
Indexing Medium-dimensionality Data in Oracle

K. V. Ravi Kanth, Siva Ravada, Jayant Sharma and Jay Banerjee

Oracle Corporation, Nashua NH 03060.

frkothuri, sravada, jsharma, jbanerjeg@us.oracle.com

1 Introduction

With the advent of GIS, multi-media, and warehousing
technologies, database systems have started focusing
on storage and access of multi-dimensional data such
as spatial, OLAP, image, audio, and video attributes.
As a step in this direction, Oracle8i launched the
interMedia product to support spatial and image data,
and Materialized Views (MV) to support warehousing
applications. Although 2-dimensional spatial data is
e�ciently indexed using Oracle8i Spatial , and high-
dimensional image data using a combination of bitmap
indexing and the Visual Information Retrieval (VIR)
product, there is still a need for e�cient indexing
mechanisms for medium-dimensionality data such as
OLAP, and CAD/CAM applications. In this paper,
we describe the implementation of a new indextype,
called the R-tree, to support medium-dimensionality
data (i.e., data whose dimensionality is in the range of 3-
10) using the extensible indexing framework [DDSS95]
of Oracle8i. This indextype combines some of the best
features of existing R-tree variants [Gut84, BKSS90,
WJ96, LLE97, RKV95].

2 Framework

The new indextype is implemented using the extensible
indexing framework of Oracle8i (referred to as cooper-
ative indexing in [DDSS95]). This framework allows
easy creation and maintenance of domain-speci�c in-
dex structures on top of the server layer while reaping
the full bene�ts of operating within a database frame-
work. As a consequence, the new index structure inher-
its features such as transactional semantics, integrated
backup and recovery, security, and replication from the
underlying database.

3 Storage

The R-tree indextype being de�ned in Oracle8i can
index two datatypes: an sdo mbr type, which is a d-
dimensional rectangle speci�ed by the lower-left and the
upper-right corners, or an sdo geometry type, which is
an Oracle8i object type that allows for the speci�cation
of complex geometries (as de�ned by OGC).
Data items are stored in a relational table, which we

refer to as the base table. The R-tree constructed for the
data items is stored in the database using a metadata
table storing the information about the root of the R-
tree, its dimensionality and fanout, and an index table
storing the nodes of the R-tree.

4 Index Creation and Update

4.1 Bulk Creation

The user can specify one of two creation strategies:
one using the sort-tile-recursive approach [LLE97], and
another using the VAMSplit R-tree approach [WJ96].
The �rst one has fast creation times whereas the second
approach obtains good query response times [WJ96].

4.2 Inserts and deletes

Inserts and deletes (referred to as updates) are pro-
cessed in two phases: a locate phase, and an update
phase. In the locate phase, updates propagate from the
root to a leaf node wherein the update is to be per-
formed. During the update phase, the update is pro-
cessed in the identi�ed leaf node and the changes of the
update are propagated up the tree. Note that unlike
a B+-tree, the update may propagate up even when
there is no split of the leaf node. This happens when
the MBRs of the nodes on the update path need to be
adjusted due to update of the lower-level nodes. Ora-
cle read-consistency model ensures that node accesses
either during queries or during the locate phase of an
update are never blocked. Node accesses are blocked
only during the update phase.
Although reads in a query do not observe committed

tree changes performed after the start of the query
due to Oracle read-consistency model, node-updates



in an update operation do see the latest committed
versions of the updated nodes. As a result, node-
splits and node-deletes may lead to inconsistencies
during concurrent updates. To ensure good concurrency
without sacri�cing tree integrity, we adopt the following
strategy. First, we do not allow updates to delete nodes:
empty and under-�lled nodes are reclaimed during a
separate tree reorganization operation that locks the
entire tree. Next, for detecting nodes-splits during
concurrent updates, we use the node id information of
the nodes.

4.3 Altering the Index

In this operation, the user is allowed to either recon-
struct the entire tree from scratch, or to reorganize the
tree by �rst eliminating empty, and under-�lled nodes,
and then improving the quality of the tree by doing
forced reinsertion.

5 Query Operations

The R-tree indextype supports three types of opera-
tions: window queries, nearest-neighbor queries, and
intersection joins. Window queries specify a query win-
dow and retrieve data whose MBRs interact with the
query window in one of 4 ways: intersection, contain-
ment , enclosure and exact-match. Nearest-neighbor
queries specify a query point and retrieve the k clos-
est data MBRs. Joins identify the data items of two
di�erent datasets that intersect with each other. Note
that these queries are processed using the MBRs. For
some applications such as GIS data where the bound-
ing rectangles only represent �rst-level approximations
of the data items, the query result may have to be post-
processed using the complete extents of the data items
to obtain the �nal result.

All queries are implemented as operators in Oracle8i
extensible indexing framework. The operators are
evaluated using start, fetch, and close routines of the
extensible indexing interface. The query is set up in
the start routine (for instance, a stack is initialized with
just the root node on top for window queries). It is
incrementally processed in the fetch routine, and the
associated stacks and queues are cleaned up in the close
routine.

Note that to ensure limited memory usage, the
queries are processed in a depth-�rst manner. Con-
sequently the query algorithms for window, nearest-
neighbor, and join queries [BKSS90, BKS93, HJR97]
are adapted appropriately. For instance, a spatial join
operation on two nodes R and S (each corresponding
to a di�erent R-tree) identi�es a pair of child entries,
and propagates to the corresponding pair of child nodes,
without identifying the other pairs of entries of R and
S that need to be processed later. To facilitate on-the-

y identi�cation of the pair of child entries to process

next, the nodes R and S are stored on a stack along
with appropriate information. As a result, the memory
requirement reduces from O(n2) (corresponding to all
pairs of entries of R and S as in [HJR97]) to O(2 � n)
(corresponding to storing R and S), where n is number
of entries in each node.

6 Extensions

In addition to indexing inherently multi-dimensional
columns, R-trees can also be used to index multiple
columns so as to answer queries on multiple columns
e�ciently. Such extensions are being considered for
future versions.

References

[BKS93] T. Brinko�, H. P. Kriegel, and B. Seeger.
E�cient processing of spatial joins using R-
trees. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 237{246, 1993.

[BKSS90] N. Beckmann, H. Kriegel, R. Schneider,
and B. Seeger. The R* tree: An e�cient
and robust access method for points and
rectangles. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 322{
331, 1990.

[DDSS95] S. Defazio, A. Daoud, L. A. Smith, and
J. Srinivasan. Integrating ir and rdbms using
cooperative indexing. In Proc. of ACM SI-
GIR Conf. on Information Retrieval, pages
84{92, 1995.

[Gut84] A. Guttman. R-trees: A dynamic index
structure for spatial searching. Proc. ACM
SIGMOD Int. Conf. on Management of
Data, pages 47{57, 1984.

[HJR97] Yun-Wu Huang, Ning Jing, and Elke A.
Rundensteiner. Spatial joins using r-trees:
Breadth-�rst traversal with global optimiza-
tions. In Proc_of the Int. Conf. on Very Large
Data Bases, pages 396{405, 1997.

[LLE97] S. T. Leutenegger, M. A. Lopez, and J. M.
Edgington. STR: A simple and e�cient
algorithm for R-tree packing. In Proc. Int.
Conf. on Data Engineering, 1997.

[RKV95] N. Roussopoulos, S. Kelley, and F. Vincent.
Nearest neighbor queries. In Proc. ACM
SIGMOD Int. Conf. on Management of
Data, pages 71{79, May 1995.

[WJ96] D. White and R. Jain. Algorithms and
strategies for similarity retrieval. Proc. of
the SPIE Conference, 1996.


