
1

Distributed Transactions in Practice
Prabhu Ram, Lyman Do, and Pamela Drew

Boeing Phantom Works, Mathematics and Computing Technology,
The Boeing Company,

P.O. Box 3307, M/S 7L-40,
Seattle, WA 98124-2207.

{prabhu.ram, lyman.s.do, pamela.a.drew}@boeing.com

Abstract
The concept of transactions and its application has

found wide and often indiscriminate usage. In large
enterprises, the model for distributed database applications
has moved away from the client-server model to a multi-tier
model with large database application software forming the
middle tier. The software philosophy of "buy and not build"
in large enterprises has had a major influence by extending
functional requirements such as transactions and data
consistency throughout the multiple tiers. In this article, we
will discuss the effects of applying traditional transaction
management techniques to multi-tier architectures in
distributed environments. We will show the performance
costs associated with distributed transactions and discuss
ways by which enterprises really manage their distributed
data to circumvent this performance hit. Our intent is to
share our experience as an industrial customer with the
database research and vendor community to create more
usable and scalable designs.

1 Introduction
In today's competitive business world, enterprises

prefer to focus on their core business. They spend minimum
effort on IT development projects and build their business
systems by integrating commercial off the shelf (COTS)
software [COR98, MIC98]. The enterprises' management
have deemed this approach to be the most cost effective
way of developing their information management systems.
Each COTS software meets a functional need of the
business system. Selected COTS software products are
integrated using distributed communication technology
such as CORBA, DCE, and DCOM [OMG98, OSF98, MIC98].
Examples of such COTS software include enterprise
resource planners, product data managers, enterprise
process modelers, financial management software, etc.

Many COTS software products are vertical database
applications that store their business and internal data in a
database system. If the enterprise is geographically
distributed, as most large enterprises are, the COTS software
products and their underlying databases are often
distributed too for locality, autonomy, and performance
reasons. Most of these COTS software products use the
DBMS as a data archive that provides access to their

contents (business data). Application and business logic
are embedded in the COTS software.

In the classical client/server model (Figure 1) of system
deployment most of the logic pertaining to the application is
embedded in the server. "Thin" clients request services of
the servers and the servers execute the application logic on
the client's behalf. The function of the transaction manager
was to coordinate transactions between databases. The
proliferation of generic, pre-built vertical applications - the
COTS software products - has introduced additional tiers
between the client and the application servers. These multi-
tiered architectures (Figure 2) have had two major impacts
on distributed transactions. First, the global transaction
manager is no longer directly interacting with the databases
but the coordination is through the COTS software
products. As we will describe in Section 2, the COTS
software has to provide additional functionalities to
facilitate such coordination. Second, the multi-tier
architectures need a heterogeneous commit protocol which,
as shown in Section 3, imposes a significant performance
penalty on distributed transactions.

Figure 2: Multi-Tier Architecture

Applications

DBMS

COTS

DBMS

COTS

TP Manager

Figure 1: Two Tier Architecture

Applications

DBMS DBMS

TP Manager

2

2 Effect of COTS Software
In this section, we introduce the effects COTS software

has on distributed systems. The implications on transaction
management and how enterprises manage the consistency
of their data are also discussed.

2.1 COTS Software based Environments
Users interact with COTS software by means of

"business transactions", which are atomic units of work
from the users' perspective. A business transaction may
constitute multiple interactions between the applications
and the users. These interactions may also cause the COTS
software to initiate multiple database transactions to the
underlying databases. If only one COTS software is
involved, it may be possible to use the DBMS’ native
distributed transaction management facility if the underlying
databases are homogeneous, or to use a transaction
processing monitor to provide transaction management
support. However, a typical integrated business system
consists of more than one COTS software and usually these
COTS software products and their embedded
(heterogeneous and autonomous) databases are integrated
in a multi-tiered architecture. In addition, most COTS
software products are developed by independent software
vendors and the integration with other products occurs
almost always much later in its lifecycle and in some cases,
in an ad hoc manner. Even when products interoperate, it is
most likely they only interact at the interface level and not at
the semantic level. For example, the definition of an atomic
unit of work in one product may not match that of another.
The heterogeneity and autonomy of the encapsulated
databases coupled with the COTS software not being
designed for large scale integration make the task of
providing transaction management much more difficult in an
integrated system. In order to provide transaction
management in this environment, each COTS software has
to function as a resource manager. It serves as a wrapper to
its encapsulated database (as shown in Figure 2) and
bridges the communication between a global transaction
coordinator and its encapsulated database(s).

2.2 Consistency Management Approaches
There are three possible scenarios as to how

transaction management can be implemented with COTS
software - a) the COTS software can use the native
transaction management facility of its embedded DBMSs
(with some limitations that we will discuss), b) the COTS
software interacts with an external transaction management
system to coordinate distributed transactions, and c) the
software provides no transaction management at all and lets
the end user assume the responsibility for maintaining data
consistency via business processes. In The Boeing

Company, we have production systems which are examples
of each of the above scenarios.

In the first case, there can be multiple homogeneous
DBMSs controlled by the same COTS software (due to
distribution) and the COTS software can choose to use the
distributed transaction management facility of the DBMS
product by bracketing the business transaction with
transaction begin and commit. The assumption clearly
is that the databases are now aware of each other and
function as one distributed database. This approach may
not allow multiple COTS software products to interact, due
to the potential heterogeneity of the embedded databases
and the encapsulation of the databases by the COTS
software products. Hence, using the native transaction
management function has limited applicability in integrated
multi-COTS software business systems.

If transaction management is required and the COTS
software encapsulates the database, most employ
middleware technology for the purpose. As a result of
encapsulation, the DBMSs participating in distributed
transactions must now coordinate their actions through the
COTS software products. Transaction management
components can either be embedded within the COTS
software or can be provided by an external software as a
service. Middleware, such as transaction processing
monitors [BEA96, TRA97], object transaction monitors
[ION97, RDPZ99], and transaction servers [MTS98], provide
the two phase commit mechanism by allowing distributed
transactions to be bracketed using proprietary transaction
begin and commit.

Regardless of whether the transaction manager is
embedded or is external to the COTS software, numerous
modifications must be made to the COTS software to
support the transaction manager. If a COTS software
encapsulates the underlying database and is expected to
interact transactionally with other software, it must be able
to behave as a resource manager to interact with a global
transaction coordinator and to re-direct the global
coordination to its encapsulated databases. This involves
mapping a global transaction to one or more local
transactions and exporting transaction states such as
PREPARED to allow coordination with externally originating
transactions. It must be noted that the concept of
heterogeneous two phase commit (2PC) and support for it
through operations such as PREPARE took nearly a decade
to get implemented by DBMS vendors. Breitbart [BRE90]
references several early research efforts that mentioned the
need for an operation such as PREPARE but it was not until
the last four to five years that most popular DBMS vendors
support such operations. Because COTS software products
encapsulate the databases, transaction coordination
happens at the COTS level instead of at the database level,

3

and the requirement to support 2PC has been passed on to
COTS software as well.

Given the technical complexities associated with
integrating external transaction managers into the
architecture and given that this requires modification of the
COTS behavior, several COTS software products simply do
not provide global transaction management and leave it up
to the end-users to mitigate the risks to their data through
their own business processes. This is fairly common in large
scale integration projects. This approach is aided by the fact
that most transaction management software is another
software system for the end-user to manage and the
maintenance cost becomes prohibitive in a long run. Hence,
there has not been enough of a push by end-users to
demand transaction management compliance of COTS
software products. Other factors which detract from
transaction management usage, such as performance
degradation, will be discussed in Section 3.2.

The business data is still valuable to the enterprise. So
even if the COTS software products do not provide
transaction management, the end-users have business and
management processes to maintain the consistency of data
in their business systems. An example of a business
process is that a user may not be allowed to execute a
particular application when another application is executing.
Business processes often depend on the end-users' training
and discipline and hence are prone to errors. Other
processes may be used to detect and correct inconsistent
data across COTS software. For instance, end-users may
monitor message traffic across COTS software by using
message entry/exit points in the distributed communication
layer and capture the message traffic as it flows through the
system. The captured messages may be written to a
database and be analyzed later for errors. For example, if
CORBA is the integration technology used, the messages
are captured each time an inter-ORB communication (ORB of
one COTS software to another) occurs using marshaling
exits. This essentially captures four message entry/exit
points (as shown in Figure 3) in a distributed business
transaction. This kind of reactive approach can detect failed
transactions but can never detect an incorrect interleaving
between two sub-transactions. As a result, data errors can
potentially proliferate to other applications due to the time
lag between the failed transaction and the manual correction
effort.

The risk of not detecting all the faults is assumed by the
end-user organization but this could be mitigated by the
COTS software characteristics and application semantics.
For example, if the COTS software versions its data, the
potential for conflict does not exist any more and only failed
non-atomic business transactions need to be detected.
Given the technical, management, and performance
complexities associated with incorporating distributed
transaction management into COTS software products (as
shown in Section 3.2), end users feel justified by following
processes such as these to improve the quality of their data
without using transaction management.

Given the three approaches to maintaining data
consistency, by native DBMS transaction management
functions, by middleware transaction managers, and by
leveraging business processes without any global
transaction coordination, an enterprise may choose any of
the above approaches (based on what their COTS vendors
supply) to maintain the consistency of its business data and
buttress it with their own business and data management
processes. However, many enterprises lean towards the last
approach of not using transaction management at all and
use their own business and management processes to keep
their data consistent. One dominant reason for this is the
performance overhead associated with transaction
management in distributed integrated systems.

3 The Performance Impact
Besides delivering on functionality, performance in

large distributed system is often the gauge of how
successful an implementation is. Transactions come with a
performance cost for reasons including rollback segments
maintenance, additional logging, etc. When transactions are
distributed and heterogeneous, other factors such as
database connections management and commit protocols
also contribute to the overhead.

When distributed databases are involved, presumed
abort 2PC is by far the dominant mechanism used in
commercial products to achieve atomicity in distributed
transactions. Coupled with strictness [BHG87], they
provide serializability to global distributed transactions. 2PC
is very often the only mechanism available to maintain data
consistency in many distributed systems. Additionally,
most of the 2PC implementations are coupled with
synchronous communication mechanisms (such as RPC)
causing each step of the transaction to be blocked until the
step preceding it has completed resulting in further
degradation of response time.

One alternative to synchronous 2PC for improving
transaction response time is asynchronous mechanisms
such as persistent queues. It allows a client to detach from
a server prior to the completion of the server execution,
resulting in better response time for the client. If the
asynchronous mechanism also guarantees transactional

Figure 3: Auditing of Distributed Message

COTS
Software

O
R
B

O
R
B

COTS
Software

Network

XX

X X

1

3

2

4

4

semantics (once and only once execution) it can be very
attractive to applications that do not require synchronous
(and blocking) behavior.

Interestingly, asynchronous mechanisms (which are
implemented as resource managers) also use the 2PC
protocol in their execution. They essentially break a
distributed transaction into three parts - one to deliver the
data to the asynchronous mechanism, the second to reliably
deliver the data to a remote computer (by the asynchronous
mechanisms), and the third to remove the data from the
asynchronous mechanisms. If databases are involved in
steps one and three, a heterogeneous 2PC protocol is
executed between the asynchronous mechanism and the
databases to give atomicity to those individual transactions.
Since the asynchronous mechanism guarantees once and
only once execution of its messages, the three steps
together behave as one atomic global transaction. Besides
giving a better response time for clients, by splitting an
atomic global transaction into three atomic transactions,
asynchronous transactional mechanisms have the potential
to improve transaction throughput.

An additional component of heterogeneous, distributed
transactions is the use of the XA interface [XA91]. If using
heterogeneous or encapsulated databases, the XA interface
is the only available commercial way of coordinating
commits of distributed transactions. XA is an X/Open
standard that is implemented by the resource manager
vendors and allows the resource manager to expose
transaction states for global commitment purposes. Both
synchronous and asynchronous protocols use the XA
interface to coordinate a transaction between database
systems and other resource managers. The use of the XA
interface also comes with a performance cost which we will
discuss in Section 3.2.

Since distributed transactions introduce overhead, we
performed several experiments to quantify the costs
associated with them. For various workloads we will show
the cost associated with performing a global commit and the
cost of using the XA interface to facilitate commit
coordination. We will also compare response time and
throughput of 2PC coordinated transactions against an
asynchronous transaction mechanism implemented using
transactional queues for various workloads and system
configurations.

3.1 Experimental Setup
Our experiments are designed to isolate the costs

associated with commit coordination and related
components of distributed heterogeneous transactions. To
monitor the behavior of the transaction management
components, the DBMS was required to perform uniformly
at all times. We achieved this by making all our database
operations Inserts – which causes a true write to the disk
system (as against an update for which the DBMS may go

to a cache and the commercial DBMS we used in our
experiments allows dirty reads). Our workloads varied from
single record insert to 1400 record inserts per transaction
characterizing a spectrum that can map on to OLTP to
Decision Support Systems type of workloads. The
experiments were also run in isolation without any non-
essential applications running. Records in our databases
were 100 bytes long each.

Our experiments were performed on three 300 MHz NT
servers with 128M RAM each. Two copies of a commercial
DBMS product were hosted on two servers and functioned
as autonomous DBMSs unaware of the other’s existence.
The DBMSs were tuned identically and the database and
log size were set large enough to handle our workloads
without causing extent allocation during the execution of
our tests. All the results reported are from warm runs - the
applications were run for a few minutes, followed by an
interval in which results were recorded, followed by the
application running for few more minutes. We controlled
the experiments using a commercial transaction processing
monitor that provided a heterogeneous 2PC mechanism and
a transactional queue which we used as the asynchronous
mechanism. The queue (which is also a resource manager)
was hosted in the third machine, so that the queue and the
DBMSs do not compete on I/O.

3.2 Results and Discussions
Figure 4 shows the overall response times of 2PC

coordinated synchronous transactions against the
equivalent uncoordinated distributed “transactions”. The
2PC coordinated transactions were implemented through the
XA interface to obtain connections and handles to the
DBMSs and used the 2PC mechanism provided by the TP
monitor to coordinate global transactions. The
uncoordinated operations were implemented by having the
client call remote servers that were implemented using the
DBMS’ native APIs and without blanketing with the global
transaction begin and commit. The risk here is that
global atomicity is not guaranteed and the intent of this

Figure 4: 2PC vs. Uncoordinated Transactions

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 10 50 100 150 200 400 600 800 1000 1200 1400
Workload per Transaction

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

2PC Total
Uncoord. Total

5

experiment is to highlight the cost associated with running a
coordinated transaction. The X-axis represents a wide range
of workloads. The response time is reported in milliseconds
on the Y-axis. From the figure, it can be seen that 2PC
coordination adds at least 25% more to the response time
across the breadth of the workloads. We will analyze the
components that cause this performance overhead in Figure
5.

Figure 5 shows the time taken by the individual
components of the 2PC coordinated transactions shown in
Figure 4. The components of a distributed transaction are
the time taken by the services to modify the databases and

the total time to coordinate the two sub-transactions. The
coordination component can be further broken down into
the time taken associated with XA and the time taken to
execute the 2PC algorithm. The 2PC execution time was
obtained by instrumenting before and after the commit call
of the distributed transaction and includes the local commit
costs at the two DBMSs.

While it is impossible to isolate the XA and 2PC
components, we used the following method to get to a very
close approximation. The time taken by a coordinated
transaction includes the total service time, two local commit
times, the extra time taken due to the usage of the XA
interfaces by the services, and the 2PC algorithm execution
time. Additionally, we instrumented the services to get the
time associated with sub-transactions' service times at each
DBMS when the uncoordinated “transactions” of Figure 4
were executed. We obtained the XA time by using the
following formula: Total time of 2PC coordinated transaction
- Total service time - 2PC time.

From Figure 5, as one would expect the time associated
with the 2PC algorithm execution is a constant regardless of
the workload. The XA times on the other hand range all the
way from 10% of the total transaction time for very small
workloads to over 30% of the total transaction time for larger
workloads. For a 10 insert transaction, the service times total
up to approximately 21%, the XA time approximately 14%,
and, the 2PC time approximately 65% of the total response
time of the transaction. For a 100 insert transaction, the
percentages are 37%, 37% and 26% for service times, XA

time, and 2PC time, respectively. The percentages for a 1000
insert transaction are 69%, 27% and 4%, respectively. It can
also be observed that the XA costs increase as the number
of SQL statements increase (shown by the magnitude of the
XA times in Figure 5 for larger workloads).

Figures 4 and 5 can explain why many COTS software
vendors are reluctant to include transaction management
components in their products. While the transaction
management components are required for maintaining data
consistency in a multi-COTS software integrated system, it
makes individual COTS software performance look bad.
Additionally, the COTS vendors try to follow SQL standards
(SQL92 for now) when interacting with a database so that
their product can function with most popular commercial
databases for a wider market appeal. The effect though is
that there is now more SQL traffic between the COTS
software and the DBMS (through the XA interface) and the
performance degradation is further amplified (as shown in
Figure 5). A further detrimental effect of following current
SQL standards is that the COTS software is unable to take
advantage of optimizations that may be available from
individual DBMS products such as special indices, SQL
hints, etc.

If the application can tolerate a time lag between their
sub-transactions and conflicting transactions are minimal,
asynchronous transaction mechanisms are a legitimate
alternative to 2PC coordinated transactions across COTS
software [DRD99]. Figure 6 shows the percentage
comparison of the response times between 2PC coordinated
transactions between the two databases vs. the enqueue
time into a persistent queue based asynchronous
transactions for various workloads. The enqueue time is the
perceived user response time. It includes the time to insert
records into the DBMS and to put the data in the queue as a
single 2PC transaction between one database and the
queue. The messages in the queue include an overhead for
message header. For smaller workloads (both single insert
and 10 inserts fit on one disk page), the overhead associated
with queue management makes 2PC coordinated
transactions a better performance option. The percentage
overhead for a 10 insert transaction is less than that for
single insert transactions, because the message header
overhead becomes a smaller percentage of the total
message. For all larger loads, the response time associated
with the queue is approximately 35-40% better than the
equivalent 2PC transactions. It is our observation from

Figure 5: Distributed Transaction Components

0

500

1000

1500

2000

2500

3000

3500

1 10 50 100 150 200 400 600 800 1000 1200 1400
Workload per Transaction

R
es

po
ns

e
Ti

m
e

(m
illi

se
c)

Commit

XA Time

Svc Time

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

1 10 50 100 150 200 400 600 800 1000 1200 1400

Workload per Transaction

R
es

p
o

n
se

 T
im

e
S

av
in

g
s

Enq Savings

6

experience that due to the nature of “business
transactions” and due to multiple interactions between the
COTS software and the databases in the context of one
“business transaction”, the workloads associated with
transactions in COTS based environments tend to be on the
larger side. As mentioned before we hosted the queue and
the databases on different machines so that they do not
compete on I/O in the NT servers. A side effect of this is
that all the enqueue operations between the queue and the
database now use the network to execute the 2PC
mechanism. In larger production strength machines, the
queues and the databases will mostly likely be in the same
computer though they are likely to be located on different
I/O sub-systems. So the enqueue savings shown in Figure 6
are likely to be higher in production systems than our
results would indicate.

Figure 7 compares the response time of 2PC
coordinated transactions vs. queue based asynchronous
transactions similar to that described in the previous
paragraph. Unlike Figure 6, Figure 7 compares the two
approaches when concurrent transactions (varied from 1-10)
are executed. We ran experiments for several workloads but
only show the results from representative of small (10
inserts/transaction), medium (150 inserts/transaction) and
large (500 inserts/transaction) workloads. As the number of
concurrent transactions increases, the response time of each
transaction degrades as anticipated for both approaches. In
general for smaller sized workloads, 2PC coordinated
transactions returned a better response time. It may also be
observed that the queue message overhead is quite
significant for lower workloads and make them unattractive
in these workload ranges. For the largest workload in Figure
7, the queue response time flattens after 5 concurrent
transactions. This is because the queue gets saturated with
the larger messages and the service that performs database
inserts becomes the bottleneck. We anticipate that for small
and medium size workloads, if we further increase the
number of concurrent transactions, the queue response time
will flatten out but the 2PC response time will continue to

grow linearly. The response time of the queue based
transactions are also negatively impacted by the experiment
configuration issue (remote database and queue) that was
discussed earlier and the response time will be better on
production strength machines.

Figure 8 compares the throughputs between 2PC
coordinated transactions and queue based transactions for
1-10 concurrent clients. We measured throughput as the
number of successful transactions executed within a fixed
time interval. For the queue based transactions, we initiated
the enqueue operations (1-10 processes) and after a brief
time lag, we initiated the dequeue operations (1-10
processes) to avoid starvation of the dequeue processes.
Similar to the enqueue operations of Figure 6 and 7, the
dequeue operations consists of dequeuing a message from
the queue, inserting the workload number of records into a
database, and then performing a distributed 2PC between
the queue and the local database. For the same workloads
of Figure 7, as anticipated the throughputs were inversely
proportional to the size of the workloads. In general, the
throughputs associated with the queue was better for all
workloads except for very small workloads. The
throughputs of the queue based transactions are flat in
Figure 8 because the queue is kept busy and close to
saturation. One would expect the throughputs to drop off
after the process scheduler on the machine becomes
overwhelmed with the larger number of concurrent clients.
We did not reach this limit even when we ran 15 concurrent
clients (not shown in figures) and began to reach memory
and other machine limitations for larger number of
concurrent clients.

4 Discussions
This paper examines the impacts of a multi-tiered

software architecture on transaction management.
Specifically, in any large scale enterprise system that
consists of multiple COTS software products, the
responsibility of providing interfaces to support global
transaction coordination is assumed by COTS software
products, instead of by the DBMSs. This requirement,

Figure 7: Response Time - 2PC Vs. Queue

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10
Number of Concurrent Transactions

R
es

p
o

n
se

 T
im

e
(m

ill
is

ec
) Q_10

2PC_10
Q_150
2PC_150
Q_500
2PC_500

Figure 8: Throughput - 2PC vs Q

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10

Number of Concurrent Transactions

Th
ro

ug
hp

ut
 C

ou
nt

Q_10
2PC_10
Q_150
2PC_150
Q_500
2PC_500

7

however, is not realized since supporting heterogeneous
global transaction coordination is prohibitive in both cost
and performance to enterprises and to COTS software
vendors alike. Enterprises may choose not to use any global
transaction management mechanisms to enforce data
consistency, but rather to employ business processes that
promote disciplined use of the system by its users through
process restrictions. Our experience working on one of the
largest scale distributed computing environments [CSTG96]
combined with empirical study described in this paper
support this argument.

Asynchronous mechanisms are quite promising as an
alternative to synchronous mechanism to improve
performance. However, there are several open issues
[DRD99]:
• It is trivial to use asynchronous mechanisms if there is a

one to one uni-directional interaction, for instance, an
ATM machine and the application server in a bank.
However, many global transactions involve multiple
COTS software products. It is not trivial to resolve
conflicts if there is bi-directional interaction which may
result in non-serializable execution schedules.

• In addition, there can be multiple asynchronous
mechanisms linking to a server, for instance, multiple
persistent queues. It is not trivial to order the messages
in these queues if these messages are inter-related. Using
a single queue may not be a solution since it will be easily
overloaded.

This study also led to the observation that the database
vendor community is moving in the opposite direction of
what is required by industrial multi-tiered distributed
computing architectures. Most COTS software that provide
packaged enterprise computing services opt only to use
standard database functions, such as in SQL92, in order to
become generic and flexible in the way they use the
databases they encapsulate. However, there is a trend
among database vendors to pack more proprietary
functionality, such as intelligent query optimizers and
vertical functionalities in the form of cartridges, blades, etc.,
into their products, many of which go unused in multi-tiered
architectures. Instead, the end-user needs various
functions, such as an external global transaction manager
and COTS-level resource management, to be implemented
again at different layers of the architecture. The resulting
generic COTS software products, the middleware which
implements the integration, and value-added databases give
a resource intensive system, with a large foot-print and
redundant functions, some of which are either not used or
not needed at the DBMS layer. It would appear the

directions taken by the COTS software vendors and the
database vendors are at odds with the needs and
requirements of enterprises, such as ours, which use these
systems.

References
[BEA96] BEA Systems., Tuxedo Whitepapers, 1996,

www.beasys.com/products/tuxedo/wps/index.h
tm

[BHG87] Bernstein, P., Hadzilacos, V., and Goodman, N.,
Concurrency Control and Recovery in
Databases, Addison-Wesley, 1987.

[BRE90] Breitbart, Y., Multidatabase Interoperability,
Sigmod Record, September, 1990.

[COR98] CORBA Success Stories, 1998. www.corba.org/
[CSTG96] Cleland, V., Sholberg, J., Tockey, S., and

Gordon, J.P., Boeing Commercial Airplane
Group's Application Integration Strategy,
www-
irl.iona.com/clientpart/clients/boeing2.html

[GR93] Gray, J. and Reuter, A., Transaction
Processing: Concepts and Techniques,
Morgan Kaufmann, 1993.

[ION97] Iona Technologies , The Object Transaction
Service, Whitepaper, January 1997.

[DRD99] Do, L., Ram, P., and Drew, P., The Need for
Distributed Asynchronous Transactions, Proc.
of SIGMOD 99. Also in Boeing Tech. Report
SSG-TECH 98-028.

[MIC98] Microsoft Distributed Component Object
Model, 1998,
www.microsoft.com/com/dcom.asp

[MTS98] Microsoft Transaction Server on-line articles,
1998. www.microsoft.com/com/mts.asp

[OMG98] OMG CORBA 2.2 Specification, February, 1998.
www.omg.org/library/c2indx.html

[OSF98] The Open Group publications, 1998,
www.osf.org/publications/catalog/web.htm

[RDPZ99] Ram, P., Do, L., Drew, P., and Zhou, T.,
Building Distributed Transactions using the
Object Transaction Service, submitted for
publication. Also in Boeing Tech. Report SSG-
TECH 98-017.

[TRA97] Transarc Corporation, Encina 2.5 Doc., 1997.
www.transarc.com/Library/documentation/enci
na_doc.html

[XA91] Distributed Transaction Processing: The XA
Specification, X/Open Company Ltd., 1991.

