
The Need for Distributed Asynchronous Transactions
Lyman Do, Prabhu Ram, and Pamela Drew

Boeing Phantom Works, Mathematics and Computing Technologies
The Boeing Company

P.O. Box 3707, M/S 7L-70, Seattle, WA 98124-2207, USA
{lyman.s.do, prabhu.ram, pamela.a.drew}@boeing.com

ABSTRACT
The theme of the paper is to promote research on asynchronous
transactions. We discuss our experience of executing synchronous
transactions on a large distributed production system in The Boeing
Company. Due to the poor performance of synchronous
transactions in our environment, it motivated the exploration of
asynchronous transactions as an alternate solution. This paper
presents the requirements and benefits/limitations of asynchronous
transactions. Open issues related to large scale deployments of
asynchronous transactions are also discussed.

1. INTRODUCTION
Boeing has a system that maintains configuration control of
airplanes which maintains information such as which parts are used
in a particular instance of an airplane. This system supports 60,000
users and has a service level agreement (SLA) of 2 minutes. The
SLA is a contract between the system users and implementers, and,
defines the maximum transaction response time. The system is
composed of eight distributed databases, six of which are on a LAN
and the another two are on WAN. Part of the data is replicated and
global transactions are implemented to guarantee data consistency.
Two phase commit (2PC) [1] protocol has been used to guarantee
global atomicity.

We have conducted experiments on our production environment to
evaluate the performance and scalability of the system. The result
shows that the SLA cannot be met when a global transaction
accesses two or more databases through the WAN. For example,
the transaction that accesses five databases, three of which are on
the LAN and the others are on the WAN, takes nine minutes to
complete. Further investigations [7] show that the 2PC component
of the transaction response time is constant and insignificant but the
blocking nature of the synchronous communication that
implements 2PC contributes most to the poor performance.

Extended transaction models (ETMs) have been researched for well
over a decade and generally attempt to exploit application
semantics to increase concurrency and reduce synchronization
latency. Several well known ETMs are summarized in [4]. Most
of the efforts have focused on isolation relaxation to allow more
concurrency in multidatabases and other environments, to support
for long lived transactions, and to support for non-traditional

database applications (such as CAD/CAM and collaborative work).
It should be noted that none of these ETM implementations are
commercially available (with the exception of nested transactions
[5] in some transaction processing monitors). It is also interesting
to note that overall system performance issues are rarely addressed
in ETMs. Beyond functionality, system performance is the key
measure of success in industrial deployments. From the commercial
side, some DBMS, middleware, and collaborative tool vendors
provide tools such as persistent queues, message oriented
middleware, etc., but the traditional transaction issues of providing
concurrency control between transactions and transaction atomicity
are left to the application to manage.

Given these reasons, we have been investigating asynchronous
transaction technology to improve transaction response time
without compromising data consistency. We describe the
requirements, benefits, and limitations of using asynchronous
transactions in Section 2. In Section 3, we raise open issues that
deserve additional research attention in order to make
asynchronous transaction a practical alternative.

2. Asynchronous Transactions
An asynchronous transaction is a distributed composite transaction
that is composed of sub-transactions. Similar to traditional
synchronous transactions, these sub-transactions will reach the
same termination decision. However, the termination of these sub-
transactions is asynchronous, i.e., some of the sub-transactions may
have been committed while others may be still executing or have
not yet executed. One significant characteristic of asynchronous
transactions is they are guaranteed to be propagated to the target
systems once and only once. Once an update at the source is
committed, it will commit and expect that the update will be
propagated to the target appropriately. The "once" part guarantees
this expectation, and the "only once" part guarantees that update
propagation will not be duplicated. It should be noted that
asynchronous transactions are not only applicable in traditional
database application domains. It is an infrastructure component
whose presence can benefit asynchronous information sharing
environments in the collaborative work area and asymmetric
replication environments such as data warehouses [2,6].

2.1 Requirements
The candidate distributed environments that are suitable to deploy
asynchronous transactions must have two important characteristics:

1. Temporarily out-of-sync information: Using asynchronous
transactions, there will be a time gap between the update at the
source and the update at the target. Hence, the source and target
databases are temporarily out-of-sync until the entire asynchronous
transaction is completed. The system (application designer) has to
be aware of this characteristic and be able to tolerate the
temporarily out-of-sync information.

2. Unidirectional update propagation: Asynchronous transactions
are particularly suitable to environments that require unidirectional
update propagation, i.e., the update will be propagated from a
source to one or more targets, but not vice versa. If the computing
environment implements bi-directional concurrent update
propagation, the asynchronous nature of transaction may result in
an incompatible execution sequence of transactions in the global
perspective and may require manual reconciliation. The transaction
management technology must be capable of detecting and flagging
such inconsistencies to assist in the reconciliation process.

2.2 Benefits and Implications
We refer readers to [3] for a detailed discussion on the benefits and
implications of deploying asynchronous transactions. Briefly here
are the benefits of deploying asynchronous transactions:

1. Asynchronous transactions improve response time and system
throughput by eliminating synchronous interactions between its
components. After submitting a request, the client is free to remain
active or it can terminate successfully, without waiting for a
collective consensus. The system throughput is also improved since
extended resource locking is reduced to a minimum.

2. As asynchronous transactions guarantee once-and-only-once
execution semantics, a failed sub-transaction can be re-tried once
the problem is fixed, thereby facilitating forward recovery.

3. Since asynchronous transactions allow participating
transactions to commit unilaterally, it eliminates the lock-and-wait
scenario, i.e., the global deadlock, prevalent in strict synchronous
transactions.

Beyond the two important environment characteristics discussed in
Section 2.1, additional implications of deploying asynchronous
transactions technology include:

1. Additional resources have to be committed to implement
asynchronous transactions in order to guarantee the once-and-only-
once execution semantic. A typical example of such a resource is a
transactional queue which incurs additional I/O overhead.

2. Since sub-transactions of an asynchronous transaction can be
committed unilaterally, some scenarios may require rolling back of
a committed sub-transaction. The application may need to support
compensation or equivalent logic in order to rollback unilaterally
committed sub-transactions.

3. Open Issues and Conclusions
While synchronous transactions clearly have their place, we have
discussed the need for asynchronous transactions to support
distributed applications. In this section, we discuss several issues
that need to be addressed if asynchronous transactions are to be
widely deployed and used. In general, there needs to be a better
theoretical foundation developed for asynchronous transactions
(just as it has been done for synchronous technology) and has to be
grounded by implementations that deliver on overall system
performance.

1. There needs to be ways of managing the temporal inconsistency
as discussed in Section 2.1. The methods used to manage
asynchronous transactions must allow control and quantification of
propagation delays so that applications can function with some
temporal guarantees. Fundamental research into this area has been
done in efforts such as Epsilon serializability [8]. However, ETMs
need to address additional implementation and performance issues.

2. The environment we discussed in Section 1 is a sub-system that
is part of an integrated system composed of other commercial off-
the-shelf (COTS) software. In fact, a typical transaction indeed
spans several COTS software, each of which has their own
encapsulated databases. Integrated systems such as these need
asynchronous transactions so that one application in a COTS
software does not get "tied down" by synchronous interactions with
another application in a different COTS software. If asynchronous
transactions are to be used in such integrated environments, the
following issues need to be addressed:

- It is very likely that in such systems, information will flow from
multiple COTS sources to multiple COTS targets concurrently.
Additionally, data in these COTS sources will have inter-
relationships amongst them. Given these restrictions, how can
redundant update propagations be consolidated before
submitting them to the targets?

- Design issues such as how many asynchronous transactions
mechanisms (persistent queues for example) are required to
support large environments for load balancing and performance
improvement reasons needs to be explored.

3. Most large scale systems will cause bi-directional conflicting
updates. How are the concurrency and isolations issues handled in
the presence of bi-directional conflicting updates propagated
through multiple asynchronous transaction mechanisms?

4. How the forward recovery of failed update propagations are
handled? Significant research effort has gone generally into failure
handling in similar environments and we would like to see these
research grounded with implementations. Issues including
requirements on applications (for example, the interactions between
applications and the asynchronous transaction mechanism may
need to be idempotent), if and how the asynchronous transaction
mechanism stores state changes relevant to the application, etc.,
need to be investigated further.

5. How the involvement of an additional component in the system,
namely, the asynchronous transactions mechanism, improves and
does not deteriorate overall system performance due to the
mechanisms' own overheads?

To meet the needs of our own enterprise, we have been working on
prototypes that extend vendor provided tools to address the issues
discussed above.

4. References
[1] Bernstein, P., Hadzilacos, V., and Goodman, N., Concurrency

Control and Recovery in Databases, Addison-Wesley, 1987.
[2] Do, L., et.al., Issues on Developing Very Large Data

Warehouses. In Proc. of the 24th VLDB, 1998.
[3] Do, L., and Ram, P., State of the Art of Asynchronous

Transaction Mgt., Boeing Tech. Report SSGTECH 98-016.
[4] Elmagarmid, A., Editor, Database Transaction Models for

Advanced Applications, Morgan Kauffman, 1990.
[5] Moss, E., Nested Transactions: An Approach to Reliable

Distributed Computing, MIT Press, 1985.
[6] Ram, P. and Do, L., Delta Extraction for Incremental Data

Warehouse Maintenance. Boeing Phantom Works M&CT
Tech. Report 99-003. Manuscript submitted for publication.

[7] Ram, P., Do, L., and Drew, P., Distributed Transactions in
Practice. Submitted for publication.

[8] Ramamritham, K., and Pu, C., A Formal Characterization of
Epsilon Serializability, IEEE TKDE, 7(6), 1995.

