BOAT—Optimistic Decision Tree Construction

Johannes Gehrke Venkatesh Ganti Raghu RamakrishhanWei-Yin Loh
Department of Computer Sciences and Department of Statistics
University of Wisconsin-Madison

Abstract the domain of the class label attribute @ass labels the
Classification is an important data mining problem. Given a training databaseS€mantics of the term c[a_ss !abgl will _be clear _from the
of records, each tagged with a class label, the goal of classification is tocontext.) The goal of classification is to build a concise model
build a concise model that can be used to predict the class label of futureof the distribution of the class label in terms of the predictor
unlabeled records. A very popular class of classifiers are decision trees. Allyyyipy jteg. The resulting model is used to assign class labels
current algorithms to construct decision trees, including all main-memory : .
algorithms, make one scan over the training database per level of the tree. (O future records where the values of the predlqtor attributes
We introduce a new algorithm (BOAT) for decision tree construction are known but the value of the class label is unknown.
that improves upon earlier algorithms in both performance and functionality. Classification has a wide range of applications, including

BOAT constructs_ sev_eral levels of the tree in only tw_o scans over the tralnl_ng scientific experiments, medical diagnosis, fraud detection,
database, resulting in an average performance gain of 300% over previous

work. The key to this performance improvement is a nowptimistic credit approva_l,_and target marketing [FPSSU96]. '
approach to tree construction in which we construct an initial tree using a Many classification models have been proposed in the
small subset of the data and refine it to arrive at the final tree. We guarantediterature [MST94, Han97]. Classification trees [BFOS84],

that any difference with respect to the “real” tree i.e., the tree that would be 55 c5)jeddecision treesare especially attractive in a data
constructed by examining all the data in a traditional way) is detected and

corrected. The correction step occasionally requires us to make additiona_m'n!n_g env'ronmentl for several rgasons. '_:'_rSt'. due to th(i:ll’
scans over subsets of the data; typically, this situation rarely arises, and caintuitive representation, the resulting classification model is
be addressed with little added cost. easy to assimilate by humans [BFOS84, MAR96]. Second,

Beyond offering faster tree construction, BOAT is the first scalable decision trees do not require any parameter setting from the
algorithm with the ability to incrementally update the tree with respect to both dth iall ited f | K led
insertions and deletions over the dataset. This property is valuable in dynamié"lSer andt us.are esPe_C'a y suited for exploratory know e ge
environments such as data warehouses, in which the training dataset changéiiscovery. Third, decision trees can be constructed relatively
over time. The BOAT update operation is much cheaper than completely refgst compared to other methods [SAM96, GRGg8]_ Last,
building the tree, and the resulting tree is guaranteed to be identical to the[he accuracy of decision trees is comparable or superior to
tree that would be produced by a complete re-build. . .

_p Y P other classification models [Mur95, LLS97]. In this paper,

1 Introduction we restrict our attention to decision trees.

Classification is an important data mining problem. The We introduce a new algorithm callBDAT that addresses

input is a dataset Ofraining records(a|so Ca”edtraining both performance and fUnCtiona”ty issues of decision tree
databasy each record has several attributes. Attributes construction.BOAT outperforms existing algorithms by a
whose domain is numerical are calladmerical attributes ~ factor of three while constructing exactly the same decision
whereas attributes whose domain is not numerical are calledree; the increase in speed does not come at the expense of
categorical attributes. There is one distinguished attribute quality. The key to this performance improvement is a novel

called theclass label (We will denote the elements of Optimistic approach to tree construction, in which statistical
techniques are exploited to construct the tree based on a small

E“PPO:‘EE EY g”'Bt'\’;gsfg‘f’“atetEe'l'g‘&sgp . subset of the data, while guaranteeing that any difference
upported by Gran rom the orporation. . « " .
fSupported by ARO grant DAAGS5-98-1-0333. with respect to the “real” tree (i.e., the tree that would

~'A categorical attribute takes values from a set of categories. Some authors be constructed by examining all the data) is detected and
e o res oo nsmres, ™4 corrected by a subsequent scan of all the data. If correction is
not possible, the affected part of the tree needs to be processed
again; typically, this case rarely arises, or only affects a small
portion of the tree and can be addressed with little added cost.
In addition, BOAT enhances functionality over previous
methods in two major ways. FirsBOATIs the first scal-

able algorithm that can maintain a decision tree incrementally

2Bootstrappedptimistic Algorithm for Tree Construction

when the training dataset changes dynamically. For examare the most popular class of decision trees; our techniques
ple, in a credit card company new transactions arrive con-can be generalized to non-binary decision trees, although we
tinuously; it is crucial that a decision tree based fraud de-will not address that case in this paper. Thus we assume in the
tection system can reflect the most recent fraudulent transaacemainder of this paper that each node has either zero or two
tions. One possibility is to rebuild the tree from time to time, outgoing edges. If a node has no outgoing edges it is called
e.g., every night, which is an expensive operation. Instead ofleaf node otherwise it is called amternal node Each leaf
rebuilding,BOATallows us to “update” the current tree to in- node is labeled with one class label; each internal node
corporate new training data while maintaining the best tree.labeled with one predictor attribut¥,, called thesplitting
That is, the tree resulting from the update operation is exactlyattribute. Each internal node has a predicate,, called the
the same tree as if a traditional algorithm were run on thesplitting predicateassociated with it. 1fX,, is a numerical
modified training database. The update operatidBQATiS attribute g, is of the formX,, < z,,, wherez,, € dom(X,,);
much cheaper than a complete rebuild of the tree. x,, is called thesplit pointat noden. If X,, is a categorical
Second,BOAT greatly reduces the number of database attribute,g,, is of the formX,, € Y,, whereY,, C dom(X,,);
scans, and is thus well-suited for training databases defined’, is called thesplitting subsetat noden. The combined
through complex queries over a data warehouse, as longnformation of splitting attribute and splitting predicates at
as random samples from parts of the training database canoden is called thesplitting criterion of . If we talk about
be obtained. (It is possible to obtain a random samplethe splitting criterion of a node in the final tree that is output
for a broad class of queries [Olk93].) For example, in by the algorithm, we sometimes refer to it as timal splitting
a data-warehousing environme®QOATenables mining of criterion. We will use the terménal splitting attribute final
decision trees from any star-join query without materializing splitting subsegtandfinal split point analogously.
the training set. All previous algorithms need the training We associate with each node € T a predicatef,, :
database to be materialized to run efficiently. In addition, dom(X;) x --- x dom(X,,) — {true ,false }, called its

in most casesBOAT does not write any temporary data node predicates follows: for the root node, f, < true.
structures on secondary storage, and thus has low run-timget ,, pe a non-root node with parept whose splitting
resource requirements. o .) . def _
The remainder of the paper is structured as follows. In.prec#cate IISI”' i n is the Ieft'ch|ld 3?;’ definefn = fp \ay;
Section 2, we formally introduce the problem of decision tree If 72 IS the right child ofp, definef,, = f, A ~q,. Informally,
construction. We present our new algorithm in Section 3 and/ is the conjunction of all splitting predicates on the internal
show it can be extended to work in a dynamic environment in"0des on the path from the root nodesto Since each

Section 4. We present results from a performance evaluatiof€af noden € T is labeled with a class label, it encodes a
in Section 5. We survey existing work on decision tree classification rulef,, — ¢, wherec is the label ofn. Thus the

classifiers in Section 6 and conclude in Section 7. treeT’ encodes a functioff : dom(X,) x -~ x dom(X;,) =
o dom(C) and is therefore a classifier, calleddacision tree

2 Preliminaries classifier (We will denote both the tree as well as the induced

2.1 Problem Definition classifier byT"; the semantics will be clear from the context.)

In this section, we first introduce some terminology and Let us define the notion of thiamily of tuplesof a node
notation that we will use throughout the paper. We then statdn & decision treel” with respect to a database. (We
the problem formally and give some background knowledgeWill drop the dependency o® from the notation since it
about decision tree construction. L&, ..., X,.,C be is clear from the context.) For a node € T with parent
random variables wher®; has domairiom(X;); we assume P, F is the set of records i that follows the path from
without loss of generality thatom(C') = {1,2,...,k}. A the root ton when being processed by the tree, formally
classifieris a functiond : dom(X;) x --- x dom(X,,) — F, {t € D : fy(t) = true }. We can now formally
dom(C). Let P(X',C") be a probability distribution on state the problem of decision tree construction.

dom(X;) X -+ X dom(X,,) x dom(C") and denote by = Decision tree classification problem: Given a dataset
(t.Xy,...,t.Xm,t.Cy arecord randomly drawn fromR, i.e., D = {t,...,t,} where thet; are independent random
t has probabilityP (X', C’) that(¢. X1, ...,t.X,,) € X'and samples from a probability distributioR, find a decision
t.C € C'. We define thenisclassification raté?, of classifier tree classifiefl’ such that the misclassification raker(P)

d to be P(d((t.X1,...,t.Xs)) # t.C). In terms of the is minimal.

informal introduction, the training databageis a random A classification tree is usually constructed in two phases. In
sample fromP, the X; correspond to the predictor attributes phase one, thgrowth phasean overly large decision tree is
andC'is the class label attribute. constructed from the training data. In phase two,gheing

A decision treas a special type of classifier. Itis a directed, phase the final size of the tre& is determined with the goal
acyclic grapHl” in the form of a tree. The root of the tree does to minimize Rr. In this research, we concentrate on the tree
not have any incoming edges. Every other node has exactlgrowth phase, since due to its data-intensive nature it is a very
one incoming edge and may have outgoing edges. In thigime-consuming part of decision tree construction [MAR96,
research, we concentrate on binary decision trees, since theyAM96, GRG98]. (Cross-validation [BFOS84], a popular

this group; previous work in the database literature gen-

Input noden, partition D, split selection method £
S erated scalable instantiations of these split selection meth-

Output decision tree foiD rooted atn

TDTree(Node n, partitionD, split selection method £) ods [MAR96, SAM96, RS98, GRG98]. At each node, all
(1) ApplyCL to D to find the splitting criterion for predictor attributes¥ are examined and the impurity of the
(2 if (nsplits) o best split onX is calculated. The final split is chosen such
() Use bestspli to partitio’ into Dy, D that the value ofimp, is minimized. In the next section w
(4) Create childrem; andns of n a e a_ueo Py S, ed. € next sectio . €
) TDTreeq:, D1, CL) briefly detail howimp, is actually calculated for numerical
(6) TDTree(z, D2, CL) predictor attributes. Calculation afup, for categorical pre-
(7) endif dictor attributes is shown in the full paper.

Figure 1: Top-Down Tree Induction Schema))]
2.2.1 Numerical Predictor Variables

pruning technique for very small training datasets, requires

construction of several trees from large subsets the data. Evef this section, we briefly explain how the class of impurity-
though MDL-based pruning methods are more popular forbased split selection methods computes the split point for
large datasets [MAR96, RS98], our techniques can be used tBumerical predictor variables.

speed up cross-validation for large training datasets as well.) Let X be a numerical predictor variable, i.e., splits &n
How the tree is pruned is an orthogonal issue. will be of the formX < z wherez € dom(X). Ata noden,

All decision tree construction algorithms grow the tree top- €ach potential split point € dom(X') induces a set of argu-
down in the following greedy way: At the root node, the mentsf. = (0% x . 1, 0% x o0 x i 0F x o)
database is examined and a splitting criterion is selectedfor the impurity functionimp,, where fori € dom(C):
Recursively, at a non-root node the family ofn is examined gL ' P(X < 2,C = i|f,), andoF ©f px >

. e n,X,z,i n,X,x,i
and from it a splitting criterion is selected. (This is the well- .~ _ i|f,). Informally, 8L . is the probability that for a
known schema for greedy top-down decision tree induction; angomly drawn tuple that belongs to the family of node
for example, a specific instance of this schema for binary,, 45 value for predictor attributeX is less than or equal
splits is shown in [MAR9E]). This schema is depicted in 5 ;. and thatt's class label has value Sincez induces
Figure 1. All decision tree construction algorithms that we ihis set of arguments faimp,, we defineimp y (n, X, z) def
are aware of proceed according to this schema. Note thaimp(,(aLX LOE Bk R _._,QR,X L)
this schema requires one pass over the training database p&§nce the underlying probability distributidn is not known,
level of the tree; the splitting criterion at a nod€an notbe L (respectivelygF) is estimated from the training

computed unless the splitting criteria of all its ancestors in the X

tree are known.
. . n,X,x,i
2.2 Split Selection Methods [{teFn:t. X<aA t.C=i}| §R Cdef [{teFn:t. X>ant.C=i}| and

In this work, we consider split selection methods that pro- [Fn] T X e [Enl
duce binary splits. We will concentrate ampurity-based imp, (n, X, z)
split selection methods for two reasons. First, this class;pp (5L oL oL 9R 9R)

. . . . 0\Vn,X,z,1°""n,X,2,2> "2 Yn Xz k' Vn X212 "2 Vn Xz k/"
of split selection methods is widely used and very popu- ! ; ~ ;

o . d Informally, for noder and predictor attribut&X, 6, . . is

lar [BFOS84, Qui86]; studies have shown that this class .) . Xz,

. : . . ~“the proportion of tuples i, with t.X < z and class label
of split selection methods produces trees with high predic-

tive accuracy [LLS97]. Second, most previous work in the is the proportion of tuples i, with ¢.X' > & and

databaseD by gth Xz (respectivelyﬁff, Xz, @andimpy is
estimated fromD by imp (n, X, z) as follows: 8% . <

. . .

n,X,z,i
database literature uses this class of split selection methglass labef.
ods [MAR96, SAM96, FMM96, MFM 98, RS98], thus we 3 BOAT—Bootstrapped Optimistic Decision Tree

can study the performance impact of our techniques while Construction

generating exactly the same output decision tree as previou, this section, we preselOAT a scalable algorithm for
methods. We would like to emphasize though, that our tech-gecision tree construction. Like the RainForest framework
niques described in Section 3 can be instantiated with otherg, the PUBLIC pruning strategy [GRG98, RSOBOATis
not impurity-based split selection methods from the literature, gpplicable to a wide range of split selection methods. To
e.g., QUEST [LS97], resulting in scalable decision tree con-oyr knowledge BOATis the first decision tree construction
struction algorithms. In Section 5, we also show experimentala|gorithm that constructs several levels of the tree in a single
results with a non-impurity-based split selection method. scan over the database. All previous algorithms that we are
Impurity-based split selection methods calculate the split-aware of make one scan over the database for each level of the
ting criterion by minimizing a concavempurity function tree. We will explain the algorithm in several steps. We first
imp, such as the entropy [Qui86], tigani -index [BFOS84] give an informal overview without technical details to give the
or the index of correlation [MFM98]. (Arguments for the jntuition behind our approach (Section 3.1). We then describe
concavity of the impurity function can be found in Breiman oyr algorithm in detail in Sections 3.2 to 3.5. We assume in
et al. [BFOS84].) The most popular split selection meth- the remainder of this section tha£ is an impurity-based split
ods such as CART [BFOS84] and C4.5 [Qui86] fall into selection method that produces trees with binary splits.

3.1 Overview | Attrib. Type | Coarse Splitting Criterion

The splitting attributeX,,
Categorical| Y C dom(X,,) such that
impy (n, X,,,Y") is minimized
The splitting attributeX,,
Numerical | Aninterval[iZ,i?] that

n’»'n

contains the final split point

LetT be the final tree constructed using split selection method
CL on training databasP. D does not fit in-memory, so we
obtain a large sampl®’ C D such thatD’ fits in-memory.
We can now use a traditional main-memory decision tree
construction algorithm to computesampletreeT”’ from D’.
Each nodex € T' has asample splitting criteriorconsisting
of a sample splitting attributeand asample split poinfor a
sample splitting subsgior categorical attributes). Intuitively,
T" will be quite “similar” to the final tred” constructed from calculate the final split point exactly by calculating the value
the complete training databaBe But how similar isT’ to 7'? of the impurity function at all possible split points inside the
Can we use the knowledge abdlitto help or guide us inthe confidence interval. To bring these tuples in-memory, we
construction off’, our final goal? Ideally, we would like to make one scan ove and keep all tuples that fall inside
say that the final splitting criteria @ are very “close” tothe a confidence interval at any node in-memory. Then we
sample splitting criteria of”. But without any qualification postprocess each node with a numerical splitting attribute to
and quantification of “similarity” or “closeness”, information find the exact value of the split point using the tuples collected
aboutT” is useless in the constructionBf during the database scan. This postprocessing phase of the
Consider a node in the sample tred” with numerical ~ algorithm, thecleanup phases described in Section 3.3.
sample splitting attributey,, and sample splitting predicate The coarse splitting criterion at a nodebtained from the
X, < z. By T' being close taI' we mean that the final sampleD’ through bootstrapping is only correct with high
splitting attribute at node is X and that the final split pointis ~ Probability. This means that occasionally the final splitting
inside a confidence interval around|f the splitting attribute ~ attribute is different from the sample splitting attribute, or,
at noden in the tree is categorical, we say tHtis close tal' if the sample splitting attribute is equal to the final splitting
if the sample splitting criterion and the final splitting criterion attribute, it could happen that the final split point is outside
are identical. Thus the notion of closeness for categoricatthe confidence interval, or that the final splitting subset is

attributes is more stringent because splitting attribute as weldifferent from the sample splitting subset. Since we want
as splitting subset have to agree. to guarantee that our method generates exactly the same

In Section 3.2, we show how a technique from the statisticsT€€ S if the complete training dataset were used, we have

literature called bootstrapping [ET93, AD97] can be applied to be able to check Whethgr the coarse splitting criteria
to the in-memory sampl®’ to obtain a tred” that is close actually are correct. In Section 3.4, we present a necessary
(in the sense just mentioned)fowith high probability. Thus condition that signals whenever the coarse splitting criterion
using bootstrapping, we leverage the in-memory 'sarmjlé is incorrect. Thus, whenever the coarse splitting criterion

by extracting “more” information from it. In addition to at a noden is not correct, we will detect it during the .
a sample tred”, we also obtain confidence intervals that f:leanup phase and can take necessary measures as explained

contain the final split points for nodes with numerical splitting " Section 3.5. Therefore we can guarantee that our method

attributes, and the complete final splitting criterion for nodes alwaysflmljs egictly the same tr:es if a Itrad|t|olnz_al ”:ja'”'
with categorical splitting attributes. We call the information at MeMory algorithm were run on the complete training dataset.

a noden obtained through bootstrapping thearse splitting 3.2 Coarse Splitting Criteria

criterion at noden. This part of the algorithm, which we call we begin by formally defining the statistics that we assume
thesampling phasgs described in Section 3.2. to exist at each node at the beginning of the cleanup phase.
Let us assume for the moment that the information obtainedWe call these statistics thmarse splitting criteriorat node
through bootstrapping is always correct. Using the samplen. Then, we show how to calculate a coarse splitting criterion
D' ¢ D and the bootstrapping method, the coarse splittingthat is correct with high probability at each nade
criteria for all nodes: of the tree have been calculated and are Informally, the coarse splitting criterion atrestricts the set
correct. Now the search space of possible splitting criteria atof possible splitting criteria at to a small set; it is a “coarse
each node of the tree is greatly reduced. We know the splittingview” of the final splitting criterion. The coarse splitting
attribute at each node of the tree, for numerical splitting criterion for the two attribute types is shown in Figure 2; its
attributes we know a confidence interval of attribute valuesfirst part is called theoarse splitting attribute At a noden
that contains the final split point, for categorical splitting with numerical splitting attributéX,,, the second part of the
attributes we know the final splitting subset exactly. Considercoarse splitting criterion consists of an interval of attribute
a noden of the tree with numerical splitting attribute. To values such that the final split point al,, is inside the
decide on the final split point, we need to examine the valueinterval with high probability. Formally, assume that the
of the impurity function only at the attribute values inside final splitting predicate at node is X,, < z}. Then the
the confidence interval. If we had all the tuples that fall second part of the coarse splitting criteriomatonsist of an
inside the confidence interval efin-memory, then we could interval [i£, %], iL i® € dom(X,) such that’ < if, and

n’’'n n’»’n

Figure 2: Coarse splitting critera

z¥ € [iLk,if]. Thus, to find the final split point, the value of only one scan over the training database. In the remainder of
the impurity function needs to be examined only at attributethis section, we assume that the coarse splitting criteria are
valuesz € [iL,if). correct; we show how this assumption can be checked in the
We now address the computation of the coarse splittingnext section.
criterion. The main idea is to take a large samplefrom In order to describe the algorithm precisely, let us introduce
the training databasP and use an in-memory algorithm to the following notation. LetS be a set of tuples. At node
construct a sample tréE’. Then we use a technique from with numerical splitting attributél,, and confidence interval
the statistics Iiterature_called bootstrapping [ET93, AD97] [;L ;] from the coarse splitting criterion, defidg(S) def
thaF gllows us to quantlfy, at each nodehovy aqcurate the {t:teS:tX, <il}, in(S) def (t:teS:tx,>
splitting criterion obtained from the sample is with respectto ' - e def R
the final spliting criterion. Recall that for a nodee 77, ‘n At-Xn <idp} andr(S) = {t:t € §:1.X, > iy}
its splitting criterion is calledsample splitting criteriorto Given the coarse splitting criterion at a nodehow can
emphasize that it has been computed from the in-memor)}he_f'”al sphtltlng crlterilon be computed?' !f the.sp!lttln.g
sample D' C D; the final splitting criterion using the attribute atn is catego_rlcal, f[he. coarse splitting crltenpn is
complete training databagemight be different. We will also equal to the final splitting criterion; no extra computation is

use the termsample splitting attribute, sample split poand necessary. Thus, let us concentrate on the case where the

sample splitting subset splitting attribute at is numerical. Since the final split point
* . . - . L .R
We use bootstrapping to obtain the coarse splitting criterion®r IS inside the confidence intervaj, € [i,,, 7], we have to
as follows. First, we construétbootstrap tree§? . .., T} examine all possible split points inside the interval. Assume

thatn is the root node of the tree. To estimate the quality
of an attribute value: € [i%,i%] as potential split point, the

n’»'n

constructed from training sampl€3,, ..., D, obtained by
sampling with replacement fro®’. Then we process the . ~
trees top-down. For each node we check whether the ~ valuesd) x .. and/@ﬁxmm are needed as arguments to the
bootstrap splitting attributes atare identical; if not, then we impurity function imp (n, X,,,) in order to calculate the
deleten and its subtree in all bootstrap trees. If at a nodeimpurity atz (see Section 2.2). Assume that we make one
n the b bootstrap splitting attributes are the same categoricalscan over the training database, during which we compute

splitting attributeX,,, we check whether all bootstrap splitting §7LLX ; and gf,xmim for all ¢ € dom(C). In addition,

J L
subsets are identical. If not, then we also deletand its e kézé’b all tupleg € i,(F,) in-memory. Then after the
subtree in all bootstrap trees. The intuition for such stringentscan, the arguments to the impurity functiorp , (n, X,)

treatment of categorical splitting attributes is that as soonfor eachs € [iZ, %] can be calculated as follows:
as two subtrees split on different subsets, the subtrees are

incomparable. Then for each nodén the remaining tree, we gL - {t€Fn:tX <zAtC=i}|

L. . . n,Xn,e,i
set the coarse splitting attribute to be the bootstrap splitting | F
attribute. If the bootstrap splitting attribute at nodeis gﬁxmiw AE, 4+ {t €in(Fn):t.X <z A t.C =i}

categorical, we set the coarse splitting subset equal to the=
bootstrap splitting subset. If the bootstrap splitting attribute

at noden is numerical, we havé bootstrap split points from the valued® . _ , is calculated similarly. Thus, in one scan
which we can obtain a confidence interiél, i%'] forthe final over the training database, we can find the final splitting
split point, such that with high probability the final split point criterion at the root node given the coarse splitting criterion
xy, € [i;,if]. The level of confidence can be controlled by atn: we retain the set,(F,,) in-memory and then calculate
increasing the number of bootstrap repetitions. the value of the impurity functionmpy (n, X,,,z) at each
3.3 From Coarse to Exact Splitting Criteria potentigl split points € [iy,, iy gsing the t.uples ‘F“m‘?mOW-

.) i Consider now the computation of the final split paifjt €
In this section, we describe part of the cleanup phase of the;L, ;R for the left childn’ of the root node:. After having
algorithm. We show an algorithm that takes as input thecomputed the splitting criterion at, we can use the same

sample tred” and the coarse splitting criteria. The algorithm zjgorithm for n/: Make one pass oveP, while collecting
makes one scan over the training database while collecting | (F,») in-memory and calculating?,.|, 87, v ., and
a small subset of the training database in-memory. (We W|IIAR) . Mot
assume without loss of generality that this subset of tupledn,x, iz, for i € dom(C). This method will result in
fits in-memory; the implementation used in the experimental@n algorithm that makes one scan overper node inT’
evaluation in Section 5 writes temporary files to disk to be during the cleanup phase. Is it possible to colleetF..)
truly scalable. We further discuss this issue in Section 3.5.)and6, .. ; and@f . fori € dom(C) during the
Assuming that the coarse splitting criteria are correct, the in-first scan? Unfortunately, the answer is no. If for a tuple
memory information is used to compute the final splitting ¢ € D, ¢t € 1,,(D), thent belongs toF,,.. Consider a tuple
criterion atn. Thus, assuming we are given the coarset € i,(F,) N i, (F,). During the scan oD, the final
splitting criterion at each node and the coarse splitting splitting criterion of noden is not known yet. Thus, for all

criteria are actually correct, we can compute the final tree intuplest € i,(F,), we cannot decide yet whether to send

|Enl ’

to the left child or the right child ofi. Therefore after the not outside the confidence interval, we have to checkithst

first scan,F, is not complete yet, because some tuples gotthe global minimum of the impurity function, and not just the

“stuck” at noden. Thus, if at a noder, t € i,(F,), we local minimum inside the confidence interval. Conceptually,

retaint in a set of tuplesS,, and stop. Ift ¢ i,(F,), then we have to calculate the value of the impurity function at

we updategﬁ ¥,z OF §fxn .n ; and recursively process ~ everyz € dom(X), z ¢ [iL,i%] and compare it with’. For

by sending it to its subtree. The result of the scan is a set ofhis calculation, we need to construct all valégsy . ; and

tuplesS,, at each node; for the root node S, = i,(Fy), 0% x ..; during the cleanup scan in-memory. But since we

for a non-root node:, S,, C i,,(F,). Note that after the scan construct several levels of the tree together, it is prohibitive

at a noden, if a tuplet € i,(F,) \ S,, thent € i, (F,) to keep all these values simultaneously in-memory during

for some ancestor’ of n. Thus, for each node, all the the cleanup-scan. (Constructing these values in-memory is

tuplest € i, (F,) are actually in-memory, either ifi,, or in analogous to constructing the AVC-sets [GRG98] of predictor

S, for some ancestaor’ of n. This observation allows for attributeX for all nodes concurrently in main memory.) So

the following top-down processing of the tree after the scan:we need a method that allows us to conclude thas the

We start at the root node and find its splitting criterion. global minimum of the impurity function over all attribute

Then we process all tuples € S, recursively by the tree values of X without constructingall valuesﬁixw’i and

as during the scan dp. Since the splitting criterion athas 6 _ . in-memory. The remainder of this section addresses

been computed we know the correct subtree for each tuplethis issue.

Finally, we recurse om’s children. Whenever a node is Consider node with numerical predictor attribut& . (We

processedS,, = i,(F,), because all the tuplése i, (F,) will drop the dependencies anand X from the notation in

for all ancestors:’ of n have been processed and distributed the following discussion.) Le¥* be the count of tuples i,

to their respective children. with class label. Letz € dom(X') be an attribute value and
Summarizing the results from this section, we have showng¢ ni def {t € F, : t.X <z AL.C =i}|fori € dom(C).

how to obtain the final splitting criterion for all nodes of 11,5 each attribute value ¢ dom(X) uniquely determines
the tree simultaneously in only one scan over the training, tuple of values(n. nk), called thestamp pointof
L...nk),

databasé), given that we know the coarse splitting criterion . [FMMT96a, FMMT96b I§MM96 MFM98]. Thus, F,
at each node of the tree. induces a set of stamp points in thedimensional plane. At

3.4 How To Detect Failure a noden, let N be the number of tuples in the family of

In Section 3.2, we showed how to compute a coarse splittingwith class labet; formally, N def teD:te F,At.C =
criterion that is correct with high probability. In order to i}. Since at node, N is fixed for alli € dom(C), the tuple
make the algorithm deterministic, we need to check during(nl,...,nt) uniquely determines the value of the impurity
the cleanup phase whether the first part of the coarse splittindunction iﬁp\X at attribute value: because we can rewrite the
criterion, the coarse splitting attribute, is actually the final arguments to the impurity function as follows:

splitting attribute. In addition, given that this premise holds, , ' ,

we have to check that the second part of the coarse splitting AL o Ny andd® o N' —mng

criterion is correct. If not, then for a categorical splitting mXni TR X, |F|

attribute, the split might involve a different subset. For a

numerical spliting attribute, the split might be outside the e can define a new functiotmp on the stamp points as

confidence interval. follows: {mpg (11, . ..,nz) <

Let us first address the case of how to detect whether
the second part of the coarse splitting criterion is correct, . (£ Mk N'—m Nk — nk)
assuming that the first part is correct. That is, for now we Po V2% RV 2% RO D % IV O

assume that the coarse splitting attribiités equal to the final
splitting attribute and concentrate on checking the second-€tz € dom(X) and let(ng,...nk) be the stamp point of
part of the coarse splitting criterion. The second part of theattribute valuer at noden. By construction ofimp; it holds

coarse splitting criterion for a categorical splitting attribute that forz € dom(X) : impg(ni,...n%) = impy (n, X, z).
X consists of the coarse splitting sub3ét, we have to Consider two attribute values, < z, and letP,, ,,

check whethet’’ is equal to the final splitting subskt We {(nlx,...,nfy) it € Fy AtX > 2 AtX < 23},

perform this check by constructing the val#gsy, (.3, for ie., P,, ,, is the set of stamp points of all attribute values
eachz € dom(X) andi € dom(C) during the cleanup scan petweenaz; andz, that occur inF,. Note that ifz, >
in-memory. xy, nb > ni, forall i € dom(C). Sinceimpy and

The second part of the coarse splitting criterion for a thusimpg are concave, the minimum value of the impurity
numerical splitting attribute consists of a confidence intervalfnction imp, will be on the convex hull of the stamp

[iy,in]. Leta), € [if,iy] be the attribute value With * points P, ., [Man94, FMMT96a, FMMTO6b, FMM96,
the minimum value of the impurity function, Lef = MFM*98]. Because the convex hull is enclosed in the hyper-

iﬂp\x (n, X, z.,). In order to be sure that the final split pointis rectangle defined by th2 corner points(n} , ... ,”:’il) and

count)
W lower bound stamp point
of class2
® bucket boundary ‘
,,,,,,,,,,,,,,,,, .

Each attribute
value maps
to one
stamp point

Count of class 1

confidence

interval

! Attribute Values

At each noden, we calculate a discretizatiofi for the
splitting attribute from the sampl®’. During the cleanup
phase, we construct the stamp points at the bucket boundaries
of f through simple counting. We use Lemma 3.1 to
calculate a lower bound on the value of the impurity function
for each bucket; let be the minimum of all these lower
bounds. Then we compaievith the minimum value of the
impurity functioni’ calculated during the cleanup phase for
the splitting attribute. Ifi < i, then the final split point
might fall into bucketB instead of inside the confidence
interval; in this case we discard nodeand its subtree.
Lemma 3.1 therefore gives us a condition that is necessarily
true whenever the final split point is outside the confidence
interval. Thus, in the case of a numerical splitting attribute,
we can detect whether the second part of the coarse splitting

Figure 3: Mapping from attribute values to stamp points andcfiterion is correct.

the lower bound

P A :
(ni,,...,nk), itis enclosed by th@* corner points. For

example(nl ,nZ ,n? ... ,n%)isone of the corner points.
Thus, the value of the impurity function for all attribute values
inside the intervalz1, z2] can be lower-bounded by the value
of the impurity function at th@* corner points. For example,
if & = 2, the four corner points aréul ,n2), (ni,,n2,),
(ni ,n2,), and(nl,,n2). Figure 3illustrates this situation

for the case of two class labels. In the general case lith
class labels, the following lemma holds.

Lemma 3.1 Let n be a node in the treeX be a numerical
predictor attribute ang; < z», z; € dom(X) be two attribute
values with stamp point&:! ,...,nk)and(nl,,...,nk),
respectively. LetP,, ., be the set of stamp points of all
attribute values between andz, that occur inF,,. Letimpg
be a concave impurity function. Létbe the set o2* corner

points of the hyper-rectangle defined by , ... ,nﬁk) and

o def
(niz,...,n%). S = {(nil,...,nil),(nil,ngy...,n’;k),

1 k
oy (ngy,---,ng)} Then
min impg(ny,...,ng) >
(nlv---ynk)epzbzz S(’ ’)
min impe(ng,...,ng
(n1,.nk)ES pS(’ ’)
Proof: This is an application of a result in Mangasar-

ian [Man94] to the decision tree setting. a

It remains to show how we can detect the case that the
first part of the coarse splitting criterion, namely the choice
of splitting attribute, is incorrect. Consider a nodeand
let the minimum value of the impurity function given the
coarse splitting criterion is true bg, i.e., if the coarse
splitting attribute X,, is categorical,i’ is the value of the
impurity function of the coarse splitting subset, if the coarse
splitting attributeX,, is numerical,i’ is the minimum value
of the impurity function over all attribute values inside the
confidence interval. Whenever is processed during the
cleanup phase, we can calculate the minimum value of the
impurity function for all categorical attributes exactly and
compare it withi’. For the remaining numerical variables, we
calculate discretizations during the sampling phase and obtain
the values of the stamp points of the discretization boundaries
during the cleanup phase. Then we use Lemma 3.1 to lower
bound the value of the impurity function at all bucketsi’lis
still the global minimum, then the splitting attribute from the
coarse splitting criterion is actually the final splitting attribute.

How do we find a “good” discretizatioi for a numerical
predictor attributeX at noden in the tree? Note that the only
purposef serves is to allow the application of Lemma 3.1
to (1) check whether the actual split point is inside the
confidence interval in cas¥ is the coarse splitting attribute
or to (2) check whether the final splitting attribute could be
X, in caseX is not the coarse splitting attribute. ffhas too
few buckets, the lower bound produced by Lemma 3.1 will
be very crude; thus the lemma might too often indicate that
a bucket could have a split point with a lower value:

Before we discuss how we use Lemma 3.1, we define theof the impurity function, even though there is no attribute

notion of a discretizatiorf of a numerical variableX. For
a random variableéX with a numerical domaidom(X), we
call a functionf : dom(X) — N a discretization ofX if
x; < z; implies thatf(z;) < f(z;) for z;,z; € dom(X).
(Actually, f(X) is a new random variable with domalN,

value in the discretization bucket that actually achieves
Too many buckets of are not a problem; the lower bound
of Lemma 3.1 will be very tight. But sincBOATrequires
discretizations for all numerical predictor attributes at each
node of the subtree currently under construction, we cannot

whereN denotes the set of natural numbers.) We call eachafford to have overall too many discretization buckets due

k € N abucketof f, and if f(z) = k we say thatr belongs
to buckett (underf). We call a valuer’ € dom(X) such that
Ve € dom(X) : (z < 2’ = f(z) < f@) A(z > 2 =
f(z") > f(x)) abucket boundary

to main memory constraints. What we would like is to
construct at each node as many buckets as “necessary”. How
many buckets are necessary at nader numerical predictor
attribute X? We construct the bucket boundaries before the

cleanup scan from the in-memory sample as follows. We 4 Extensions to a Dynamic Environment
scan the attribute values occurringfl) constructed from the We outline briefly how the information about the coarse split-
sampleD’ from smallest to largest value. If the lower bound ting criterion can be used to extend BOAT to support incre-
of the current bucket is much higher from the estimated lowestmental updates of the decision tree in a dynamic environment
value of the impurity function at node, then the bucket can where the training dataset changes over time through both in-
be enlarged. Otherwise a new bucket boundary is set. Thisertions and deletions.
procedure constructs many buckets in regions of the attribute Consider the root node of the tree. The training dataset
space where the value of the impurity function is close to theD was generated by an unknown underlying probability
overall minimum and the bounds produced by Lemma 3.1distribution P. Since D is a random sample fron®, all
need to be quite tight in order not to signal a false alarm.statistics obtained fronD are only approximations of true
The procedure constructs few buckets in regions where thgarameters of the distribution. Now consider a new “chunk”
value of the impurity function is much larger than the overall of training dataD; that needs to be incorporated into the tree.
minimum. If Dy is drawn from the same underlying distribution, the new
Since we can detect all cases of incorrectness of the coarseee T p, that modelsD U Dy will not be very “different”
splitting criterion at a node, we have shown the following from T'». This fuzzy notion of difference is actually exactly
lemma to be correct. the same notion as described in Section 3.2. In Section 3.2,
Lemma 3.2 Consider a node of the final decision tree and We are given a sampl®’ from an underlying distribution
let i’ be the minimum value of the impurity function given (represented by) and would like to know how different the
that the coarse splitting criterionatis correct. Ifi’ isnotthe ~ tree T is from the treeT’r. The coarse splitting criteria
global minimum of the impurity function at node then our in T+ actually capture the randomness of by allowing

algorithm will detect this case. the split point for numerical splitting attributes to fluctuate
_ inside the confidence interval. Thus, another view of the
3.5 Putting the Parts Together coarse splitting criterion is that it captures a set of possible

We now explain how the parts of the algorithm described in final splitting criteria, all highly likely given the underlying
Sections 3.2 to 3.4 are put together to arrive at a fast, scalablgrobability distributionP as captured by.
deterministic algorithm for decision tree construction. Using the same statistical notion of difference as discussed
We first take a sampl®’ c D from the training database in the previous paragraph, and as represented by the coarse
and construct a sample tree with coarse splitting criteria atsplitting criterion, our algorithm to update the tree in a
each node using bootstrapping. Then we make a scan over thedynamic environment works as follows. We keep the
databasé and process each tuple by “streaming it” down the information that we collected during the cleanup phase from
tree. At the root node, we first update the category-class- D at each node of the tree. Thus, associated with each node
label counts for all categorical predictor attributes. Then wen with numerical predictor attribute, is a filg, that contains
update the counts of the buckets for each numerical predictoall tuples that fell inside the confidence interfégl, i/] during
attribute. If the splitting attribute from the coarse splitting the scan overD. To incorporate a new set of tuplds,;
criterion atn is categorical, we sendto the child node of into the tree, we stream the tuples D; down the tree as
as predicted by the splitting criterion. If the splitting attribute if they were part ofD and we were making the scan over
from the coarse splitting criterion atis numerical and falls D, during the cleanup phase. Following the processing of
inside the confidence interval, we writdo a temporary file D;, we again process the tree top-down, exactly as in the
S, at noden. Otherwise we sentddown the tree. Note that cleanup phase. 1D, is also a random sample from the
we can stop tree construction if the si#g,| of the family of same underlying probability distribution, then by construction
a noden is small enough to fit in-memory because in this caseof the coarse splitting criterion, the final splitting criterion
it is always cheaper to run a main-memory algorithmfon at noden will be included in the set of splitting criteria
After the database scan, the tree is processed top-dowrtaptured by the coarse splitting criterion @fand thus we
At each node, we use our lower bounding technique tocan calculate the final splitting criterion@atexactly—all this
check whether the global minimum value of the impurity while scanningD; exactly once! Deletions can be handled
function could be lower thaif, the minimum impurity value in the same way. Assume that, expired and is removed
calculated from either the complete information about thefrom the training dataset. Then we can procégsas for
categorical splitting attribute or from examining the tuples in insertion, but with the difference that instead of inserting
S,. If the check is successful (i.€',is the global minimum), tuples, we remove the respective tuples from the tree and
we are done with node. If the check indicates that the update the counts maintained to ensure detection of changes
global minimum could be less thah we discardn and its of the coarse splitting criterion.
subtree during the current construction and call our algorithm This algorithm has the following properties. D is
recursively om after processing the rest of the tree. In most sufficiently different fromD, then this will be detected by our
cases, the family of tupleg;, is already so small that, lower-bound techniques which will indicate that the coarse
completely fits in-memory, and thus an in-memory algorithm splitting criterion at a node is not correct any more. In this
can be used to finish construction of the subtree rooted at case, the affected part of the tree, namely the subtree rooted

atn, needs to be rebuilt. Note that only the part of the treelargest training dataset considered in [LLS97] Hd85 tu-
in which the distribution has sufficiently changed needs to beples. We therefore use the synthetic data generator intro-
rebuilt. This cost model is very attractive in a real-life setting: duced by Agrawal et al. in [AIS93], henceforth referred to as
If new data arrives (or old data expires), but the changesGenerator . This data generator has been used previously
in the training dataset are only due to random fluctuationsin the database literature to study the performance of deci-
(in the precise statistical sense), then the cost to update thsion tree construction algorithms [SAM96, RS98, GRG98].
tree is very low and involves only a scan over the datasetThe synthetic data has nine predictor attributes. Each tu-
that is to be inserted or deleted. It there are changes in th@le generated by the synthetic data generator has a size of
distribution, the cost paid is proportional to the “seriousness”40 bytes (assuming binary files). Included in the genera-
of the changes: if the splitting attribute at the root node tor are classification functions that assign class labels to the
changes, the whole tree needs to be completely rebuilt. But iffecords produced. We selected three of the functions (Func-
the distribution changes only in a part of the attribute spacetion 1, 6 and 7) introduced in [AIS93] for our performance
only the subtree that models that part of the space needs tetudy. In Function 1, two predictor attributes carry predic-
be rebuilt. In addition, showing that statistically significant tive power with respect to the class label, Function 6 involves
changes have happened in part of the tree is a valuable todhree predicates, and in Function 7 the class label depends
for the analyst who can be informed that specific parts of theon a linear combination of four predictor attributes [AIS93].
tree have changed significantly, even though other parts of thélote that our selection of predicates adheres to the methodol-
tree might only have changed slightly inside the confidenceogy used in the Sprint, PUBLIC and RainForest performance
intervals. This insight is much more than what could be studies [SAM96, RS98, GRG93].
extracted by just comparing the two tre®s and Tpyup, We compare our algorithm to the RainForest algorithms,
(or Tp andT'p\ p,). Using such a comparison, it is possible which were shown to outperform previous work [GRG98].
to point out changes in the splitting predicates but it is not The feasibility of the RainForest family of algorithms requires
possible to assess whether these changes are due just to thecertain amount of main memory that depends on the size
randomness in the overall process or due to a change in thef the initial AVC-group [GRG98], whereaBOATdoes not
underlying distribution. have any a-priori main memory requirements. Thus we
We emphasize that, as in the static case, the adaptation afompared8OATto the two extremes in the RainForest family
our algorithm to a dynamic environment always guaranteesf algorithms. We chose the fastest algorithm, RF-Hybrid,
that the tree constructed is exactly the same tree as if aequiring the largest amount of main memory, and the slowest
traditional algorithm was run on the changed training datasetalgorithm, called RF-Vertical, requiring the smallest amount
5 Experimental Evaluation of main memory. Since we are interested in the behavior of

The two main performance measures for classification treg?Ur algorithm for datasets that are larger than main memory,
construction algorithms are: (i) the predictive quality of We Stopped tree construction for leaf nodes whose family
the resulting tree, and (ii) the decision tree construction""o.uld fit in-memory. Any smart Imp'lementa'tlon 'would
time [LLS97]. BOATcan be instantiated with any split se- SWitch to a main-memory tree construction at this point.
lection method from the literature that produces binary trees I all the experiments reported here, we took an initial
without modifying the result of the algorithifihus, qualityis ~ Sample of size200000 tuples from the training database
an orthogonal issue to our algorithm, and we can concentrat@nd then performe@0 bootstrap repetitions with a sub-
solely on decision tree construction time. In the remaindersample size of50000 tuples each. All our experiments
of this section we show the results of a preliminary perfor- Were performed on a Pentium Pro with a 200 Mhz processor
mance study of our algorithm for a variety of datasets for 'unning Solaris X86 version 2.6 with28 MB of main
impurity-based split selection methods. Based on some obMmemory. Al algorithms are written in C++ and were
servations about impurity-based split selection methods fromcompiled usinggcc versionpgec —2.90.29 with the -O3

our experiments, we also show performance results for ancompilation option.

other non-impurity based split selection method. The result35_2

; L . Scalability Results
demonstrate thd&OATachieves significant performance im-) y]
provements (two to five times). Finally, we also show some First, we examined the performanceBfDATas the size of the

performance results for classification tree maintenance in 4nPut database increases. For Algorithms RF-Hybrid and RF-
dynamic environment. Vertical, we set the size of the AVC-group buffer to 3 million

and 1.8 million entries, respectively. For this experiment,
5.1 Datasets and Methodology we stopped tree construction &t5 million tuples, which
The gap between the scalability requirements of real-life datacorresponds to a size of the family of tuples at a node of
mining applications and the sizes of datasets considered 0 MB. (The threshold is set t60 MB, because RF-Hybrid
the literature is especially visible when looking for possi- uses aroun@0 MB of main memory in the optimized version
ble benchmark datasets to evaluate scalability results. Théhat we compare®OAT with.) Figures 4 to 6 show the
largest dataset in the often used Statlog collection of train-overall running times of the algorithms as the number of
ing databases [MST94] contains omy000 records, and the tuples in the training database increases feomillion to 10

Scalability -- Function 1

1800
16001
14004
12004
10004

800

Time in Seconds

6004

4004

BOAT —~—

BOAT: Cleanup Scan -+
RF-Hybrid -=

RF-Vertical -

4 6 8
Number of Tuples in Millions

Figure 4: Overall Time: F1

600

Noise Sensitivity -- Function 1

500 1

400

3004

Time in Seconds

200

100

BOAT ~—

BOAT: Cleanup Scan -+
RF-Hybrid -=
RF-Vertical -

8 e x

“E 5
@/4\9—0—/’0
Aommmmmmneee e SE— NS +

0

T T T T
0.02 0.04 0.06 0.08 0.1
Noise Factor

Figure 7: Noise: Time F1

Increase of the Number of Attributes: F1

1800
16001
14004
12004
10004

800

6004

Time in Seconds

4004

BOAT —~—

BOAT: Cleanup Scan -+
RF-Hybrid -=
RF-Vertical

-8
x

e

x

x
&

2 4 6 8 10
Additional Number of Attributes

Figure 10: Extra Attributes: F1

Dynamically Changing Dataset - No Change in Distribution
500

4000
3500
3000
2500
2000

Time in Seconds

1500
1000

500

0

BOAT: Update —~+—

BOAT: Repeated Rebuild -+

RF-Hybrid: Repeated Rebuild -=-5
RF-Vertical: Repated Rebuild

Figure 13: Dynamic: No Change

2 4 6 8 10
Cumulative Number of New Tuples in Millions

Time in Seconds

Time in Seconds

Time in Seconds

Time in Seconds

Scalability -- Function 6

1800

OAT —~—

B
1600 BOAT: Cleanup Scan -+

RF-Hybrid -=

1400 RF-Vertical -

1200 *

10004
800

B %,

600 “,

4004

4 6 8
Number of Tuples in Millions

Figure 5: Overall Time: F6

Noise Sensitivity -- Function 6

600
BOAT ——
BOAT: Cleanup Scan -+
5001 RF-Hybrid -
RF-Vertical -x
400 . . x s X
300
200 1 J
1004 [E—— penemeeees —+
0

1800

T T T T T
0 0.02 0.04 0.06 0.08 0.1

Noise Factor

Figure 8: Noise: Time F6

Increase of the Number of Attributes: F6

1600
1400
1200
1000
800
6004
4004

200

BOAT
BOAT: Cleanup Scan -+
RF-Hybrid -=
RF-Vertical

x
x
a
x

o

R

*

Figure 11: Extra Attributes: F6

2 4 6 8 10
Additional Number of Attributes

Dynamically Changing Dataset - Change in Distribution

1400

12004

1000

800

600

400

2004

0

BOAT: Update —+—
BOAT: Repeated Rebuild -+

0

Figure 14: Dynamic: Change

2 4 6 8 10
Cumulative Number of New Tuples in Millions

2500

2000

1500

1000

Time in Seconds

500

700

600

500

400

300

Time in Seconds

200

100

Impurity
Function

350
300
250
200

150

Time in Seconds

100

50

0

Figure 15: Dynamic: Small Updates

Scalability -- Function 7

BOAT —+—
BOAT: Cleanup Scan -+
RF-Hybrid -=
RF-Vertical -
x
i
0 4 6 8
Number of Tuples in Millions
Figure 6: Overall Time: F7
Noise Sensitivity - Function 7
BOAT ~—
BOAT: Cleanup Scan -+
RF-Hybrid -
RF-Vertical -
S % e ¥
M
S +
0 0.02 0.04 0.06 0.08 01
Noise Factor
Figure 9: Noise: Time F7

Class 1/ Class2) Class 1/ Class2) Attriute

" Vaues

0 20 4 & &

Figure 12: Instability

Dynamically Changing Dataset --- Arrival Cardinality

BOAT: Update with Datasets of 1M Tuples ~<—
BOAT: Update with Datsets of 2M Tuples -+

0

2 4 6 8 10
Cumulative Number of New Tuples in Millions

million tuples. The trees produced by Function 7 have more 5.3 Performance Results for Dynamically Changing
nodes before the threshold is reached, thus tree growth takes Datasets

longer than for the other two functionBOAToutperforms gince BOATallows to update the tree dynamically, we also
both RF-Hybrid and RF-Vertical in terms of running time; for compared the performance of the update operati@OATo
Functions 1 and GOATis faster by a factor of three and for - 5 repeated re-build of the tree. Due to space constraints, we
Function 7 by a factor of two. Since tree construction was show performance numbers only for insertions of tuples into
stopped at.5 million tuples,BOATachieves no speedup yet the training datasets; since insertion and deletion of tuples are
for training database sizes efmillion tuples (the resulting pangled symmetrically, the performance results for deletions
tree has just three leaf nodes before the switch to the in-¢ analogous.
memory implementation occurs). But the speedup becomes |, qur first experiment, we examined the performance
more and more pronounced as the size of the training databasg e update operation for a changing training dataset
INCIEASES. whose underlying data distribution does not change. We
We also examined the effect of noise on the performance g, BOATon a dataset generated by Function 1 from the
of BOAT We expected that noise would have a small impactsynthetic data generator. Then we generated chunks of
on the running time oBOAT Noise mainly affects splits 14 of size2 million tuples each from the same underlying
at lower levels of the tree, where the relative importance gistrinution, but we set the level of noise in the new data
between individual predictor attributes decreases, since thgy 100, Figure 13 shows the cumulative time taken to
most important predictor attributes have already been used ghcorporate the new data into the tree. Note that the time taken
the upper levels of the tree to partition the training dataset. oy BOATis independent of the size of the very first dataset
Figures 7 to 9 compare the overall running times on datasethat was used to construct the original tree. If the underlying
of size 5 million tuples while increasing the percentage of (ata distribution does not change, the in-memory information
noise in the data fron2 to 10 percent. As in the previous apout the coarse splitting criteria and the tuples inside the
experiment, we stopped tree constructionla million confidence intervals thaBOAT maintains is sufficient to
tuples. The figures show that the running timeB®ATiS jncorporate the new data and to update the tree without
not dependent on the level of noise in the data. examining the complete original training database. To give
Figure 10 shows the effect of adding extra attributes with 5 very conservative comparison of the update operation to
random values to the records in the input database. (Due t@epeated re-builds, we assumed the size of the original dataset
space limitations we only show the Figure for Function 1, thetg pe zero. Thus the running time for the repeated re-
behavior is similar for the other functions.) Adding attributes pyijlds shown in Figure 13 is the cumulative time needed to
increases tree construction time since the additional attributeggonstruct a tree on datasets of sizeo 10 million tuples
need to be processed, but does not change the final decisiggy the respective algorithms. Figure 15 shows a comparison
tree. (The split selection method will never choose suchof running times for arrival chunks of cardinality of size
a “noisy” attribute as the splitting attributeBOATexhibits mjllion tuples versug million tuples. The two curves are
a roughly linear scaleup with the number of additional nearly identical.
attributes added. What happens if the underlying distribution changes?
During the experiments wittBOAT we found out that |n our next experiment we modified Function 1 from the
the instability of impurity-based split selection methods synthetic data generator such that the tree in part of the
deteriorates our performance results. By instability of a attribute space is different from the original tree generated by
split selection we mean that minimal changes in the trainingrynction 1. The results are shown in Figure 14. Even though
dataset can result in selection of a very different split point.in the incremental algorithm parts of the tree get rebuild,

As an extreme example, consider the situation shown at nodghe incremental algorithm outperforms repeated rebuilds by
n in Figure 12;n is a numerical attribute with 81 attribute g factor of 2.

values (0 to 80). Assume that there is nearly the same number

of tuples inside each interval of leng# and assume that © Related Work

the final split is at attribute valug0. Through insertion Agrawal et al. introduce an interval classifier that could use
or deletion of just a few tuples, the global minimum of the database indices to efficiently retrieve portions of the classi-
impurity function can be made to jump from attribute value fied dataset using SQL queries [AG32]. Fukuda et al. con-

20 to attribute values0 since both minima are very close to Struct decision trees with two-dimensional splitting crite-
each other. Thus if bootstrapping is applied to the situationfia [FMM96]. The decision tree classifier SLIQ [MAR96]
depicted in Figure 12, about half the time the split point will Was designed for large databases but uses an in-memory data
be very close to attribute valu2® and the remaining times Structure that grows linearly with the number of tuples in
the split point will be very close to attribute val6e. Since the training database. This limiting data structure was elim-
the two splits are so far apart, the subtrees grown from thdnated by Sprint, a scalable data access method, that re-
two splits will very likely be different, and thus tree growth Mmoves all relationships between main memory and size of

stops at node since two bootstrap samples disagree on thethe dataset [SAM96]. In recent work, Morimoto et al. de-
splitting attributes of the children of. veloped algorithms for decision tree construction for cate-

gorical predictor variables with large domains [MF®9].
Rastogi and Shim developed PUBLIC, a MDL-based prun-
ing algorithm for binary trees that is interleaved with the tree [FMM96]
growth phase [RS98]. In the RainForest Framework, Gehrke

et al. proposed a generic scalable data access method that can

be instantiated with most split selection methods from th

[ETO3]

o[FMMT96a]

literature [GRG98], resulting in a scalable classification tree
construction algorithm.

The tree induction algorithm ID5 restructures an exist-
ing tree in-memory [Utg89] in a dynamic environment un-
der the assumption that the complete training database fitg-pssugs
in-memory. Utgoff et al. extended this work and presented
a series of restructuring operations that can be used to de-
rive a decision tree construction algorithm for a dynamically [GRG98]

changing training database [UBC97] while maintaining the

[FMMTO96b]

optimal tree. But their techniques also assume that the train-

ing database fits in-memory. Efron and Tibshirani [ET93] and

Davison and Hinkley [AD97] both are excellent introductions
to the bootstrap. In recent work, Megiddo and Ramakrishnad"-5%")
used a form of bootstrapping to assess the statistical signifi-

cance of a set of association rules [MS98].

7 Conclusions

We introduced a new scalable algoritlB®ATfor construct-
ing decision trees from large training databaseBOATIs

faster than the best existing algorithms by a factor of thre

while constructing exactly the same decision tree, and ca
handle a wide range of splitting criteria. Beyond improv-
ing performanceBOAT enhances the functionality of ex-
isting scalable decision tree algorithms in two major ways. [MFM 98]
First, BOATIs the first scalable algorithm that can maintain a
decision tree incrementally when the training data set changes
dynamically. SecondBOATgreatly reduces the number of
database scans, and offers the flexibility of computing the
training database on demand instead of materializing it, agMSTo4]
long as random samples from parts of the training database
can be obtained. In addition to developing 8®ATalgo-
rithm and proving it correct, we have implemented it and pre-
sented a thorough performance evaluation that demonstrates
its scalability, incremental processing of updates, and speediolk93]
up over existing algorithms.

Acknowledgements: We thank Anand Vidyashankar for
introducing us to the bootstrap.

References

[AD97]

[AGI+92]

[AIS93]

[BFOS84]

A.C.Davison and D.V.Hinkley.Bootstrap Methods and their
Applications Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 1997.

R. Agrawal, S. Ghosh, T. Imielinski, B. lyer, and A. Swami.
An interval classifier for database mining applications. VLDB
1992.

R. Agrawal, T. Imielinski, and A. Swami. Database mining:
A performance perspectivéEEE Transactions on Knowledge
and Data Engineering5(6):914-925, December 1993.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression TreesVadsworth, Belmont,
1984.

[Han97]

[LS97]

[Man94]

e

IMAR96]

[MS98]

[Mur95]

[Quigé]
[RS98]
[SAMO6]

[UBC97]

[Utg89]

B. Efron and R. J. TibshiranAn introduction to the bootstrap
Chapman & Hall, 1993.

T. Fukuda, Y. Morimoto, and S. Morishita. Constructing
efficient decision trees by using optimized numeric association
rules. VLDB 1996.

T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data
mining using two-dimensional optimized association rules:
Scheme, algorithms, and visualization. SIGMOD 1996.

T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama.
Mining optimized association rules for numeric attributes.
PODS 1996.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editorsAdvances in Knowledge Discovery and Data
Mining. AAAI/MIT Press, 1996.

J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - A
framework for fast decision tree construction of large datasets.
VLDB 1996.

D.J. Hand. Construction and Assessment of Classification
Rules John Wiley & Sons, Chichester, England, 1997.

Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. An empirical
comparison of decision trees and other classification methods.
Technical Report 979, Department of Statistics, University of
Wisconsin, Madison, June 1997.

Wei-Yin Loh and Yu-Shan Shih. Split selection methods for
classification treesStatistica Sinica7(4), October 1997.

O. L. Mangasarian. Nonlinear Programming Classics
in Applied Mathematics. Society for Industrial and Applied
Mathematics, 1994.

M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable
classifier for data mining. IRroc. of the Fifth Int'l Conference
on Extending Database Technology (EDRAYignon, France,
March 1996.

Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, and
K. Yoda. Algorithms for mining association rules for binary
segmentations of huge categorical databases. VLDB 1998.

N. Megiddo and R. Srikant. Discovering predictive association
rules. KDD 1998.

D. Michie, D. J. Spiegelhalter, and C. C. TayloMachine
Learning, Neural and Statistical ClassificationEllis Hor-
wood, 1994.

S. K. Murthy. On growing better decision trees from data
PhD thesis, Department of Computer Science, Johns Hopkins
University, Baltimore, Maryland, 1995.

F. Olken. Random Sampling from Database$hD thesis,
University of California at Berkeley, 1993.

J. Ross Quinlan. Induction of decision treesMachine
Learning 1:81-106, 1986.

R. Rastogi and K. Shim. Public: A decision tree classifier that
integrates building and pruning. VLDB 1998.

J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable
parallel classifier for data mining. VLDB 1996.

P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision
tree induction based on efficient tree restructurindachine
Learning 29:5-44, 1997.

P.E. Utgoff. Incremental induction of decision trebachine
Learning 4:161-186, 1989.

