetwo points.

Oneapproachto reducetheinput sizeis to divide the
input MBR evenly into a uniform grid of rectangular
regions. Eachgrid region is associatedwith its spatial
density, the numberof input rectanglesthat intersect
with it. We thenusethe grid regionsand their spatial
densitiesasinputsto aBSPconstructionalgorithm.The
grid sizeis chosensuchthat theall thegrid regionsand
thespatialdensitiescaneasilyfit in memory. Note that
the spatialdensitiescanbe obtainedeasily in a single
sweepof theinput data.We illustratetheseconceptsin
thefollowing example.
Example 2: Consideranapproximationof theCharmi-
nar datasetof Figure1 usinga `�a Y `'a grid. Figure5
depictsthe spatialdensitiesof theseregionsalong the� -dimension.

Choosingthe correctgranularityfor thegrid of rect-
angularregionspresentsa tradeoff. On onehand,a fine
grid capturesthe detailsof the underlyingdistribution
and lets us approximateit well. On the otherhand,a
fine grid impliesa higherprocessingandmemorycost.
Weexaminethisissueempiricallyin Section5 andshow
thatin certainsituations,averyfinegrid canactuallybe
detrimentalto theconstructionof agoodpartition.

4.1 The Min-Skew Partitioning
We now proposea novel techniquefor constructing
skew-resistantbinary spacepartitionings. This tech-
nique usesa uniform grid of regions and their spatial
densitiesasinput. Thealgorithmpartitionsthegrid into
bucketswhile trying to minimizethespatial-skew (Def-

inition 4.1)of thegrouping.We call theresultingparti-
tioning theMin-Skew Partitioning.

The constructionalgorithm for the Min-Skew parti-
tioning repeatedlypartitions the given set of regions
such that the spatial-skew is minimized at eachstep.
Sinceit always partitionsan existing region into two,
the result is a BSP partitioning. The pseudo-codefor
thealgorithmis below:

Algorithm Min-Skew
Computetheaggregatedensityof theinputrectangle
distribution by using a uniform grid of rectangles
andtheir spatialdensity.
Start with a single bucket consisting of all the
regions.
while therearelessbucketsthanneeded

For eachcurrentbucketdo

Computethe spatialskew of the bucket (Defi-
nition 4.1) andthesplit point alongits dimen-
sionsthatwill producethemaximumreduction
in spatial-skew.

Pick the bucket whose split will lead to the
greatest reduction in spatial-skew. Split the
bucket into two andassignregionsfrom the old
bucketsinto thenew buckets.

endwhile
Assign each rectanglein the input to the bucket
whoseMBR containsthecenterof therectangle.

In our implementation,we furtherreducethecompu-
tationalcomplexity at eachstepof thegreedyapproach
by basingthesplitting decisionson marginal frequency
distributionsalongeachdimensionratherthan the full
two-dimensionalinput distribution. Figure6 illustrates
the preprocessingof the spatial inputs and highlights
oneiterationof thealgorithm. Also, the `�a -bucket par-
titioning of theCharminardatasetis alsogivenin Fig-
ure7.

The Min-Skew partitioninghasmany desirablefea-
tures.Sincetheconstructionalgorithmtriesto minimize
spatial-skew (albeitin alocal,uni-dimensionalmanner),
the partitioning tendsto have significantly less skew
overall thanotheralgorithms.Further, theconstruction
algorithm doesnot requirethe entire datadistribution
to fit in mainmemory, which is a significantadvantage.
Thus it addressesboth the issuesof skew andcompu-
tation time thatwerethedisadvantagesof thegrouping
techniquesconsideredin thelastsection.

5 Experimental Results
In this section,we studytheperformanceof thevarious
techniquesin estimatingspatialselectivity. The results
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Figure 7: Min-Skew Partitioning for
theCharminarDataset

presentedin this sectionarebasedon an extensive ex-
perimentalstudyon both real-life andsyntheticspatial
data.

Thissectionis organizedasfollows. Wefirst describe
the datasetsandthe querymodel. This is followed by
the performanceevaluationof the various techniques.
Finally, we explorethechampiontechnique,Min-Skew,
in greaterdetailandstudysomeof its tradeoffs.

In comparingthe various techniques,we used the
following metrics:� Average Relative Err or: This is the ratio of the

error in an estimateto the actualsizeof the query
result averagedover a set of queries. If

( �
is the

estimatedanswerand

 �

is the actualanswerfor a
givenquery

9 �
, theaveragerelativeerrorf for aquery

set · is givenas:� u¹¸ �/º¼» < 
�� U (�� < " = � u¹¸ �Hº¼» 
�� "
.

� PreprocessingTime: This is the time takenby the
constructionalgorithmfor eachtechniqueto prepro-
cessthe data,build appropriatedatastructures,and
generatethebucketsusedto processspatialqueries.

5.1 Datasets
Westudiedtheperformanceof thevarioustechniqueson
bothreallife andsyntheticdatasets,whicharedescribed
below.

5.1.1 Real-Life Datasets
For real-life data, we usedtwo datasetswidely used
in spatial databaseresearch: TIGER [tig92] and the
Sequoiadataset[SFGM93]. In this paper, dueto space
constraints,we only presentresultsfrom the NJ Road
datasetfrom TIGER, which gives the road data for
the state of New Jersey as line segments. For our
experiments,wecomputedtheboundingboxesof all the
line segments( ½ l ½ � ½¾½j¿ in thisset)andusedthemasthe
spatialinputs. The resultsusingthe otherdatasetsare
availablein thefull paper[APR99].

fThismetricis undefinedif all queriesin thequerysetproduceno
output.However, this is not acaseweencounterin our datasets.

5.1.2 SyntheticDatasets
We systematicallygeneratedseveral syntheticdatasets
varying in size, sparsity, placementskew, and size
skew. Sparsitywascontrolledby adjustingthe dataset
size relative to the total input area. Size skew was
modeledby generatingwidths and heights from the
Zipf Distribution[Zip49]. Placementskew wasmodeled
usingtwo-dimensionalZipf distributions. In this paper,
we presentresults from one set, the Charminar set,
which was introducedin Section 3.3 (Figure 1). It
contains½¾a¾a'a'a rectanglesof identicalheightandwidth
of 100units distributedin a

l a'a¾a'a Y l a¾a'a'a space.As
can be seen,most of the rectanglesare concentrated
in the four cornerscreatingareasof varying levels of
spatialdensities.

5.2 Query Sets
The query setsconsistof a large number(

l a¾a'a¾a ) of
rectangleslying within the MBR of the input. The
centersof therectangleswerechosenrandomlyfrom the
setof centersof theinput rectangles.Theaveragewidth
(height)of thequeryrectangle(referredto asparameter
QSize in theexperiments)wasvariedfrom ¿jÀ to ¿'`¾À
of thewidth (height)of the input boundingbox, which
variesthequeryareafrom a � a�½[À to Á � ¿'`jÀ of theinput
MBR size. A desiredaveragearea,

)
, for the query

rectanglesgeneratedis achieved by settingthe height
andwidth of the rectanglesto be uniformly distributed
in therange

� a � ` YÃÂ )*��l¾� ` YÄÂ ) $
.

5.3 TechniquesStudied
In additionto studyingthefour new techniquesthatwe
propose,namely, Equi-Count, Equi-Area, R-Tree and
Min-Skew, we alsoincludedsamplingandtheparamet-
ric techniquedueto BelussiandFaloutsos[BF95] in our
experiments.

We apply samplingasfollows. We collect a sample
of the input rectangles.Givena query, we computethe
selectivity of thequeryonthesample.Wethenscalethe
resultappropriatelyto obtainan estimatefor the query
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selecti@ vity. That is, if the sizeof the sampleif \ , the
input size is > , and the numberof samplerectangles
thatsatisfythegivenpredicateis Å , thentheestimated
resultsize is Å Y � Æ . This techniqueis referredto as
Samplein thegraphs.

Thefractal-basedparametrictechniquein [BF95] was
proposedfor point dataonly. Thepapershows thatspa-
tial datacanbe describedusingfractalshaving a non-
integer fractal dimension. In that context, selectivity
for suchpoint setscanbe describedusinga power law
with the correlationfractal dimensionasthe exponent.
For comparison,weextendedthistechniqueto rectangle
databy usingthecentroidsof therectanglesasrepresen-
tatives.

In addition to thesetechniques,we also used the
uniform assumption(Section3.1) over theentireinput,
i.e., a single bucket approximation and call it the
Uniform technique.

5.4 SpaceAllocation
The key parameterthat influencesthe costandperfor-
manceof the non-parametrictechniquesis the number
of buckets(or samples)allowed in the approximation.
Typically, queryprocessorsallocateafew hundredbytes
for statisticsoneachattribute(whichtranslatesinto hav-
ing 50 to 200buckets). In this study, we considerallo-
catingbetween50 and750buckets.

Thespaceoverheadof eachof thebucket-basedtech-
niques(Equi-Count, Equi-Area, R-TreeandMin-Skew)
is eight timesthe numberof buckets— four wordsfor
the boundingbox of the bucket and the averageden-
sity of the bucket, and the number, the averagewidth
andthe averageheightof the rectanglesin the bucket.
The Sampletechniquerequireshalf that sinceit needs
to only storethe boundingbox of eachsamplerectan-
gle. Consequently, in termsof spaceoverhead,¿
\ rect-
anglesfor theSampletechniquecorrespondto \ buckets
for the bucket-basedtechniques.However, in the fol-
lowing experiments,we liberally give Sampletwice the
fair amount.In otherwords,whenSampleis compared
to the othertechniques,it is given twice the spacethat
is givento theothertechniques(andthus,four timesas
many rectanglesasbuckets).

A complicationwith using an R-treeto build parti-
tionsis thedifficulty in controllingthenumberof buck-
etsproducedby it. Weaddressedthisproblemby tweak-
ing thebranchingfactorto producecloseto thenumber
wedesiredbut ensuringweneverexceededtheallocated
quota(in orderto befair to theothertechniques).

5.5 Experimental Results
In this section, we comparethe performanceof the
varioustechniquesfor spatialselectivity estimation.We
first study the performanceof the various techniques

with respectto thequerysizeandthenumberof buckets.
In each experiment, we vary one of the parameters
over its entire set of valuesand keep the remaining
parametersfixed at their default values. For these
experiments,the numberof regions usedby the Min-
Skew constructionalgorithmwassetto

l a � a¾a'a .

5.5.1 Experiment 1: Impact of Query Size
This experimentstudiestheperformanceof thevarious
techniquesfor differentquerysizes(onx-axis).Figure8
shows relative error as a function of query size when
using

l a¾a bucketsto approximatetheNJ Roaddataset.
The results for the other datasetsare qualitatively
similar. Here,we chopthey-axis in both thegraphsto
keepthemin scale.Theerror for theSampletechnique
is Çj¿¾À for ¿jÀ QSize.

The generalobservation from the graph is that the
relativeerrordecreaseswith increasingquerysize.This
is becausethe error in an estimationarisesonly from
thosebuckets that are partly containedin the query.
Sinceeachbucketstorestheexactnumberof rectangles
belongingto it, thosebucketsthatfall entirelywithin the
queryrectanglecontributeno error. Sincemorebuckets
are fully covered by bigger queries, relatively fewer
bucketscontributeto theerror. Thus,all the techniques
show better accuracy as we move to the right of the
graph.

The fractal techniqueof [BF95] was closeto being
the leasteffective techniquefor all thedatasetsthatwe
studied.Averagerelative error for theNJ Roaddataset
wasconsistentlycloseto È¾ajÀ for mostquerysizes. It
must be said in defenseof the techniquethat it was
developedfor pointdata,while we haveexaminedit for
rectangledata.In therestof theexperiments,we do not
show the performanceof the fractal techniquesinceit
did not performcompetitively.

The numbersfor Uniform werealsovery poor. For
the NJ Roaddataset,Uniform had errorsin the rangeÇ'a[À (QSize = ¿jÀ )— `¾É¾À (QSize = ¿¾`¾À ). This
high rangeof errorswas observed acrossall the data
sets.This shows that real-life spatialdatais inherently
skewedandthus,cannotbecapturedby a trivial single
bucketapproximation.In therestof theexperiments,we
do not show theperformanceof theUniform technique
aswell.

The graphalso shows that samplingperformsquite
poorly. This resultis borneout for all thecasesstudied.
This is becauseit makes an implicit assumptionthat
eachrectanglechosenin thesampleis representativeof
both the spatial distribution and the sizeof the other
rectanglesin its neighborhood(i.e., it makes a local
uniformity assumption). Obviously, this is not the
casefor spatialdata. Thus, thesenumbersshow that
approximatingspatialdatadistributions requiresmore
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Figure8: Performancevs. QuerySize,Buckets= 100

sophisticatedpartitioningtechniqueswhich accountfor
theimplicit featuresof thedata.

The Equi-Area, Equi-Countand R-Tree techniques
have very similar error valueswith Equi-Countdoing
slightly better.

It is clear that, the Min-Skew techniqueis a winner
by a huge margin. It improves the averagerelative
error of its closestcompetitorsby over `'ajÀ in most
of the cases.Recall that the Min-Skew techniqueaims
to createbuckets that have the least variancein the
densitywithin eachbucket. In otherwords,it explicitly
accountsfor thespatialskew in thedata.Consequently,
the error from a bucket partially coveredby a queryis
significantly lower with the Min-Skew techniquewhen
comparedto theothertechniquesthatdo not take skew
into account.

5.5.2 Experiment 2: Impact of Bucket Size
In this experiment,we studythe impactof the number
of bucketsontheperformanceof thevarioustechniques.
Figure9 plotsaveragerelative erroragainstthenumber
of bucketsallowedfor theNJRoaddataset.Theleft and
right graphsin the figure plot valuesfor two different
querysizes.

As expected,allowing morespacefor theapproxima-
tion helpsreducethe errors. The Min-Skew technique
againgivestheleasterrorsovertheentirerangestudied.
Itsperformanceis especiallynoteworthywhenrelatively
few buckets(e.g.,50 or 100) areused. Having only a
few bucketsposesthegreatestdifficulty on any approx-
imation technique.Performingwell in this scenariois
particularlygoodfrom thestandpointof queryoptimiza-
tion, sincequeryprocessorstypically allow only asmall
numberof bucketsbecauseof spaceconstraints.

As the techniquesuse more buckets, they are able
to approximatethe input in greaterdetail. This lowers
the effect of skew on their performance,which in turn
diminishes the performancedifferencesbetweenthe

varioustechniques.
The performanceof Equi-Area and Equi-Countare

similar, with Equi-Counthaving slightly betterperfor-
mancein somecases.R-Treeis consistentlyworseover
the entirespacestudied. However, the numbersfor R-
Treeareslightly pessimistic.As pointedout in earlier, it
is difficult to controlthenumberof bucketsproducedby
the R-treetechniqueandthus, it often generatesfewer
bucketsthan its allocatedquota. As before,Sampleis
againineffectiveevenwhenmorespaceis available.

Basedontheaboveexperimentalresults,weconclude
thatMin-Skew is thetechniqueof choiceto approximate
spatialdistributionsand the ideal techniqueto usefor
spatialselectivity estimation.As highlightedin Sec4.1,
it is fast, computationallyefficient, and unlike many
of theothertechniques,haslow memoryrequirements.
We thereforeexploretheMin-Skew techniquein greater
detail and look at the various factors that affect its
performance.

5.5.3 Experiment 3: Min-Skew: Sensitivity to
Regions

In thisexperiment,westudytheinfluenceof thenumber
of regionsin the uniform grid usedto approximatethe
underlyinginput spaceon the performanceof the Min-
Skew technique.As pointedout in Section4, thereis an
inherentcostversusaccuracy trade-off in choosingthe
correctgranularityfor thegrid. In thefollowing graphs,
weanalyzethis tradeoff quantitatively.

Figure 10(a) plots averagerelative error versusthe
numberof input regions for the Min-Skew technique.
The graphis for the NJ Roaddatasetwith the number
of buckets set to

l a¾a . The graphsshow two lines
correspondingto the two query sizesin Figure 9 ( `¾À
and ¿¾`¾À ). As we move to the right on the x-axis, the
numberof regionsincreaseandthesizeperregiondrops
correspondingly. This implies that theunderlyinginput
distribution is capturedmoreaccurately.

As thegraphsshow, increasingthenumberof regions
decreaseserrorsup to apoint beyondwhich they flatten
out. The flattening is due to the natureof the real-
life data. They arenon-uniformandhave variationsin
density. This causesa big improvementin performance
on the left sideof the graph. However, sincethe data
is not extremelyskewed,furthersub-dividing thespace
finely doesnot captureany additional featuresof the
data.

Thesegraphsshow thatwhile increasingthenumber
of regionsusedto capturetheoriginal input is necessary
for performance,creatingtoo many regions doesnot
necessarilyhelp. Moreover, it also increasesthe run
time overhead.Clearly, thereis a correlationbetween
the input datadistribution, the querysize, the number
of regionsandtheestimationerror—finding thecorrect
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Figure9: Performancevs. Numberof Buckets
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Figure10: Error vs. Regionson Min-Skew Performance,Buckets= 100

numberof regionswhichprovidestheleasterroris thus
an interestingproblemfor further explorationandpart
of our futurework.

Studying the sameproblemspacefor the Synthetic
dataset, however, producesa very counter-intuitive
result. Figure10(b) shows the sameproblemspaceas
Figure10(a)for the Syntheticdataset.With increasing
numberof regions, performancefor the small queries
(QSize = `¾À ) improvesasexpected.However, unlike
in thelastsetof graphs,theerror for Min-Skew for the
largequeriesactuallygetworsewith more regions!

Whena largenumberof regionsareusedto approx-
imate the syntheticdataset,a considerablenumberof
regions also spanthe skewed cornerareas(Figure 5).
Theseregions, therefore,have highly varying spatial
densities.This forcesthe Min-Skew constructionalgo-
rithm to allocatemany bucketsto thoserelatively com-
pactareasin orderto reducetheskew. This in turn im-
pliesthatthereareveryfew bucketsfor thelargeinterior
areaswhich arelessskewed. Thenetresultis thatsuch
a groupingis likely to performpoorly for largequeries
which frequentlyspantherelatively uniforminteriorar-
eas.Allocating too many bucketsto the small corners,

while improving performancefor small queries,is un-
likely to improve performancemuch for large queries
becausethoseareasare likely to be included wholly
within a large query. Thus, having too many regions
hasanadverseeffecton Min-Skew for largequeries.

In the next section, we provide a solution called
ProgressiveRefinementto addressthis problem.

5.6 ProgressiveRefinementfor Min-Skew
It is clearfrom thediscussionin theprevioussectionthat
a largenumberof regionsmainly benefitsmallqueries.
Using a smallernumberof regionshelpslargequeries.
To handlebothcasescorrectly, andhavethebestof both
worlds, we proposeprogressiverefinementof regions
in Min-Skew. We implementprogressive refinementby
startingtheconstructionalgorithmwith a smallnumber
of (coarse)regions. At equalintervals of buckets,we
refine the regions by splitting each region into four
identicalregions.Thenewly createdregionsreplacethe
original regions. Propertiesof the buckets neededby
theconstructionalgorithm(skew, marginal frequencies,
etc.) are recalculatedusing the new regions. The
rest of the Min-Skew algorithm continuesas before.
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The numberof refinementsto be usedis an important
parameterthat we examine empirically in the next
section.
Example 3: Supposethat we want to perform ¿
refinementssuch that the final grid size is

l Á � a¾a'a
regions. Let the numberof buckets requiredbe Á¾a .
Sincewerefinetheregionsby afactorof four eachtime,
westartMin-Skew with agrid consistingof

l Á¾a'a¾aj=�½ � �l a¾a'a regionsandrun it till it produces¿'a ( Á¾aj= � ¿ÌË l "
)

buckets. At thatpoint, we refinethenumberof regions
to

l Á � a¾a'a[=�½ � � ½¾a'a¾a and produce ¿'a more buckets,
bringingthetotalnumberupto ½¾a . Werefinetheregions
again,producing

l Á � a¾a'a regionsandproduce¿'a more
buckets,bringingthetotal numberup to the Á'a buckets
needed.

OntheCharminardataset,progressiverefinementhas
the following qualitative effect. Initially, the data is
beingobservedcoarselyandhencebucketsareallocated
to cover even the relatively lessskewed middle areas.
This takes careof large queries. Towards the end, a
largenumberof regionsareproduced,which highlights
the high skew in the four corners. This causesMin-
Skew to allocatethe remainderof the buckets to those
areas. This takes care of small queries. In effect,
progressive refinementallocatesbuckets uniformly to
the entire spaceand then selectively drills-down and
allocatesmorebucketsto the high-skew regionswhich
requirethem.

5.6.1 Experiment 4: Min-Skew: Impact of
ProgressiveRefinement

In thissection,wequantitatively studytheaccuracy im-
provementproducedby progressive refinement. Fig-
ure 11 plots error for the datapoint from Figure10(b)
thathad Í¾a � a'a'a regions. Thenumberof refinementsis
shown on the x-axis andthe numbersarefor the large
query(QSize = ¿'`¾À ). Thehorizontalline in thefigure
showstheminimumvalueof errorthatwasachievedfor
largequeriesin Figure10(b).

At a high level, it is clear that refinementshelp
considerably. They causethe error to drop by over`'`jÀ . However, they do not causethe error to drop to
the absoluteminimal level achievable by picking the
correctregion size, thoughthey do comeclose. Note
that the error startsincreasingafter a few refinements.
This is becausehaving too many refinementswill leave
too few bucketstowardsthe endfor approximatingthe
skewedregions,thuscausingsomeerror. Givenaquery
and data distribution, an interestingopen questionis
to determinethe optimalnumberof refinementsand/or
regions. A detailedsensitivity study on progressive
refinementsis beyond the scopeof this paperand is
part of our future work. In our experiments,we found
that the bestnumberof refinementvariesfrom ¿ to Á

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

A
ve

ra
ge

 R
el

at
iv

e 
E

rr
or

Ê

Number of Refinements

Figure11: Impactof ProgressiveRefinement

TimeTaken(in seconds)
Partitioning Input Size= Î?Ï1Ð InputSize= Ñ1Ï?Ï1Ð
Technique ÒÔÓÖÕ�Ï?Ï ÒÔÓØ×FÎ?Ï ÒÔÓÖÕ�Ï?Ï ÒÔÓØ×FÎ?Ï
Min-Skew 5.2 15.9 20.8 33.1
Equi-Area 9.1 15.2 140.9 180.5
Equi-Count 8.1 11.3 140.8 190.3
R-Tree 3.9 6.0 57.7 891.7
Uniform 0.5 0.6 0.9 0.9

Table1: Time for ComputingVariousPartitionings

dependingon thequerysizeandtheinputdata.

5.7 Experiment 5: Construction Times
In this experiment,we look at the constructiontime
taken by the differenttechniques.Table1 shows these
times for different input sizesand bucket counts(

r
).

These times were measuredon a Sparc ULTRA-30
machinewith ¿¾`�ÁjÙf_ memory. It can be seenthat
the number of buckets has only a minor effect on
constructiontime. However, all techniques,exceptMin-
Skew and Uniform, take significantly more time with
increasingdatasize. As mentionedearlier, this is one
of thebenefitsof Min-Skew. RecallalsothatEqui-Area,
Equi-Count, andR-Treerequirethe entiredatasetto fit
in memorywhich theMin-Skew techniquedoesnot.

6 Conclusions
Selectivity estimationis a critical componentof query
processingin databases.Despitetheincreasingpopular-
ity of spatialdatabases,therehasbeenvery little work
in providing accurateandefficient techniquesfor spa-
tial selectivity estimation. Spatialdatadiffers so sig-
nificantly from relationaldatathatrelationaltechniques
simply do not performwell in this domain. In this pa-
per, wehaveproposedseveralnew techniquesfor spatial
selectivity estimation. Thesetechniquesare basedon
spatialindices,binaryspacepartitionings,andthenovel
notion of spatialskew. Basedon our extensive experi-
mentalanalysisof the new techniquesandadaptations
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ofÚ previously known techniques,we are able to show
that: (a) Sampling and parametrictechniqueswhich
work well in the relationalone-dimensionalworld do
not work well for spatialdata. (b) A BSP basedpar-
titioning that we call Min-Skew outperformsthe other
techniquesover a broadrangeof queryworkloadsand
datasets.A Min-Skew partitioning can be constructed
efficiently andhasthe addedadvantageof having low
memoryrequirementsduringconstruction.In summary,
our resultsshow that spatialselectivity estimationcan
be solved accuratelyand efficiently for large spatial
databases.
Acknowledgments: The authorswould like to thank
Steve Blott for helpwith his codefor computingfractal
dimensions.We obtainedtheMathematicaprogramfor
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