
The CCUBE Constraint Object-Oriented Database System

Alexander Brodsky Victor E. Segal Jia Chen Pavel A. Exarkhopoulo

Department of Information and Software Engineering

George Mason University, Fairfax, VA 22030

U.S.A.

fbrodsky, vsegal, jchen1g@gmu.edu

1 Introduction

CCUBE is the �rst implementation of a constraint
object-oriented database system. It is a result of a �ve-
year e�ort of the research group on Constraint Program-
ming and Databases at George Mason University.1

In CCUBE mathematical constraints are used as a

exible and uniform way to represent and manipu-
late diverse data including spatial and temporal behav-
ior, complex modeling requirements, as well as partial
and incomplete information. Application examples, for
which no other uni�ed technology exists today, include
(1) constraint-based design in the presence of large data
sets, (2) spatio-temporal data fusion and sensor man-
agement; (3) manufacturing, warehouse and logistics
support; (4) electronic trade with complex objectives;
and (5) computation of geo-physical parameters from
large volumes of raw multi-dimensional data.

CCUBE, unlike most research prototypes, focuses
on scalability and competitive performance, and is
designed for scalable massive data applications that
involve large constraint sets. To that end, the CCUBE
technology has been recently selected by NASA, for
the proof-of-concept phase, as a tool for high-level
speci�cation and e�cient generation of products in
NASA's Earth Observing System Data and Information
System (EOSDIS).

Until now, most work on Constraint Databases
(CDBs) has been theoretical and focused on expressive-
ness and complexity. The area of CDBs is being chal-
lenged by the question whether it will lead to a technol-
ogy with a signi�cant practical impact. This parallels,
in a sense, to the state of relational databases before

1This e�ort has been supported by NSF, ONR and NASA.

int CatalogNo

string Name

string Color

CST(w,z) extent

string Color

CST(p,q) center

CST(w1,z1) extent

CST(w1,z1,p,q,w,z)

 drawers

FILE_CABINET

DESK

DRAWER

OFFICE_OBJECT

is-a

is-a

DRAWER * drawer

LIST(DRAWER*) translation

Figure 1: A Constraint Object-Oriented Database
Schema

the �rst two prototypes, Ingres and System-R were de-
veloped. To move the area of CDB's from theory to
practice, the objective of the CCUBE project is pre-
cisely this: to demonstrate the practical viability of the
CDB technology, by building a system that can work
on real-life, real-size, real-performance applications. A
detailed description of the system, its theoretical under-
pinnings and the related work can be found in the full
paper describing CCUBE in CONSTRAINTS, Volume
2(3,4), December 1997, pp. 245 { 278.

2 CCUBE by Example

Consider a simple o�ce design application, with the
schema depicted in Figure 1. The schema uses regular
object-oriented features, such as ISA and composition
hierarchies, and also what we call spatio-temporal
constraint (CST) classes, such as CST(w; z), which
means, intuitively, a constraint in free variables w and
z.

To illustrate, consider an example of a two-dimensional
desk ``my-desk'' depicted in Figure 2 as the larger
rectangle. The smaller rectangle depicts the desk's

1

V

1

1

W

Z

Z1 (x,y)

(p,q)

my_desk

W1

4−4

2

−2

6

4 −2

U

Figure 2: An Instance Of A Desk With Drawer In The
Room

drawer, which may open, i.e. move relatively to the
desk. Similarly, the desk may be moved in the room.
In the �gure, the extent of my-desk is the set of points
f(w; z)j(�4 � w � 4) ^ (�2 � z � 2)g which is cap-
tured as the CST object (�4 � w � 4) ^ (�2 � z � 2)
in free variables w; z, i.e., of class CST(w; z).
Similarly, the extent of the desk's drawer in the

drawer's coordinates can be described by the CST
object (�1 � w1 � 1) ^ (�1 � z1 � 1). The possible
locations (p; q) of the drawer's center in the desk's
coordinates can be described by p = �2^�3 � q � �1;
note that the horizontal component of the center, p,
equals to a constant since the drawer in the example
cannot move left or right; note also that the vertical
component, q, is between �3, when the drawer is fully
open, and �1 when it is closed. Also, the translation
between the desk's W;Z and the room's U; V systems
of coordinates can be captured by the constraint u =
x+w^v = y+z, meaning that if the desk's center is at
(x; y), then a point (w; z) in desk's coordinates is (u; v)
in the global room's coordinates.2

Constraints are also used in CCUBE queries to ma-
nipulate, as well as express boolean conditions on CST
objects. To illustrate, consider the following CCUBE
query that retrieves all desks that intersect the room
area (3 <= u <= 4 && 8 <= v <= 10), assuming that
the desk is centered at (6,4) and that its orientation is
aligned with the room's axes (i.e. the translation equa-
tion is u = w + x ^ v = z + y). For each such desk, the
query also gives the desk's extent in the room's coordi-
nates.

SELECT pair(dsk, CST((u,v) | dsk_glob))

INTO {Bag<CST*>} result

2CCUBE currently implements general linear constraints of

any dimension, and thus can capture any object composed of

multi-dimensional polyhedral sets.

FROM all_desks AS {DESK*} dsk

DEFINE area AS {CST}

(3 <= u <= 4 && 8 <= v <= 10)

DEFINE transl AS {CST}

(u == x + w && v == y + z)

DEFINE dsk_glob AS {CST}

(dsk->extent && transl && x == 6 && y == 4)

WHERE SAT(area && dsk_glob)

The third DEFINE statement de�nes a 6-dimensional
CST object dsk glob (in variables u; v; x; y; w; z), which
is than used in the WHERE and SELECT clauses. In the
SELECT clause, it is projected to variables u; v, to �nd
the extent in the room's coordinates, which is done by
existentially quantifying all the other variables. In the
WHERE clause, SAT is a satis�abily test of the constraint
area conjuncted with dsk glob, which �nds, whether
dsk in the room's coordinates intersect the given area

(3 <= u <= 4 && 8 <= v <= 10).
Note that only with linear constraints one can ex-

press any linear transformations such as rotation, trans-
lation and stretch; check convexity, discreteness and
boundness, emptiness, containment, disjointness; com-
pute convex hulls, augment objects, change coordinate
systems etc. In short, constraints are very expressive.
We also claim that query systems with constraints can
be implemented very e�ciently for important constraint
domains.

3 CCUBE Main Features

The CCUBE data manipulation language, Constraint
Comprehension Calculus is an integration of a con-
straint calculus for extensible constraint domains within
monoid comprehensions, which were suggested as an
optimization-level language for object-oriented queries.
The data model for the constraint calculus is based

on constraint spatio-temporal (CST) objects, which
may hold spatio-temporal constraint data, conceptually
represented by constraints (i.e. symbolic expressions).
In the current version, linear arithmetic constraints
(i.e. inequalities and equations) over reals 3 are
implemented. New CST objects are constructed using
logical connectives, existential quanti�ers and variable
renaming, within a multi-typed constraint algebra. The
constraint module also provides predicates such as for
testing satis�ability, entailment etc, that are used as
selecting conditions in hosting monoid comprehension
queries.
The general framework of the CCUBE language is the

monoid comprehensions language, in which CST objects
serve as a special data type, and are implemented as a
library of interrelated C++ classes. The data model
for the monoid comprehensions is based on the notion
of monoid, which is a conceptual data type capturing

3using �nite precision arithmetic

2

uniformly aggregations, collections, and other types
over which one can \iterate".
The ability to treat disjunctive and conjunctive

constraints uniformly as collections is a very important
feature of CCUBE: it allows to express and implement
many constraint operations through nested queries,
i.e. in the same language as hosting queries. For
example, the satis�ability test of a disjunction of
conjunctions of linear inequalities is expressed as a
monoid comprehension query that iterates over the
disjuncts (each being a conjunction), and tests the
satis�ability of every conjunction (using the simplex
algorithm).
In turn, the ability to express a constraint opera-

tion as a sub-query in the hosting query is crucial for
what we call deeply interleaved optimization: it gives the

exibility to re-shu�e and interleave parts of the con-
straint algorithm (sub-query) with the hosting query.
This re-shu�ing can be done by additional global query
transformations involving approximations, indexing, re-
grouping, pushing cheaper selections earlier, replac-
ing sub-queries with special-purpose algorithms, and so
forth.

4 Examples Of Applications

Here we discuss in more detail two examples of potential
applications for CCUBE.

Electronic Trade with Complex Objectives

A typical scenario of electronic trade over the Internet is
this: (1) products and services are speci�ed and priced
by numerous suppliers; and (2) bids for products and
services imposed by numerous consumers. An example
of a simple objective in such trades is to achieve a
deal that meets speci�ed minimal or maximal prices as
su�cient conditions.
In realistic situations, however, suppliers and con-

sumers may have considerably more complex trade ob-
jectives. To illustrate, consider a chemicals manufac-
turer M , capable of producing a variety of products
using di�erent raw materials. M has limitations in re-
sources and can use a variety of manufacturing pro-
cesses each corresponding to a possibly di�erent pro�t
function. An example of a complex trade objective for
M could be �nding a set of electronic bids for products
M is capable of producing and a set of electronic trades
of raw materials that would satisfy the existing busi-
ness constraints and maximize the pro�t function. Fur-
thermore, an analyst working for M may ask a variety
of what-if questions, which go much beyond optimize-
a-function-subject-to-constraints questions, typical in
mathematical programming: Is it possible to improve
pro�ts by 5% by making an electronic trade with a raw
materials supplier, and then using a better manufactur-
ing process? How much of each raw material should be

purchased to satisfy all electronic bid with pro�tabil-
ity more than 15%? An electronic trade system, built
upon CCUBE can provide a single e�cient platform to
all these deeply integrated aspects.

Spatio-Temporal Data Fusion and Sensor

Management

A typical scenario in an air-space command and control
application is this: Sensors are periodically assigned to
areas of responsibility. The sensor output is collected,
correlated, fused, and analyzed to form a representation
of the environment. A database stores information
on sensors, targets (hostile planes), target complexes
(formations) and platforms (friendly planes).
Constraints are used in this application as a uniform

data type for a variety of heterogeneous data: 4D-
trajectories, �elds of vision, interconnections among
di�erent coordinate systems, geographic regions and
layers, and and templates (such as formation types)
used to de�ne expected behavior of of targets for
situation assessment.
In turn, CCUBE queries capture various application

activities: (1) All legal sensor assignments (i.e., targets
within �elds of vision of sensors) are described using
constraints and constitute a search space. Finding legal
sensor assignments that are optimal according to some
criteria, e.g., maximal time until reassignment, is a con-
straint query. (2) Various coordinate transformations
need to be performed. For example, since the sensor re-
ports are relative to the platforms, spatio-temporal data
is �rst translated into a global (uniform) system of coor-
dinates. (3) In a number of states, the decision is made
on whether separately reported targets are in fact the
same one (based on their spatial and velocity proximity
over a period of time); or, vice-versa, whether a target
is in fact several targets. The criteria for being the same
target is naturally described by constraints and is cap-
tured by a constraint query. (4) Formations of targets
(e.g., a squadron of �ghter jets
ying a standpoint tier
formation) need to be identi�ed and maintained in the
database. The type of a formation is also naturally de-
scribed by CCUBE queries expressing the geometrical
interposition of targets over a period of time.

5 Acknowledgments

This research was sponsored in part by the National
Science Foundation (NSF) grants IIS-9734242 and IRI-
9409770, and O�ce of Naval Research under prime
grant No. N00014-94-1-1153.

3

