Timer-Driven Database Triggers and_Alerters:
Semantics and a Challenge

Eric N. Hanson and Lloyd X. Noronha

301 CSE

CISE Department
University of Florida
Gainesville, FL 32611
352-392-2691
hanson@cise.ufl.edu

Abstract

This paper proposes a simple model for a timer-
driven triggering and alerting system. Such a system
can be used with relational and object-relational
databases systems. Timer-driven trigger systems have
a number of advantages over traditional trigger
systems that test trigger conditions and run trigger
actions in response to update events. They are
relatively easy to implement since they can be built
using a middleware program that simply runs SQL
statements against a DBMS. Also, they can check
certain types of conditions, such as “a value did not
change” or “a value did not change by more than
10% in six months.” Such conditions may be of
interest for a particular application, but cannot be
checked correctly by an event-driven trigger system.
Also, users may be perfectly happy being notified
once a day, once a week, or even less often of certain
conditions, depending on their application. Timer
triggers are appropriate for these wusers. The
semantics of timer triggers are defined here using a
simple procedure. Timer triggers are meant to
complement event-driven triggers, not replace them.
We challenge the database research community to
developed alternate algorithms and optimizations for
processing timer triggers, provided that the
semantics are the same as when using the simple
procedure presented here.

1 Introduction

The trigger systems in current database products are
synchronous. In other words, trigger conditions are
checked inside of update transactions, and trigger

actions run inside the triggering transaction. This has
the advantage that triggers can be used to enforce
integrity constraints, and that triggered actions that
update the database will only be carried out if the
triggering transaction commits. However, checking
trigger conditions inside wupdate transactions
effectively limits the total number of triggers that can
be specified for performance reasons. Moreover,
when triggers are used as alerters (rules to notify
humans when changes of interest have occurred in
the data), checking trigger conditions inside update
transactions is overkill in some cases. It may be
perfectly reasonable to be notified only once an hour,
once a day, or once a week when an interesting
change occurs. This is especially true when the
change of interest is based on an aggregation, such as
a sum, average, or count.

Also, with a timer trigger, it is possible to check
conditions such as “did not change” or “did not
change by more than 10% in six months.” These
conditions can be true even if the relevant data is not
updated, so they cannot be checked correctly in a
trigger system driven by update events. Some type of
timer-driven polling mechanism is required.

Scalable trigger processing has recently been
identified as an important research topic by a group
of leading database researchers [1]. Checking trigger
conditions infrequently, when this is acceptable for
the application, is an excellent way to improve the
scalability of a trigger system. Many more timer-
driven triggers than synchronous triggers can be
handled in a high-update-rate database, assuming that
timer expiration for each trigger is not too frequent.
Obviously, checking thousands of trigger conditions

T This research was supported in part by grants from the Defense Advanced Research Projects Agency and Informix

Software, Inc.

every second using a timer-driven mechanism is a
recipe for disaster. But a trigger system can check
thousands, perhaps millions of trigger or alerter
conditions daily and perform well.

Timer driven triggers similar in some respects to the
ones discussed here are not entirely new. Batch
processing systems that can automatically create
reports at scheduled times and email them to users or
print them for delivery have been around for years.
The goal of this paper is to formalize the semantics of
a timer trigger system.

The discussion presented here is not meant to
advocate that timer-driven triggers should completely
replace conventional synchronous triggers, such as
SQL-3 triggers [2], or asynchronous triggers that are
checked immediately after update transactions
commit, as in the TriggerMan system [3]. Rather,
timer-driven triggers complement them. Developers
can choose timer driven triggers when they are useful
for their application.

This paper discusses a timer-driven triggering
mechanism, which is useful in situations where only
periodic trigger condition checking is required, and in
situations where it is simply too expensive to check
trigger conditions within update transactions. One of
the advantages of the approach is its simplicity. It can
be implemented in middleware over a DBMS,
making use of the DBMS query processor for trigger
condition testing. The middleware can run in an
external process, inside an object-relational DBMS
extension module (e.g. an Informix DataBlade), or in
a combination of the two. The remainder of this
paper discuss the proposed trigger language, trigger
processing architecture, and system implementation.

2 Trigger Language

We propose a timer-driven trigger mechanism based
on the following trigger language. First, database
tables are defined as data sources to the trigger
processor. The trigger processor knows the schema of
each data source table, and knows which column or
columns make up the primary key of each data
source. In the command syntax notation given in this
paper, items in curly brackets are optional. Items in
angle brackets will be more fully specified later.

2.1 Timer Trigger Creation

A timer-driven trigger can be created with the syntax
shown below.

create timer trigger <triggername> {in
<triggerset>}
from <from-clause>

{on event}

{when <when-qual>}

[check every <time-specification> | check using
<calendar-specification>]

{initialize {immediately | on first timer
expiration} }

{for each {row | set}}

do <action>

The from clause of the create timer trigger
command can contain either a parenthesized SQL
select statement, the name of a data source, or the
name of a view defined on one or more other data
sources or views.

Views can be created on data sources using the
normal SQL create view command, augmented with
a primary Kkey clause. This command has the
following syntax:

create view <viewname> as
select <target-list>
from <from-list>
{ where <view-qual> }
{ group by <group-attr-list> }
{ having <view-having-qual> }
{ primary key (<attr-list>) }

If the from clause of the view definition contains
only one table or view name, and the select in the
view definition contains the key of this table or view
in the target list, then a primary key clause does not
have to be specified. Instead, the key is inferred to
have the same attributes as the source table or view.
If the view is an aggregate query with a group by
clause, then its key is the set of attributes specified in
the group by clause. If it is not possible to infer the
key or the attributes for a trigger’s view do not form a
key, then error messages are signaled and the trigger
deactivated. A nested select statment in the from
clause may have a “primary key (<attr-list>)”
clause.

The on clause allows the user to check to see whether
a row was inserted into, deleted from, or updated in
the view or data source given in the from clause
since the last time the trigger's timer expired. We'll
discuss timer expiration more below. The event may
be insert, delete, update or update(<attribute-
list>). If there is no on clause, then every time the
trigger's timer expires, all rows in the trigger's data
source or view are retrieved, and the trigger's action
is executed for those rows.

If and only if the trigger has an on update clause, a
Boolean expression can appear in the when clause.
This expression may refer to any field retrieved by
the view of the trigger. The notation old may be used
in the when clause before any field name. For

example, old.salary would be the old value of the
salary field retrieved by the view. If the when clause
does not appear for an on update trigger, it defaults
to TRUE.

The check every and check using clauses specify
when timers expire for the trigger. If the trigger has a
check every <time-units> clause, then the timer
expires after <time-units> of time have passed. The
trigger’s timer is then reset to go off <time-units>
later. If the trigger has a check using <calendar-
specification> clause, then the trigger’s timer expires
at the time points specified by the calendar. The
details of calendar specification are beyond the scope
of this paper. However, a <calendar-specification>
can be used to create a trigger whose condition is
checked every Monday, Wednesday and Friday at
5:00PM, for example.

The initialize clause is optional. The default value for
this clause when it does not appear is immediately.
The meaning of this clause will be defined later.

The for each clause is also optional. Its default value
is for each row. If the timer trigger is a for each row
trigger, then the action of the trigger is run once for
each qualifying row. If the timer trigger is a for each
set trigger, the action is run once for the qualifying
set of rows, even if the set is empty. The action of
the trigger can access a cursor to iterate over the set
of rows retrieved in this case. Details of this are
beyond the scope of this paper.

The do clause contains the trigger action. The action
can contain a command in the trigger system’s
command language [3], or a begin ... end block
containing a sequence of commands.

The semantics of the language are defined by a
procedure given below. This procedure can be used
to implement the language, but that is not required.
The only requirement is that the results of timer-
driven trigger processing must be as if this procedure
was used. This leaves open opportunities for
optimization.

2.2 Trigger Processing Procedure

The view V of a timer-driven trigger is defined as the
data source, view, or select statement given in its
from clause. The behavior for all cases, including no
on clause, on update, on delete, and on insert is
given below. In the following algorithms, it is
implicitly assumed that the initialization and timer
expiration procedures set the timer of the trigger to
go off at the next appropriate time.

2.2.1 Algorithm NoOnClause

We restate the no on clause case as an algorithm for
completeness. The behavior of timer triggers with no
on clause is defined by the following procedure:

Initialization
Do nothing.
Timer Expiration

Run a query to retrieve the contents of the trigger’s
view. Run the trigger action for the data retrieved.

2.2.2 Algorithm OnUpdate

The behavior of timer driven triggers which have an
on update event clause is defined according to the
following procedure.

Initialization

If the trigger is an initialize immediately trigger,
retrieve the current contents of the view and store
them in TEMPI, and set the timer to go off at the
appropriate time. If it is an initialize on first timer
expiration trigger, then set the timer to go off at an
appropriate time, and when the timer goes off the
first time, retrieve the current contents of the view
into TEMP1.

Timer Expiration

After initialization, when the timer for the trigger
goes off, perform the following steps:

1. Retrieve the current contents of V and store the
result in TEMP2.

2. Let the when clause condition of the timer-
driven trigger be called W. Run the following
query, and run the trigger action for the values
retrieved.

select *

from TEMP1, TEMP2

where TEMP1.key=TEMP2.key

and W

and (TEMP1.attr1 <> TEMP2.attrl or
TEMP1.attr2 <> TEMP2.attr2 ... or

TEMP1.attrN <> TEMP2.attrN)
-- At least one attribute was updated.

3. Delete TEMPI1.

' For example, if the trigger is a "check every day at
2am" trigger with an initialize on first timer
expiration clause, and the trigger is created at 3pm,
then its view's contents would first be retrieved at
2am the next evening, and stored in TEMPI1.

4. Rename TEMP2 to TEMP1 .EI

If the trigger’s on update clause specifies an attribute
list of the form (attr il, attr i2, ... attr iK), rather
than no attribute list, step 2 above is modified. In that
case, the final and term is replaced by:

(TEMPl.attr i1 < TEMP2.attr il or
TEMP1.attr i2 <> TEMP2.attr i2 ... or
TEMP1.attr iK <> TEMP2.attr iK)

The procedure as given defines the semantics of
timer driven trigger processing for timer triggers with
an on update clause.

The way Algorithm OnUpdate is defined, a trigger
cannot fire for a tuple unless that tuple exists when
the timer expires and at the previous time the timer
expired. When we say “tuple” we mean “tuple with
the same primary key.” In other words, for an on
update trigger to fire for a tuple, the tuple must have
been updated, at least logically. It may have been
deleted and reinserted, but that is a logical update
from the point of view of the timer trigger system.

We believe that it is important for on update timer
triggers to behave this way to make it easy for users
to understand how the system works. The on insert
and on delete timer triggers also behave in a way that
should be relatively easy for users to understand.

2.2.3 Algorithm Onlinsert

When a timer trigger has an on insert clause, the
procedure that defines its behavior is slightly
different. It is defined as follows.

Initialization

The initialization procedure is the same as for on
update triggers.

Timer Expiration
When the timer goes off, these steps are executed:

1. Retrieve the current contents of V and store the
result in TEMP2.

2. Form TEMP3 as follows (the - sign represents
the set difference operation):

TEMP3 = TEMP2 - TEMP1
3. Run the trigger action for the values in TEMP3.

> Not all SQL databases support a table rename
operation. However, the timer driven trigger system
can simulate a rename operation by saving a new
table name in its catalogs and logically associating it
with TEMP1.

4. Delete TEMP1.
5. Rename TEMP2 to TEMPI1.
6. Delete TEMP3.

For an on insert timer trigger to fire for a tuple, that
tuple must not have existed in the view the previous
time the timer expired, and must exist at the current
timer expiration.

2.2.4 Algorithm OnDelete

When a timer trigger has an on delete clause, the
procedure that defines its behavior is same as for the
on insert clause except that step 2 is replaced with:

TEMP3 = TEMP1 - TEMP2.

For an on delete timer trigger to fire for a tuple, that
tuple must have existed in the view when the timer
expired previously, and must not exist now.

3 Examples

Examples of triggers created with the language just
described are given here. Consider the following
schema for a retail store checkout database:

checkout(cno,date,time,sno)

lineitem(lino,cno,pno,qty,unitprice)

product(pno,description,category,unitprice,qoh)

store(sno, address, phone, manager name,
manager email)

For each checkout, there are multiple line items. The
unitprice attribute represents the price of a product.
Unitprice is copied from a product table row into a
lineitem row when someone purchases one or more
of that product. The qoh field of product stands for
quantity on hand.

As a simple first example, suppose user Bob wants to
be notified by email whenever the quantity on hand
of the item "25 oz. claw hammer' is less than 10. This
trigger does not specify any update event, so we can
specify it with no on clause, like this:

create timer trigger notify bob
from (select pno, qoh from product
where description = '25 oz. claw hammer'
and qoh < 10)
check every day
do email('Bob@acme.com’,
'25 o0z. claw hammer qoh = :qoh')

The use of the notation :qoh in the do clause of the
trigger indicates that :qoh is supposed to be replaced
using macro expansion.

A similar but slightly more sophisticated example is
shown next. This example is a transition trigger,
since it refers both to the old and current state of data.
This trigger notifies Bob whenever the quantity on
hand of item '25 oz. claw hammer' was 10 or more,
but then drops below 10, checking this condition
daily.

create timer trigger notify bob2
on update(qoh)
from (select pno, qoh
from product
where description = '25 oz. claw hammer')
when qoh < 10 and :old.qoh >= 10
check every day
do email('Bob@acme.com', '25 oz. claw hammer
goh = :qoh; old qoh = :0ld.qoh")

A trigger that is based on a more sophisticated query,
involving an aggregate, is shown below. This trigger
notifies the manager of a store whenever there is
more than a 30% jump in sales for the week,
compared with the previous week:

create timer trigger thirty pct sales jump
on update
from (select store.sno as sno, manager email,
sum(qty*unitprice) as sales
from product, lineitem, checkout, store
where product.pno=lineitem.pno
and lineitem.cno=checkout.cno
and store.sno=checkout.sno
and checkout.date>=CURRENT DATE - 7
group by sno, manager email)
when sales > 1.30*old.sales
check every week beginning 'Sunday at 2:00AM'
do email('manager email', 'total sales jump\: sno
= :sno, this week= :sales, last week = :old.sales')

Notice that no primary key clause is needed for the
select statement in the above trigger because the
group by attributes are automatically inferred to be
the primary key. This trigger also illustrates the use
of the CURRENT DATE expression, which
evaluates to the current date, as allowed in SQL [4].
Similarly, CURRENT TIME and
CURRENT TIMESTAMP can also be used. The
backslash used in the do clause of the trigger is the
escape character and is used to allow the : to appear
in the output without having macro processing
applied to it.

A useful type of trigger checks if new data has
entered a view. For example, suppose that Fred wants
to know whenever new rows are entered in the

product table with category="hardware'. This could be
done with the following view and trigger:

create view hardware as
select *

from product

where category="hardware'

create timer trigger notify fred new hw
from hardware
on insert
check every day
do email('fred@acme.com’,
'new hardware product :pno, :description’)

4 The System Architecture and
Implementation Proposal

The timer driven trigger mechanism can be
implemented as a multithreaded server process that
communicates with a DBMS. A user interface needs
to be provided to allow triggers to be created, deleted,
activated, deactivated and so forth.

The trigger system catalogs can be stored as tables in
a database maintained by the DBMS. These catalogs
contain information about trigger definitions, view
definitions and names of tables that the trigger
system can access. A cache storing the information of
recently accessed catalog entries can be used to speed
up processing.

5 Possible Optimizations

A number of alternate algorithms can be used that
may speed up timer trigger processing. We discuss
some of them below and elaborate on them to a
limited extent in a separate paper [5]. An optimizer
could be developed to select among alternative
algorithms, thus speeding up processing of timer
triggers.

There are several cases to consider, depending on
whether the trigger is an on insert, on delete, or on
update trigger, whether it has no on clause, whether
it has a transition condition in its when clause, and
potentially other criteria. A trigger is said to have a
transition condition in its when clause when it
contains the symbol old. If the trigger's when clause
does not refer to any prior state of the view, but only
the latest state, then its when condition is not a
transition condition.

It appears that there are many possible algorithms for
the different cases just identified. We challenge the
database research community to find them, and to
develop optimization strategies for choosing among

them! A legal alternative algorithm must not change
the semantics of timer triggers defined in this paper.

Some suggestions for developing enhanced
algorithms for timer trigger processing are presented
briefly as follows. In the case of an on update
condition with a transition condition (one that
contains :old), some additional optimizations are
possible compared with the simple algorithm
OnUpdate presented in section EI For certain when
conditions (e.g. R.x > old.R.x), it is possible for the
system to know that if the when condition is true for
a row, the row definitely changed. This eliminates the
need to test explicitly to see if the row changed.

If the database being monitored supports
instantaneous triggers (i.e., regular triggers or
asynchronous triggers), they can be used in some
cases to speed up processing of timer-driven triggers.
Instantaneous triggers can be used to record the keys
of those changed rows in the database that are
relevant to the view of a trigger. This information can
then be used on the next timer expiration for
processing the corresponding trigger. A more detailed
discussion of this type of alternate timer trigger
processing algorithm is given in [6].

The timer trigger model we have described offers
numerous opportunities to increase performance by
sharing the work of evaluating sub-expressions. At
the simplest level, when multiple triggers are defined
with identical conditions (including the from, on and
when clauses if present), then the trigger condition
can be checked just once for all of them. The
qualifying tuples can be passed to each trigger action
for execution. Moreover, at most one copy of the
view for the trigger must be maintained.

More sophisticated techniques to exploit shared sub-
expressions are also possible. For example, two on
update triggers defined on the same view but with
different when clause conditions could share the
same stored view. It may well be possible to develop
other techniques for sharing sub-expressions, such as
identifying when one view contains another view.

A large number of view maintenance algorithms have
been proposed [7]. Existing view maintenance
algorithms can be inserted into a timer trigger system
as a subroutine. If the view maintenance algorithm is
treated as an abstraction, the complexity of the timer
trigger processing algorithm will not increase
significantly. The real challenge is deciding when to
use this algorithm. It will not always be better to use
view maintenance than to re-materialize the view
when needed. Future research on optimization
strategies to choose among alternative timer trigger
processing algorithms may bear fruit.

6 Conclusion

This paper has presented a clean, simple model for
timer-driven triggers. The behavior of a timer-driven
trigger is defined by a simple procedure. A system
may implement timer-driven triggers with a different
procedure, as long as the triggers behave as if the
original, simple procedure was used. We challenge
the database research community to develop designs
and implementations of enhanced timer-driven
trigger processing systems, within the parameters
defined here.

References

[1] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt,
M. Franklin, H. Garcia-Molina, J. Gray, J.
Held, J. Hellerstein, H. V. Jagadish, M.
Lesk, D. Maier, J. Naughton, H. Pirahesh,
M. Stonebraker, and J. Ullman, “The
Asilomar Report on Database Research,”
SIGMOD Record, vol. 27, pp. 74-80, 1998.

[2] R. Cochrane, H. Pirahesh, and N. Mattos,
“Integrating Triggers and Declarative
Constraints in SQL Database Systems,”
presented at Proceedings of the 22nd VLDB
Conference, 1996.

[3] E. N. Hanson, C. Carnes, L. Huang, M.
Konyala, L. Noronha, S. Parthasarathy, J. B.
Park, and A. Vernon, “Scalable Trigger
Processsing,” presented at Proceedings of
the IEEE Data Engineering Conference,
Sydney, Australia, 1999.

[4] C. J. Date and H. Darwen, A Guide to the
SQL Standard, 3rd ed: Addison-Wesley,
1993.

[5] E. N. Hanson and L. X. Noronha, “Timer-
Driven Database Triggers and Alerters,”
University of Florida CISE Department,
Gainesville, FL, TR-011, August 5, 1999.

[6] L. X. Noronha, Enrhanced Techniques for
Timer Trigger Processing. Gainesville, FL,
MS thesis, CISE Department, University of
Florida, 1999.

[7] A. Gupta and 1. Mumick, “Materialized
Views: Techniques, Implementations and
Applications,” MIT Press, 1999.

	Timer-Driven Database Triggers and Alerters: �Semantics and a Challenge†
	Introduction
	Trigger Language
	Timer Trigger Creation
	Trigger Processing Procedure
	Algorithm NoOnClause
	Algorithm OnUpdate
	Algorithm OnInsert
	Algorithm OnDelete

	Examples
	The System Architecture and Implementation Proposal
	Possible Optimizations
	Conclusion
	References

