Free Parallel Data Mining

Bin Li (New York University)
Dennis Shasha (New York University)

Data mining is computationally expensive. Since the benefits of data mining results are unpredictable, organizations may not be willing to buy new hardware for that purpose. We will present a system that enables data mining applications to run in parallel on networks of workstations in a fault-tolerant manner. We will describe our parallelization of a combinatorial pattern discovery algorithm and a classification tree algorithm. We will demonstrate the effectiveness of our system with two real applications: discovering active motifs in protein sequences and predicting foreign exchange rate movement.

Home pages of Bin Li and Dennis Shasha. Home page of our software.