
SQLJ ― Part 1: SQL Routines using the
Java™ Programming Language

Andrew Eisenberg
Progress Software Corp., Bedford, MA 01730

andrew.eisenberg@progress.com

Jim Melton
Oracle Corp., Sandy, UT 84093

jim.melton@acm.org

Introduction
The SQLJ informal group of companies has
continued to work productively since last we wrote
about them in December 1998 [1]. At that time we
discussed SQLJ Part 0 [2], which had just been
approved as NCITS standard SQL Part 10: Object-
Language Bindings (SQL/OLB). This standard
allows SQL statements to be embedded in the Java

Programming Language.
In the first half of 1999, the SQLJ group

(consisting of Cloudscape, Compaq (Tandem), IBM,
Informix, Oracle, Sun, and Sybase) completed its
work on the SQLJ Part 1 specification and requested
that it be adopted by NCITS under its Fast Track
process. In Sept. 1999 SQLJ Part 1 was adopted as
NCITS 331.1-1999 [3] and it is now available for
purchase from NCITS. It is worth mentioning that
this specification is extremely approachable, with a
lengthy tutorial section that introduces its more
normative elements.

Sybase brought SQLJ Part 1 to the SQLJ
group in early 1997. Phil Shaw, of Sybase, has acted
as editor of this document throughout its
development. SQLJ Part 1 allows Java classes,
contained in Jar files, to be brought into a DBMS.
Methods in these classes may then be used as the
implementation of SQL stored procedures and stored
functions (together referred to as stored routines).

Given how these methods are used, we’ll
provide a brief introduction to SQL routines before
we discuss the features of SQLJ Part 1.

SQL Routines
SQL Part 4: Persistent Stored Modules (SQL/PSM)
[4] introduced SQL routines in 1996. We will discuss
them in this section, largely by example.

SQL functions have only input parameters,
and produce a result of some designated SQL data

 Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other
countries.

type. Once a function is defined, it can be invoked
from within any expression.

CREATE FUNCTION pub_year (INTEGER volume)
 RETURNS CHAR (4)
 BEGIN
 RETURN
 CAST (volume + 1971 AS CHAR(4));
 END ;

SELECT *
FROM sigmod_articles sa
WHERE pub_year (sa.volume) = '1995';

In this example, the pub_year function is
defined to take an integer argument, and returns a 4
character string. This function is then used in the
WHERE clause of a query.

SQL procedures can have parameters that
have a mode of either IN, OUT, or INOUT (IN is the
default). They do not return values in the way that
SQL functions do.

CREATE PROCEDURE pub_info
 (IN INTEGER volume,
 IN INTEGER no,
 OUT CHAR(4) yyyy,
 OUT CHAR(3) mmm)
 BEGIN
 yyyy = pub_year (volume);
 CASE no
 WHEN 1 THEN SET mmm = 'MAR';
 WHEN 2 THEN SET mmm = 'JUN';
 WHEN 3 THEN SET mmm = 'SEP';
 WHEN 4 THEN SET mmm = 'DEC';
 ELSE SET mmm = '???';
 END CASE ;
 END

DECLARE p_year CHAR (4);
DECLARE p_month CHAR (3);
CALL pub_info (22, 3, p_year, p_month);

In this example, the pub_info procedure
is defined to accept input parameters for volume and
number, and then produces output values for the year
and month that correspond to those numbers. After
pub_info has been called, the variables p_year
and p_month will contain '1993' and 'SEP',
respectively. In both types of SQL routines, the body

consists of an SQL statement, which may be a
compound (BEGIN/END) statement.

Both types of routines also can be defined as
external routines. These routines have the same
signature information, but instead of a body with
SQL statements, they contain the name of an entry
point in code written in some 3GL.

CREATE FUNCTION pub_year (INTEGER volume)
 RETURNS CHAR (4)
LANGUAGE c
EXTERNAL NAME 'pubyear@sigmod.dll'
PARAMETER STYLE GENERAL

The format of the string that identifies the
external entry point is determined by the DBMS
(sometimes influenced by the particular OS). The
invocation of these external routines is no different
than that of SQL routines.

Procedures have one final capability that
we’ll mention. They can return one or more result
sets, along with the scalar values they return via their
OUT and INOUT parameters. Call-level interfaces,
such as ODBC and JDBC, have methods to allow an
application to examine these result sets.

CREATE PROCEDURE article_count
 (IN INTEGER a_volume)
 READS SQL DATA
 DYNAMIC RESULT SETS 1
 BEGIN
 DECLARE result CURSOR WITH RETURN FOR
 SELECT no, COUNT(*)
 FROM sigmod_articles sa
 WHERE sa.volume = a_volume
 GROUP BY no ;

 OPEN c1;

 END ;

This example first states that it will return at
most one result set. The procedure then declares and
opens a cursor that, because it has been declared as
WITH RETURN and because it has been left open,
will return its result rows to the procedure’s invoker
as a result set.

Now that we’ve refreshed ourselves on
SQL/PSM, we can continue on to the new material.
Further information on SQL routines can be found in
an earlier article of Andrew’s [5].

Installing Jar Files
The first step that you must take in using SQLJ Part 1
is to import your Java classes into the database. Your
classes must be in one or more Jar files. This is easy
enough to do, using the jar utility that Sun provides
with their Java SDK’s.

Let us say that we have a Java class that
contains an implementation of the pub_year SQL
function we saw earlier.

public class Sigmod {

 public static String pubYear(int volume) {
 return String.valueOf (volume + 1971);
 }

}

Let us further say that this class has been
compiled and placed in the Sigmod.jar file. We
would install this Jar file in the database with the
following statement:

CALL sqlj.install_jar
 ('file:///d:/Sigmod.jar',
 'sigmod_jar',
 0);

This operation will copy the contents of the
Jar file (identified by a URL) into the database, and
give an SQL name to the Jar file. The first two parts
of the SQL name of the Jar file (catalog name and
schema name) are not provided in this example, and
so are implicitly defined (SQL has rules for this that
it applies to the names of many types of database
objects). Although it has the form of a procedure call,
this statement is really acting as a DDL statement.
The final argument of 0 indicates that a deployment
descriptor is not to be used (we’ll discuss deployment
descriptors in a little while).

In the interest of brevity, we will simply
mention that SQLJ Part 1 provides an
sqlj.replace_jar procedure and an
sqlj.remove_jar procedure that allow installed
Jar files to be maintained and enhanced over time.

Creating Java Routines
For the contents of the Jar file to be useful, a Java
Virtual Machine (JVM) must be present. A DBMS
vendor may provide a specialized JVM with its
product, or it may allow the use of any JVM that
supports the operating system that is being used.

The classes that we have imported may
contain many methods. In SQLJ Part 1, we will make
direct use of only methods that are both public
and static. Static methods execute independently
of any specific object instance. Like all methods,
these methods may return values of some data type or
they may be void.

So, we have Java public static methods, a
JVM in which they can execute, and the desire to
invoke them from within SQL. A decision that could
have been made would have been to create new SQL

statements to invoke these methods. Instead, the
decision was made to provide a mapping from SQL
routines to Java methods. In that way an application
can invoke these routines in exactly the same way
that it would invoke SQL’s other types of routines. A
Java routine is a routine that has a mapping to a Java
method that provides its implementation.

Mappable Data Types
For an SQL routine invocation to result in a Java
method invocation, the arguments to the SQL routine
must become arguments to the Java method. It makes
sense that SQLJ Part 1 uses the mapping that JDBC
defines between SQL data types and Java data types.

You may remember that Java provides some
primitive data types that have class wrappers
associated with them. An SQL data type and a Java
data type are mappable if they are simply mappable
(to Java primitive data types), object mappable, or
output mappable (which we’ll discuss when we get to
Java procedures).

SQL data type Simply
Mappable

Object Mappable

CHAR - String
VARCHAR - String
LONGVARCHAR - String
NUMERIC - java.math.BigDecimal
DECIMAL - java.math.BigDecimal
BIT boolean Boolean
TINYINT byte Integer
SMALLINT short Integer
INTEGER int Integer
BIGINT long Long
REAL float Float
FLOAT double Double
DOUBLE double Double
BINARY - byte[]
VARBINARY - byte[]
LONGVARBINARY - byte[]
DATE - java.sql.Date
TIME - java.sql.Time
TIMESTAMP - java.sql.Timestamp

(“-” indicates the same value that is found in the
Object Mappable column)

Java Functions
SQLJ Part 1 defines a new variant of CREATE
FUNCTION that provides a mapping between an
SQL function signature and a Java method.

A SQL reference to a specific Java method
is made up of three parts:

jar name : method name (signature)

The Jar name is the SQL name that has been
given to the Jar file, the method name contains the
name of the method, along with the class and
possibly the package that contains it. The third part of

the reference, the signature, is optional. If it is not
provided, then a signature containing the default Java
data type for each SQL data type in the SQL
signature is used.

We define a Java function in the following
way:

CREATE FUNCTION j_pub_year (INTEGER volume)
 RETURNS CHAR (4)
EXTERNAL NAME 'sigmod_jar:pubYear'
LANGUAGE JAVA
PARAMETER STYLE JAVA ;

In order to create a Java function, the SQL
parameters must be mappable to the corresponding
Java method parameters, the result types of the two
must be mappable, and the method must be both
public and static (as we mentioned earlier).

Once the Java function has been created, it
is invoked just like any other SQL function.

SELECT *
FROM sigmod_articles sa
WHERE j_pub_year (sa.volume) = '1995';

Java Procedures
The parameter mapping that we saw in Java functions
must be extended for the INOUT and OUT parameters
that an SQL procedure may contain. This is a bit of a
problem, as Java does not directly provide any way
for a method to return more than one value as the
result of its execution.

Java does, however, allow the state of
objects that are passed to a method to be changed.
SQLJ Part 1 adopts the convention that a Java
method must use a one element array to pass the
values of OUT or INOUT parameters. The single
element of the array may be read by the method for
its input value and set by the method to indicate its
output value. This leads us to the third form of
mappable that we mentioned earlier. An SQL data
type is output mappable to an array of the Java types
that it is simply mappable to or object mappable to.
This means that an SQL INTEGER type is output
mappable to either int[] or Integer[].

Let us say that the following method, which
provides a Java implementation of the pub_info
SQL procedure we saw earlier, was included in our
Sigmod class:

public static void pubInfo (int volume,
 int no,
 String[] yyyy,
 String[] mmm) {
 yyyy[0] = pubYear(volume);
 if (no == 1) mmm[0] = "MAR";
 else if (no == 2) mmm[0] = "JUN";
 else if (no == 3) mmm[0] = "SEP";
 else if (no == 4) mmm[0] = "DEC";
 else mmm[0] = "???";
}

This method can be used to define a Java
procedure in the following way:

CREATE PROCEDURE j_pub_info
 (IN INTEGER volume,
 IN INTEGER no,
 OUT CHAR(4) yyyy,
 OUT CHAR(3) mmm)
EXTERNAL NAME
 'sigmod_jar:pubInfo (int, int, String[],
 String[])'
LANGUAGE JAVA
PARAMETER STYLE JAVA ;

In order to create a Java procedure, the SQL
IN parameters must be mappable to the
corresponding method parameters, the SQL INOUT
and OUT parameters must be output mappable to the
corresponding method parameters, and the method
must be declared as void.

The Java arrays are not seen by the SQL
CALL statement. SQL automatically creates and
populates the Java array when the invocation takes
place, and it retrieves the necessary elements when
the invocation has ended.

Once again we see that the invocation of a
Java procedure is indistinguishable from that of an
SQL procedure.

CALL j_pub_info (22, 3, p_year, p_month);

Exception Handling
Within the Java method that underlies a Java routine,
exceptions may be thrown and caught in the usual
manner. If an exception is not caught by the Java
method, then an SQL exception is raised by the SQL
statement that invoked the Java routine.

Database Access from within a Java
Method
Let’s review the environment is which all of this SQL
and Java invocation is taking place. An SQL
statement is executing on behalf of some user,
possibly on a client machine (via an ODBC call or a
JDBC method invocation). The SQL statement
causes the invocation of a Java method in a JVM.

Some methods may wish to make calls to a database
as part of their execution. To do this, they would
contain JDBC method invocations.

These JDBC statements could attempt to
connect to some specific database by specifying its
URL in the getConnection method. A DBMS
may or may not allow such a connection to be
established. A DBMS must, however, allow a Java
routine to connect to the database that invoked it with
the special URL jdbc:default:connection.
This connection allows the Java method to share the
session and transaction context of the statement that
invoked it.

Simply put, this means that the execution of
an SQL statement may cause the execution of Java
methods, and while the statement and these methods
are executing the methods can be making calls back
to the database.

Client
Application

DBMS JVM

Method
Java

Procedure

Java Procedures Returning Result
Sets
Earlier, we discussed how the article_count
SQL procedure could return one or more result sets
along with its OUT or INOUT parameters. Java
procedures may also return result sets by creating
JDBC ResultSet objects and returning them to
SQL. This can be seen in the following example:

public static void ArticleCount
 (int volume,
 ResultSet[] rs)
 throws SQLException {
 String query
 = "SELECT no, COUNT(*) "
 + "FROM sigmod_articles sa "
 + "WHERE sa.volume = ? "
 + "GROUP BY no";
 Connection conn
 = DriverManager.getConnection
 ("jdbc:default:connection");
 PreparedStatement pstmt
 = conn.prepareStatement(query);
 pstmt.setInt(1, volume);
 rs[0] = pstmt.executeQuery();
}

CREATE PROCEDURE j_article_count
 (IN INTEGER volume)
 READS SQL DATA
 DYNAMIC RESULT SETS 1
EXTERNAL NAME
 'sigmod_jar:ArticleCount
 (int, ResultSet[])'
LANGUAGE JAVA
PARAMETER STYLE JAVA ;

This example could be rewritten to use
SQLJ Part 0 statements instead of JDBC methods. In
this case, SQLJ Part 1 allows an
sqlj.runtime.ResultSetIterator to be
returned instead of a ResultSet.

SQL-Java Paths
The invocation of a Java routine causes the
associated Java method to be invoked. This method
has been unambiguously identified in the CREATE
FUNCTION or CREATE PROCEDURE statement
that created it, with a Jar name, method name, and
signature. It is very likely that these methods will
themselves contain Java method invocations. In most
JVM’s, a classpath environment variable exists to
determine the order in which directories, Jar files,
and Zip files are searched for a method.

In SQLJ Part 1, an SQL-Java Path exists for
each Jar file to determine the order in which Jar Files
are searched when a method invocation takes place.
The sqlj.alter_java_path procedure exists
to allow the SQL-Java path to be modified.

CALL sqlj.alter_java_path
 ('sigmod_jar',
 '(Utility/Soundex, util_jar)
 (Sigplan, sigplan_jar)'
);

The second argument of this procedure
contains pairs of class name patterns and Jar names.
When a method is invoked, the first pair that contains
a pattern that matches the class name of the method is
used to determine which Jar file to use.

Once this statement has been executed, the
invocation of the Utility.Soundex.isLike
method by a method in the sigmod_jar Jar file
would locate the method in util_jar, even if
sigplan_jar contains a method by the same
name.

Deployment Descriptors
In order for SQL statements to use Java routines, the
following steps must be taken:

• Install a Jar file
• Create Java routines that correspond to the public

static methods
• Grant access to the Java methods

Deployment descriptors allow the steps that
follow the installation of the Jar file to be defined in
the Jar file itself and executed automatically. A
deployment descriptor contains a number of actions
to take when the Jar file is installed, and a number of
actions to take when the Jar file is removed. Since the
SQL name of the Jar file is not known when the
deployment descriptor is written, the placeholder
thisjar is used to identify Java methods. We
might create the file sigmod_deploy.txt, with
the following text, and place it in our Jar file.

SQLActions[] = {
 "BEGIN INSTALL
 CREATE FUNCTION j_pub_year
 (INTEGER volume)
 RETURNS CHAR (4)
 EXTERNAL NAME 'thisjar:pubYear'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA ;

 GRANT EXECUTE ON j_pub_year
 TO PUBLIC;
 END INSTALL",

 "BEGIN REMOVE
 REVOKE EXECUTE ON j_pub_year
 FROM PUBLIC RESTRICT ;
 DROP FUNCTION j_pub_year RESTRICT ;
 END REMOVE"
}

This file would then be identified by
following manifest entry in our Jar file:

Name: sigmod_deploy.txt
SQLJDeploymentDescriptor: TRUE

The following sqlj.install_jar
procedure, because it uses 1 as its last argument, will
execute the statements in the deployment descriptor.

CALL sqlj.install_jar
 ('file:///d:/Sigmod.jar',
 'sigmod_jar',
 1);

Summary
The design of SQL/PSM took a database-centric view
of the world. It was recognized that behavior was
required in the database, so a procedural language
was created for that purpose (Oracle has PL/SQL,
Sybase has TransactSQL, and Informix has Stored
Procedure Language, or SPL). These languages were
designed to work seamlessly with SQL. They support
SQL’s data types, null values, and SQL’s exception
handling. Because memory management and pointers
were not provided, these languages could not
compromise the safety and robustness of the DBMS.

It was also recognized that users had bodies
of existing code that they wished to be able to use,
and so external routines were provided. This
mechanism satisfies a user’s preference for a specific
language, and can be advantageous when some
routines are just too hard to write in SQL/PSM.

SQLJ Part 1 allows a database designer to
reuse Java classes that may have been initially
written for a client application or an application
server. For Java routines that are written specifically
for a database, the database designer can leverage his
or her training in Java, and take advantage of the
development environments and tools that exist for
Java. Unlike external routines in other 3GL’s, safety
and robustness are not compromised by the use of
Java routines.

References
[1] SQLJ Part 0, now known as SQL/OLB (Object-

Language Bindings), Andrew Eisenberg and Jim
Melton, ACM SIGMOD Record, Dec. 1998.

[2] ANSI X3.135.10:1998, Database Language SQL
― Part 10: Object Language Bindings
(SQL/OLB), 1998.

[3] ANSI NCITS 331.1-1999, SQLJ ― Part 1: SQL
Routines using the Java™ Programming
Language, 1999.

[4] ISO/IEC 9075:1996, Information technology—
Database languages—SQL—Part 4: Persistent
Stored Modules (SQL/PSM), 1996.

[5] New Standard for Stored Procedures in SQL,
Andrew Eisenberg, SIGMOD Record, Dec.1996

Acquiring the SQLJ
Specifications
The SQLJ Part 1 specification will be available in the
United States from:

American National Standards Institute
Attn: Customer Service
11 West 42nd Street
New York, NY 10036
USA

Phone: +1.212.642.4980

It can be ordered online at:

http://www.cssinfo.com/ncits.html

Web References
American National Standards Institute (ANSI)

http://web.ansi.org

National Committee for Information Technology
Standards (NCITS)

http://www.ncits.org

NCITS H2 – Database Committee
http://www.ncits.org/tc_home/h2.htm

SQLJ
http://www.sqlj.org/

	SQLJ ? Part 1: SQL Routines using the Java™ Programming Language
	Introduction
	SQL Routines
	Installing Jar Files
	Creating Java Routines
	Mappable Data Types
	Java Functions
	Java Procedures
	Exception Handling
	Database Access from within a Java Method
	Java Procedures Returning Result Sets

	SQL-Java Paths
	Deployment Descriptors
	Summary
	References
	Acquiring the SQLJ Specifications
	Web References

