
Diluting ACID

Tim Kempster�, Colin Stirling, Peter Thanisch

Division of Informatics, University of Edinburgh

Abstract

Several DBMS vendors have implemented the ANSI
standard SQL isolation levels for transaction process-
ing. This has created a gap between database prac-
tice and textbook accounts of transaction processing
which simply equate isolation with serializability.

We extend the notion of conict to cover lower iso-
lation levels and we present improved characterisa-
tions of classes of schedules achieving these levels.

1 Introduction

A recent trend in the search for transaction process-
ing performance improvements has been the exploita-
tion of concurrency opportunities that occur when
transactions request a lower level of isolation, i.e. the
'I' in the ACID properties of transactions. Di�erent

levels of isolation are now a part of the ANSI SQL
standard [1] and many DBMS vendors have imple-
mented this facility, or something similar.

In much of the literature on the classical theory of
serializability there is an assumption that a mecha-
nism exists to ensure schedules are recoverable, and
often that they avoid the possibility of cascading
aborts1. Under this assumption the classical the-
ory need not distinguish between two schedules, say
s1 and s2, where the only di�erence is that, in s1 a
transaction, t2, read a value for a data item that was

�Rm 2602, JCMB, Kings Buildings, University of Edin-

burgh, May�eld Road, Edinburgh, EH9 3JZ, Scotland Tel +44

131 650 5139, Fax +44 131 667 7209. This research was sup-

ported by EPSRC grant GR/L74798.
1If cascading aborts are needed to ensure recoverability a

mechanism is assumed to exist to detect when they are required

and perform the necessary transaction aborts.

written by another transaction, t1, before t1 aborted
because such schedules are disallowed by recoverabil-
ity constraints.

s1 : w1[d] r2[d] c2 a1 s2 : w1[d] a1 r2[d] c2

In this paper we make no assumptions about recovery
in our account of serializability. In order to do this we
must include in the theory of conicting actions the
context of the outcome of the transactions in which
these actions appear.
When de�ning isolation levels, the ANSI stan-

dard [6] [1] deliberately avoids reference to locking,
thereby making the standard relevant to non-locking
based concurrency control algorithms. It instead de-
�nes isolation levels by specifying types of "phenom-
ena" which are disallowed if a particular isolation
level is to be achieved.
Berenson et al. [2] criticise the ANSI standard.

They highlight some serious shortcomings and pro-
vide alternative isolation level de�nitions based on
locking. Berenson et al. also provide a de�nition,
based on phenomena, that they claim is equivalent
to their locking based de�nition. In this paper we

demonstrate that their phenomena based de�nition
is not equivalent to their locking based de�nition.
Many textbooks state that isolation and serializ-

ability are synonymous [4] [5]. However we argue
in this paper that isolation is really a su�cient but
not necessary condition for serializability. Indeed, the
isolation levels de�ned in the literature exclude many
serializable schedules.
The main contributions of this paper are threefold.

Firstly, we provide a de�nition of conicting actions
that includes the commit or abort outcome of the
transactions involved in the conict. Under this ex-
tended de�nition we need not make any recoverability



assumptions about schedules. This leads to a de�ni-
tion of conict serializability that is independent of
recoverability. This de�nition of conict serializabil-
ity does not include the phantom phenomenon (dis-
cussed later) because it is de�ned over schedules that
do not include reads and writes over predicates. It
is therefore equivalent to the ANSI de�nition RE-
PEATABLE READ.

Secondly, we provide a de�nition of the lowest three
ANSI isolation levels based on phenomena. Our phe-
nomena are weaker than those proposed in [2] and
thus admit more serializable schedules.

Lastly, we enrich schedules to include read and
write actions on predicates. Within these enriched
schedules we discuss Phantom Phenomena and char-
acterise them in a way that is independent of pred-
icate concurrency control mechanisms. Excluding
these phantom phenomena results in a level of isola-
tion termed SERIALIZABLE by the ANSI commu-
nity.

2 Schedules

Let ti, tj denote transactions and d, d0 denote data
items in the database. It is assumed that ti 6= tj ,
unless otherwise stated, but we do not assume
d 6= d

0. A transaction, ti, consists of actions. These
actions are divided into four categories. Read and
write actions which we call accesses and denote
ri, wi respectively or oi to denote either a ri or
wi, together with commit and abort actions which
we call terminals and denote ci, ai respectively or
ei to denote either ci or ai. When a transaction
commits, the changes it has made to the data items
of the database are made durable, and the values it

has read are returned to the user. If a transaction
aborts, all write actions are undone leaving any data
items with the value that they would have had if the
transaction had never executed, furthermore no read
values are returned.

Accesses Terminals

wi[d] ti writes d ci ti commits

ri[d] ti reads d ai ti aborts

We assume each type of access within a transaction
is to a unique data item2 and also that exactly one
kind of terminal for each transaction occurs exactly
once3. A schedule, s, is a sequence4 of actions gen-
erated by a scheduler. We say oi[d] � o

0

j [d] if an
action oi[d] is earlier than an action o

0

j [d] in s. In any
schedule no terminal of a transaction precedes an ac-
tion of that transaction. An example of a schedule
is w1[d] r2[d]w1[d

0] c1 c2. A serial schedule is one in
which all actions of one transaction are completed
before any action of another transaction is started.

By slightly abusing notation we say ci (ai) is true
over a schedule if action ci (ai) happens at some
point. We use wi[d] � cj , to denote that tj com-
mits and does so after a write action of ti on data
item d. We write wi[d] � ej , to mean that either tj
aborts or commits but does so after a write action
by ti. Similarly, we write rj [d] � (ai ^ cj), to say ti

aborts after a read of d by tj and also tj commits.
Finally, we write ri[d] � wj [d] ^ (ai ^ cj), to say ti

aborts and tj commits and that ri[d] is before wj [d].
It should be noted this allows ai before or after wj [d].

3 Conict Serializability

To de�ne serializability we must �rst de�ne equiv-
alence over schedules. The most common and use-
ful de�nition is that of conict equivalence [3]. Un-
fortunately, this de�nition fails to capture the in-
equivalence of schedules containing aborting trans-
actions. For example, in this de�nition the following
two schedules are de�ned to be equivalent.

w1[x] r2[x] a1 c2 � w1[x] a1 r2[x] c2

The classical de�nition of conict equivalence re-
quires the ordering of conicting actions from com-
mitting transactions to be maintained, but says noth-
ing about the ordering of actions of aborting transac-

2The results in this paper do not depend on this but it is a

useful notational convenience.
3Schedules with this property are often called complete

schedules.
4A schedule is also sometimes de�ned as a poset of actions,

and sometimes called a history. We choose to de�ne it as a

sequence in order to keep it consistent with [2].



tions. To capture this behavior we extend the classi-
cal de�nition of conict equivalence by �rst extending
the de�nition of a conict.
Two transactions ti and tj are said to conict on

a data item, d, if both access d and transposing the
order of these accesses on d might result in either a
di�erent value being read by one of the transactions,
or a di�erent value resulting at d after the transac-
tions complete. We enumerate all the possible types
of conict that can occur in a schedule below.

I ri[d] � wj [d] ^ (ci ^ cj)

II wi[d] � rj [d] ^ (ci ^ cj)

III wi[d] � wj [d] ^ (ci ^ cj)

IV ri[d] � wj [d] ^ (ci ^ aj)

V wi[d] � rj [d] � (ai ^ cj)

We can see that we have extended the classical no-
tion of a conict to include the context of the outcome
of the transactions. If we remove this context the �ve
conict types collapse into the classical three conict
types: read/write, write/write and write/read.
At �rst sight type IV might not look like a conict.

If we transpose the accesses we arrive at either

wj [d] � aj � ri[d] � ci

or
wj [d] � ri[d] � (ci ^ aj):

The �rst transposition does not change the values
read or written by the transactions but in the second
case it does. However if recoverability mechanisms
are assumed to be in place the second type of sched-
ule could not occur because in the case aj � ci tj 's
abort action would cascade and cause ti to abort and
in the case ci � aj , ti cannot be allowed to com-
mit until tj had terminated. Type IV conicts are
included because we seek a de�nition that does not
make assumptions about recovery.
The schedule

r1[d]w2[d]w2[d
0] r1[d

0] c1 a2

has two conicts, the �rst between r1[d] and w2[d], an
instance of IV above, and the second between w2[d

0]

and r1[d
0] which is an instance of V above. The ex-

tended de�nition of conict equivalence naturally fol-
lows from the extended de�nitions of conicts.

De�nition 1 Schedules s and s
0 are conict equiva-

lent i�

� s and s
0 have the same actions and

� for each conict of type C 2 fI; : : : ; V g involving
actions oi, oj , ei, ej , in s the same conict of type
C appears in s

0 involving the same actions oi, oj ,
ei, ej .

2

De�nition 2 Schedule s is conict serializable if it
is conict equivalent to some serial schedule.

2

Our de�nition of conict serializability coincides with
Bernstein et al. [3], in the case when the committed
projection of schedules is considered. However we
can now judge equality between schedules containing
aborting transactions. For example, under our new
de�nition

w1[x] r2[x] a1 c2 6� w1[x] a1 r2[x] c2

because the write-read conict (type V) on the left
hand side does not exist on the right hand side.
Although conict serializability has been de�ned

only on complete schedules (i.e. those where all
transactions in the schedule eventually either abort

or commit) we can extend the de�nition to incom-
plete schedules. Any incomplete schedule can be ex-
tended to a complete schedule by aborting all the

transactions without a terminal, we call the result-
ing schedule the aborting-completion. We now say
an incomplete schedule is serializable i� its aborting-
completion is serializable.
In real systems failures can truncate schedules at

any point. Upon recovery active transactions are
aborted. For this reason a useful property of any
serializability de�nition over schedules is that if p is
a pre�x of a serializable schedule s, then p is serial-
izable.



Proposition 1 Any pre�x of a complete conict se-
rializable schedule is conict serializable.

Proof Let s denote a complete serializable sched-
ule and sser denote a serial schedule that is conict

equivalent to s. Let p denote any pre�x of s. We
will construct a serial schedule pser from sser that is
conict equivalent to the aborting-completion of p,
which we denote pcom. This shows that any pre�x
of a complete serializable schedule is serializable. We
do this in two steps.

S1 For each ai 2 pcom such that ci 2 sser , replace
the ci in sser with ai to form p

0.

S2 If any action appears in p
0 but not in pcom re-

move the action from p
0 to form pser .

We will now show that pser is a serial schedule that
is conict equivalent to pcom. Clearly pser is serial
and has the same actions as pcom because of the way
it was constructed from sser . We must now show that
if a conict of type C appears in pcom it also appears
in pser.

If pcom has a conict of type I, II or III, then it will
also be in sser because it was in s. Steps S1 and S2
will not remove this conict so it will also be present
in pser.

Suppose pcom has a conict of type IV or V, then ei-
ther it was in p, and by a similar argument to the one
above will be in pser, or a new conict will have been
formed when the abort completion of p was taken to
give pcom. If a new conict was formed of type IV
(V) in pcom then a conict of type I (II) must have
been present in s so it will also be present in sser and
will be changed to a conict of type IV (V) by step
S1 when constructing pser as required.

2

4 Rede�ning Phenomena

As pointed out by Berenson et al. [2] the phenom-
ena based de�nitions of isolation levels proposed in
the ANSI standard [1] are ambiguous and incom-
plete. They give more precise de�nitions in response

to these de�ciencies. We restate these improvements
in our notation and extend them a little further.

Berenson et al. [2] considered two possible interpre-
tations of the ANSI Dirty Read phenomenon; a strict
(P1 below) and a loose interpretation. They argued
that the strict interpretation was required to prevent
the classical inconsistent analysis problem exempli-
�ed in the history H1 below.

H1 : r1[x = 50]w1[x = 10]r2[x = 10]r2[y = 50]
c2r1[y = 50]w1[y = 90]c1

P1 : wi[d] � rj [d] � ei

Clearly, the intention is to disallow the situation
where tj reads the changes made by ti before they
are committed. However, it is not always unsafe to do
so. In fact, it is only unsafe in the case that ti aborts
after tj read d and also when tj commits. For exam-
ple, consider the serializable schedule wi[d] rj [d] ci aj
which is disallowed by P1.

We propose that the loose interpretation of the
phenomenon, below, more accurately captures the
idea of a Dirty Read. We rename this NP1 for con-
sistency but it is identical to the loose interpretation
called A1 in [2].

NP1 : wi[d] � rj [d] � (cj ^ ai)

Unfortunately, the loose interpretation still admits
schedules with the inconsistent analysis problem ex-
empli�ed by history H1. This problem is better cap-
tured by the introduction of a new phenomenon we
call NP2L (see below). Furthermore, we argue that
this phenomenon should be disallowed at the higher
ANSI REPEATABLE READ isolation level but not

at the READ COMMITTED level c.f. [2]. The in-
consistent analysis problem arises from transaction
t2 reading an inconsistent view of the database items

x and y. Item x is read after t1 has updated it and y

is read before t1 has updated it. The problem there-
fore is better described as a Fuzzy or Non-Repeatable
read not as a Dirty Read. From a user's perspective
the value read by t2 in H1 is not one that is later
aborted as in the case of a Dirty Read. Rather the
values reect partial changes made by other transac-
tions. It should therefore be admitted at the READ
COMMITTED level but excluded at the REPEAT-
ABLE READ level. Another example of the Fuzzy



read problem appears in H2, a history that is sym-
metric to H1.

H2 : r2[x = 50]r1[x = 50]w1[x = 10]r1[y = 50]
w1[y = 90]c1r2[y = 90]c2

To prevent this problem Berenson et al. de�ned
phenomena P2 which we state below.

P2 : ri[d] � wj [d] � ei

Again the intention is to prevent inconsistent reads
of database items by ensuring no other transaction tj
may change the value of a data item once read by ti

until after ti has terminated. It is not always unsafe
to do this. For example the schedule, ri[d]wj [d] ai cj ,
is serializable but not allowed by P2.
In our de�nition we replace P2 with two phenom-

ena NP2R and NP2L to capture the two symmet-
ric phenomena that lead to Fuzzy reads of database
items. NP2L captures the problems of inconsistent
analysis found in H1 (thus allowing us to use the loose
interpretation NP1 admitting more schedules at the
lower ANSI READ COMMITTED level) and NP2R
captures the Fuzzy read problem of H2.

NP2R : ri[d] � wj [d] � (ci ^ cj)

NP2L : wi[d] � rj [d] � (ci ^ cj)

Although excluding phenomena NP2L, and NP2R
from schedules allows more serializable schedules
than disallowing P2, they still disallow some se-
rializable schedules. For example, the sched-
ule ri[d]wj [d] ci cj is serializable but disallowed by
NP2R. This raises the following question. Can we
simply characterise using our notation a phenomena
that captures only the schedules that read inconsis-

tent views and no more? The answer to this is no.
Such a de�nition would need to include reachability
in the associated conict graph of a schedule. This

type of property is not expressible in our notation.
The ANSI standard did not disallow schedules con-

taining so called \dirty writes". This was identi�ed
and correctly recti�ed by the addition of the P0 Phe-
nomenon in [2]. This phenomenon can also be weak-
ened to NP0 (below) if we are only interested in iso-
lation properties. In practice its stricter form P0

is more useful for recoverability and consistency rea-
sons.

P0 : wi[d] � wj [d] � ei

NP0 : wi[d] � wj [d] � (ci ^ cj)

Using these phenomena we provide de�nitions for the
lowest three isolations levels; see Table 1.

5 Disallowing Phenomena Pro-

vides Conict Serializability

We now show that if a schedule exhibits none of the
phenomena NP0, NP1, NP2L or NP2R then it
will be conict serializable as de�ned in De�nition5 2.
We �rst prove the following lemma.

Lemma 1 If a conict exists between two transac-

tions, ti and tj (ti 6= tj), on data item d which we

can write generically as

oi[d] � oj [d] ^ ei ^ ej

in a schedule s and phenomena NP0, NP1, NP2L,

NP2R do not occur over the actions of this conict

then either (ei � oj [d] and ei = ci) or ej = aj .

Proof By case analysis of the types of conict.

I ri[d] � wj [d]^(ci^cj) butNP2R does not occur
so ci � wj [d], as required.

II wi[d] � rj [d]^(ci^cj) but NP2L does not occur
so ci � rj [d], as required.

III wi[d] � wj [d]^ (ci ^ cj) but NP0 does not occur
so ci � wj [d], as required.

IV ri[d] � wj [d]^ (ci ^ aj) but ej = aj , as required.

V wi[d] � rj [d] � (ai^cj) but NP1 does not occur
which rules out this type of conict completely.

Lemma 2 If transaction ti aborts in a schedule s

that contains no NP1 phenomena then no conict

can exist in s that orders a di�erent transaction, say

tj , after ti.

Proof The only possible conict candidate to order
tj after ti is a conict of type V but this conict is
excluded by NP1.

5This is equivalent to the ANSI Isolation level REPEAT-

ABLE READ.



Theorem 1 All schedules, s, which do not exhibit

phenomena NP0;NP1;NP2L;NP2R are conict

serializable.

Proof Suppose s is not conict serializable. Let
G = (V;E) be the conict graph constructed from
s as follows. The vertices of G are the transactions
in s and an edge (ti; tj) is in E if there is a conict

between ti and tj (ti 6= tj) and the accesses of this
conict are ordered oi[d] � oj [d]. Clearly, s is seri-
alizable i� G is acyclic (A proof would be similar to
Theorem 2.1 [3]).

Suppose s is not serializable without loss of gener-
ality let the smallest cycle in the conict graph G be
denoted by

t1
d1�! t2

d2�! : : :
dm�1
�! tm

dm�! t1

By Lemma 2 no conict ordering ti
di�! ti+1 : 1 �

i < m in the cycle exists where ei+1 = ai+1 (so all
conicting transactions in the cycle commit).
By Lemma 1 in each conict ci � oi+1[d] : 1 �

1 < m and also oi � ci : 1 � i � m because all
actions must be before their terminals, thus we can
order the conicts in the graph as follows.

o1[d1] � e1 � o2[d1] � e2 � o2[d2] � e3 : : : � em � o1[dm]

This leads to a contradiction since e1 � o1[dm] may
not occur in s, so s is serializable.

2

6 Enriching Schedules with

Predicate Accesses

We now extend our model with some new types of
accesses. Given a predicate P we add a new action,
ri[P ], to denote a read of the set of data items that
ful�ll P . For example, P might be \all employees
that are male", so that ri[P ] denotes transaction ti

reading all those employees that are male. We also
add two types of write actions wi[insert y in P ] and
wi[delete y in P ], these denote actions that insert
or delete a new data item, y, in a way that could

change the values returned by a ri[P ] access
6. We

write wi[y in P ] to denote either an insert or a delete
access. In our example above wi[y in P ] might be in-
serting or deleting a male employee. In this extended
model a phenomenon known as phantoms may occur.
We restate an example from [2] that exempli�es this
phenomenon.

Example 1 Transaction ti performs a

<search-condition> to �nd the list of active

employees. Then transaction tj performs an insert

of a new active employee and then updates d
0, the

count of employees in the company. Following this ti
reads the count of employees as a check and �nds a

discrepancy. The schedule can be written as:-

ri[P ]wj [insert d in P ] rj [d
0]wj [d

0] cj ri[d
0] ci

In order to characterise this phantom phenomenon
Berenson et al. [2] provide the following de�nition
which we restate in our notation as follows.

P3 : ri[P ] � wj [d in P ] � ei

Strictly speaking this does not completely charac-
terise all phantom phenomena. Consider Example 2
below.

Example 2 Transaction ti deletes an active em-

ployee. Transaction tj then reads the count of ac-

tive employees z, this will include the one previously

deleted by ti. Transaction tj then reads the set of all

active employees, this will not include the employee

deleted by ti, and then commits. Finally ti updates

the count of new employees and commits. The sched-

ules can be written as follows.

wi[delete y in P ] rj [z] rj [P ] cj ri[z]wi[z] ci

The schedule of Example 2 contains a phantom
read but it is allowed by P3 therefore strictly speak-
ing the characterisation of phantom phenomena P3
given by Berenson et al. appears to permit some

6Item y does not have to directly satisfy P for this to be

true.



kinds of phantoms. Furthermore, it is claimed this
phenomena based de�nition is equivalent the lock-
ing based de�nition of serializable isolation LOCK-
ING SERIALIZABLE they give [2]. In this de�ni-
tion predicate write locks are not released until the
transaction commits or aborts, which would prevent
the problem in Example 2.
It appears that Berenson et al.'s [2] phenomenon

based de�nition of SERIALIZABLE isolation admits
schedules with phantoms, and that it is not equiv-
alent to the locking based de�nition they provide
which does not allow phantoms.
This discrepancy seems to originate from an as-

sumption that a predicate read operation r[P ] will
conict with any previous writes (be they deletes or
inserts) to data items satisfying the predicate. Imple-
mentations do exist to detect exactly this. In some a
ag is set in all index entries when a row is deleted,
this ag is later garbage collected. Similar implemen-
tation details could solve the problem exempli�ed in
Example 1. Rather than make reference to implemen-
tations it seems more sensible to de�ne a complete set
of phenomena that capture the behavior of both ex-
amples. We therefore de�ne phenomena NP3R, and
NP3L in an analogous way to NP2R and NP2L as
alternatives to P3. We also de�ne a predicate form
of the dirty read and dirty write phenomena which
we call NP21

2
and NP21

4
respectively.

NP3R : ri[P ] � wj [d in P ] � (ci ^ cj)

NP3L : wi[d in P ] � rj [P ] � (ci ^ cj)

NP21
2
: wi[d in P ] � rj [P ] � (cj ^ ai)

NP21
4
: wi[d in P ] � wj [d in P ] � (ci ^ cj)

We are now in a position to de�ne isolation levels in
terms of all our new phenomena see Table 1.

7 Conclusion

We provided a phenomenon based de�nition for iso-
lation levels which is also applicable to non-locking
based schedulers. Our de�nition admits serializable
schedules which are excluded by the de�nitions given
in [2]. We have shown that if all our isolation require-
ments are met, schedules will be serializable under
our extended de�nition.

P0 NP1 NP2R NP3R

Isolation Level NP2
1

4
NP2L NP3L

NP2
1

2

READ UNCOMMITTED { + + +

READ COMMITTED { { + +

REPEATABLE READ { { { +

SERIALIZABLE { { { {

Table 1: De�nition of isolation levels. [+] denotes a
phenomena that is allowable at a particular isolation
level whereas [{] denotes that the phenomena is not
allowed in any schedules achieving this isolation level.

The authors would like to thank the editor and ref-
erees for their useful comments and criticisms during
the preparation of this paper.

References

[1] ANSI x3.135-1992. American National Standard

for Information Systems{Database Language{

SQL, November 1992.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O'Neil, and P. O'Neil. A critique of ansi sql
isolation levels. ACM SIGMOD Record, 24(4),
1995.

[3] P.A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database

Systems. Addison-Wesley, Reading, MA, 1987.

[4] P.A. Bernstein and E. Newcomer. Principles of

Transaction Processing. Morgan-Kaufmann, San
Mateo, CA, 1997.

[5] J. Gray and A. Reuter. Transaction Processing:

Concepts and Techniques. Morgan Kaufmann,
San Mateo, CA, 1993.

[6] J. Melton and R. Simon. Understanding the New

SQL: A Complete Guide. Morgan-Kaufmann, San
Mateo, CA, 1993.


