
Reminiscences on Inuential Papers

Richard Snodgrass, editor

Nora Ephron's movie \You've Got Mail" is a paean to the world wide web, perhaps computer

science's most visible contribution, in particular to the creation via chat rooms of small communities

within a dissociated world. In a pivotal scene in the third act, a bristling Kathleen Kelly, the

protagonist played by Meg Ryan, insists, \Whatever else anything is, it ought to begin by being

personal."

This column celebrates the process of scienti�c inquiry by examining, in an anecdotal and yes,

highly personal fashion, how ideas spread and evolve. Past columns have including compelling

stories of the impact of particular papers on the mind set and discoveries of a few well-known and

respected people in the database community.

For this issue, I've gone back to the source, and have asked the authors of some of those inuential

papers to reect upon their inuences. So the subtitle might be, \Reminiscences on Papers that

Inuenced Inuential Papers." The papers mentioned here span the entire history of databases,

from work in the late 50's to a reappearance of the AlphaSort paper.

While I have a list of some 40-odd people of whom I wanted to ask to identify their favorite paper,

I thought it was appropriate to let someone else have a crack at picking these people. The next

and future columns will be edited by Ken Ross, who has appeared before in this column. I look

forward to the contributions that he elicits, and I thank all those who contributed to this column

during my tenure as editor.

Rakesh Agrawal, IBM Almaden Research Center, ragrawal@almaden.ibm.com

[A. V. Aho and J. D. Ullman, \The Universality of Data Retrieval Languages," in Proceedings of

the Symposium on Principles of Programming Languages, pp. 110{117, 1979]

A key question concerning the design of query languages is what power they should have. In this

beautiful paper, Aho and Ullman enunciated two principles that they postulated a query language

must obey. They then showed that although Codd's relational algebra and calculus satisfy these

principles, there are queries involving least �xed points that also satisfy these principles but cannot

be expressed in these languages. They further considered extensions to relational algebra to enable

such queries and discussed techniques for optimizing expressions in this extended algebra. Finally,

they de�ned a programming language to serve as a model of computation for relational database

retrieval operations. By de�ning four di�erent interpretations of the for statement in their language:

for t in R do <statement>

they showed that we get di�erent classes of computable functions. Under one interpretation, the

language is equivalent to relational calculus or algebra; under another more general interpretation

it is at least as powerful as relational algebra with the �xed point operator. There is tremendous

wealth of ideas packed in this 8-page paper. My dream is to be able to write one such paper.



Philip Bernstein, Microsoft Research, philbe@microsoft.com

[R. H. Thomas, \A Majority Consensus Approach to Concurrency Control for Multiple Copy

Databases," ACM TODS 4(2), pp. 1800-209, June, 1979]

In 1976, people were just starting to think about how distributed transactions and replication could

be added to a database system. I believe the �rst good paper on the topic|and still one of the

best|was this one by Bob Thomas. It was �rst published in 1976 as a Bolt Beranek and Newman

technical report, and was widely distributed in that form. The paper introduced two very important

ideas that are much used today. First, it de�ned majority consensus as a way to determine which

processes are available in the face of communications failures. This was later extended by Dave

Gi�ord to be a weighted majority, or quorum. Most practical process failure detection algorithms

today use this technique. Second, it introduced the use of timestamps to tag transactions, updates,

and data items. The timestamp-based rule that bears his name allows updates to propagate in

any order, yet all replicas of a data item will eventually converge to the same value. Today, this

technique is used in most of the worlds directory services, and in some multi-master replication

algorithms for database systems.

The paper was very inuential on early work on distributed transactions and replication, particu-

larly on mine. The timestamping approach motivated our work on the SDD-1 distributed DBMS

at Computer Corporation of America (gone, but not forgotten). It was also a challenge when de-

veloping serializability theory, as replication and majority consensus were aspects that a complete

theory had to account for. It motivated some of Leslie Lamport's early work on reliable distributed

computing. Moreover, the many multi-master replication algorithms that use timestamp vectors

are direct descendants of this algorithm. Judged by density of new ideas and inuence on both

research and products, this is one of my favorite papers in the transaction literature.

Don Chamberlin, IBM Almaden Research Center, chamberlin@almaden.ibm.com

[E. F. Codd, \A Relational Model of Data for Large Shared Data Banks," Communications of the

ACM, 13(6):377{387, June, 1970]

The paper that changed the course of my career was Ted Codd's famous paper in which he in-

troduced the relational data model, de�ned the concept of data independence, and described how

relational algebra could be used as a query language. In the same paper, Codd laid the founda-

tion for the theory of database normalization, and proposed the �rst-order predicate calculus as a

yardstick of linguistic power. I don't know of any other paper that introduced so many concepts of

such lasting signi�cance. When I read Codd's paper, I was struggling to master the navigational

database interfaces that were in use at the time. It was eye-opening to see how the relational

approach made it possible to reduce a complex program to a simple and elegant logical expression.

It was clear to me that the relational model would have the same impact on database management

that high-level languages had had on programming in general. The challenges posed by Codd's

paper seemed to be to �nd a syntax that was easily understood by non-mathematicians, and to

�nd techniques for implementing that syntax without sacri�cing the performance of lower-level

interfaces. To a large extent, these challenges have kept me busy since I read Codd's paper.



Jim Gray, Microsoft Research, gray@microsoft.com

[D. Bitton, D. J. DeWitt, and C. Turby�ll, \Benchmarking Database Systems A Systematic Ap-

proach," in Proceedings of the International Conference on Very Large Data Bases, M. Schkolnick

and C. Thanos, eds, Florence, Italy, Morgan Kaufmann, October, 1983]

This paper had a huge impact on us all. It was the seed that started database performance-

evaluation research. The paper, laid out a benchmark methodology, and proposed an open-source

benchmark still in use today. At the time, it set the performance agenda for the decision support

community. It also caused database vendors to add a DeWitt clause to their products so that such

a paper could never be written again (the clause prevents users from publishing performance results

without permission.)

I loved and hated this paper. I loved the fact that it was good science. It did well-documented

and reproducible experiments, with interesting and surprising results. The benchmark became a

standard part of my performance toolkit. But, I hated the fact that it implicitly de�ned databases

as being used for scans and joins. That model seemed far from what databases were really used

for (in my world.) It crystallized the dichotomy between DSS and OLTP. I had been building

transaction-processing systems, and I felt left out. So, I organized an informal group of researchers

and practitioners (including the authors of the paper) to de�ne an on-line-transaction-processing

benchmark (DebitCredit, Copy, Sort). That work appeared in a Datamation article (\A Measure

of Transaction Processing Performance," Anon. et al., Datamation, 31(7), pp. 112{118, April 1985)

and eventually evolved to TPC-A.

Don Haderle, IBM Santa Teresa Lab, haderle@us.ibm.com

[T. Haerder and A. Reuter, \Principles of Transaction-Oriented Database Recovery," in ACM

Computing Surveys, 15(4), pp. 287{318, December, 1983]

I had built commercial real-time operating systems and data management systems for many years

in IBM. In 1976 I read the March 1976 ACM Computing Surveys issue on DataBase Management

Systems. I got excited. While I had been laboring in the software basement, others had �gured out

how to deal with data in an easy and disciplined way. To my surprise a lot of the work was being

done right around the corner from me by the System/R research crowd. Within a year I joined a

nascient development team intent on producing the next generation database manager, which was

to be DB2.

For several years I was immersed in engineering the components of DB2. The Haerder/Reuter paper

brought the abstraction of database management into focus, laying out its properties cleanly|

atomicity, consistency, isolation, and durability. It gave me a framework for contemplating database

management from a consumer's view rather than a producer's view. Given the clear de�nitions of

the properties it was easy to visualize improvements of those properties to bene�t the solving of

customer's problems.

Won Kim, Cyber Database Solutions, Inc., won.kim@cyberdb.com

[T. Atwood, \An Object-Oriented DBMS for Design Support Applications," in Proceedings of the

IEEE CompInt Conference, Montreal, Canada, September, 1985]

There have been about a dozen papers that signi�cantly helped to shape my own ideas about

database research during the past twenty years. However, given my ten-year campaign in the



areas of object-oriented databases and object-relational databases, I would mention what many

may regard as a rather obscure paper as one that had the most inuence on me, this one by

Tom Atwood. (Tom's paper described planned features of the Vbase C++-based object-oriented

database system, which later became known as Ontos; the paper was even picked as the Best Paper

of the conference.)

Around the summer of 1985, I was working at MCC and was asked to re-direct my CAD Database

project to an object-oriented database, since the CAD Program, Human Interface Program, and

AI Program at MCC were all developing their technologies using CommonLISP with Flavors on

the Symbolics LISP machines, and asked the Database Program, to which I belonged, to develop

an object-oriented database, if the Database Program expected its technology to be embedded in

other MCC technologies.

Since I had to start an object-oriented database project, I had to �rst learn what an object-oriented

database was supposed to be, in turn what an `object' was. It was confusing and frustrating for

a few months when people at MCC could only tell me \everything under the sun is an object,"

\an object can be a before method, after method, around method," \an object-oriented database

makes objects persistent," \an object-oriented database makes SQL totally useless," \locking is

very dangerous," etc. Based on all these gibberishes, it appeared to me that an object-oriented

database was something terribly mysterious.

When I listened to Tom Atwood's presentation, and, afterwards, I sat next to him at the conference

banquet, and listened to him talking about a type de�nition language, instances of types, and nested

transactions, the proverbial light bulb �nally came on for me, and I suddenly realized what I would

have to do. The system Tom Atwood described to me that day was indeed a database system,

but the �rst few releases of Vbase did not have various traditional database features and instead

focused on C++ programming persistence, leading to confusion in the market. In any case, over

the course of one year or so after that day, I, along with my ORION object-oriented database team

at MCC, systematically re-examined every architectural element of a database system and tried to

address changes that the object-oriented concepts of inheritance, types, references, etc. force on

the architecture of a database system.

Bruce Lindsay, IBM Almaden Research Center, bruce@almaden.ibm.com

[C. Nyberg, T. Barclay, Z. Cvtanovic, J. Gray, and D. Lomet, \AlphaSort: A RISC Machine

Sort," in Proceedings of the ACM SIGMOD International Conference on Management of Data,

R. Snodgrass and M. Winslett, eds, pp. 233{242, June, 1994]

The AlphaSort paper dramatically illustrates the importance of cache conscious coding. Prior to

reading this simple paper, I had been able to blithely ignore the unpleasant fact that processor

memory systems were inexorably evolving towards hierarchies which must be taken into account

in system design and implementation. The implications of the AlphaSort paper forced me to

realize that database performance tuning would require new tools (such as feedback directed code

restructuring) and a new focus on query processing strategies. For example, cache consciousness

calls into question the wisdom of pipelined query plans!

C. Mohan, IBM Almaden Research Center, mohan@almaden.ibm.com

[R. A. Crus, \Data Recovery in IBM Database 2," IBM Systems Journal, 23(2): 178{188, 1984]

In the mid-80s, within the context of the Starburst project at the IBM Almaden Research Center,



I decided to revisit some of the then remaining open problems from the days of System R in the

areas of concurrency control and recovery (CC&R). It was while trying to understand how existing

DBMS products handled CC&R that I came across the above paper by Dick Crus. This paper

gave me a very good introduction to how various types of recovery were implemented in the very

�rst release of DB2/MVS. Without necessarily using those terms, the paper discussed concepts like

write-ahead logging, compensation log records and recovery based on log sequence numbers (LSNs).

These descriptions then allowed me to try to deduce how those underlying concepts of DB2/MVS's

recovery strategy di�ered from those of System R. It also made me aware of challenging problems

(e.g., partial write of a page to disk) that had to be handled in real systems and that were not

addressed until then in any research publications. Since the paper did not explain the rationale

behind every design decision, I took it as a challenge to try to �gure out the rationale and then

extend the recovery algorithm to support �ner than DB2/MVS's page granularity locking. This

was the start of a series of explorations that ultimately led to the invention of the ARIES family

of CC&R algorithms and the authoring of numerous research papers by myself and a number

of collaborators at IBM. While few people in the research community have read Dick's paper,

personally, it has been a very inuential paper for me. At a time when it was not common for

DBMS product developers to write detailed technical papers, Dick had authored a paper with an

unusual amount of detail about the internals of the mainframe RDBMS product DB2/MVS.

Ron Morrison, University of St. Andrews, ron@dcs.st-and.ac.uk

[L. Cardelli and P. Wegner, \On Understanding Types, Data Abstraction and Polymorphism,"

ACM Computing Surveys 17(4), pp. 471{523, December, 1985]

This paper appeared in the grey literature as a technical report about a year before it was published.

At the time I was trying to �gure out the relationship between complex type systems and database

schemas. In our persistent programming systems we already stored code in the database, in the

form of functions, along with complex data. We had found that we required one dynamic type to

implement persistence but wished in general to retain the safety of static typing without having to

endure its restrictiveness.

The paper is a survey yet introduces a new way of thinking about types. We knew, of course,

about polymorphism (universal quanti�cation) from the work of Strachey but through this paper

learned of its relationship with parametric types and abstract data types (existential quanti�cation).

This gave use the con�dence to �nd new and e�cient ways of implementing polymorphism in the

persistent language Napier88, and of using existential quanti�cation for implementing views in

databases systems. I know now that all of the concepts in this paper are expressed in others.

However it is in this one that the idea are brought together and expressed in a manner that any

computer scientist can understand. I still recommend it to all my graduate students.

Raymond Reiter, Department of Computer Science, University of Toronto, reiter@ai.toronto.edu

[J. McCarthy, \Programs with Common Sense," in Proceedings of the Teddington Conference on the

Mechanization of Thought Processes, December, 1958. Available at

http://www-formal.stanford.edu/jmc/mcc59.html]

I should begin with a mild disclaimer: Although I have published a few things in the \mainstream"

database literature, I don't consider this work to be peculiar to databases. Neither do I see myself

as a database researcher. Rather, my interests have always been with problems of how best to

represent knowledge about a world, and how to make use of that representation. From this per-



spective, the representational aspects of database theory, arti�cial intelligence, high level robotics,

natural language, and even certain programming languages become one and the same enterprise.

Within computer science, the historical separation of these communities has been unfortunate, and

harmful.

All of which brings me to McCarthy's 1958 paper, which was perhaps the very �rst to propose math-

ematical logic as a knowledge representation language for arti�cial intelligence. In it, McCarthy

states clearly the advantages of declarative sentences for representing knowledge, and proposes his

\advice taker," a system that is \instructed" with sentences of the predicate calculus, and that

uses deduction to determine how it should subsequently act in its world. Virtually all of my own

research, and that of many subcommunities in arti�cial intelligence and databases, have been an

elaboration of this very early insight of John McCarthy.

Carlo Zaniolo, Computer Science Department, UCLA, zaniolo@cs.ucla.edu

[J. M. Smith and D. C. P. Smith, \Database Abstractions: Aggregation and Generalization," TODS

2(2), pp. 105-133, June, 1977]

As the relational approach to databases began gaining wide acceptance, serious concerns emerged

on whether its `spartan simplicity' could capture the richer semantics of database relationships.

Then, in 1977 John and Diane Smith published a seminal paper in which database relationships

are modeled on the orthogonal dimensions of aggregation and generalization. It was the simplicity

and elegance of their model that convinced me that such rich semantics could be captured via

minimal extensions of the relational data model and its query languages. Indeed, GEM achieved

said goal by combining simple notions, already well-known to to relational database researchers,

such as tuple IDs, null values, and path expressions (also inuenced by functional query languages).

Many of these ideas have recently been revisited and applied in the design of object-relational

databases and their SQL extensions: this represents and enduring tribute to the lasting inuence

of the 1975 seminal paper by John and Diane Smith.

C. Zaniolo, \The Database Language GEM," in Proceedings of the ACM SIGMOD International

Conference on Management of Data, D. J. DeWitt and G. Gardarin, eds, pp. 207{218, 1983.

S. Tsur and C. Zaniolo, \An Implementation of GEM-Supporting a Semantic Data Model on a Rela-

tional Back-End,", in Proceedings of the ACM SIGMOD International Conference on Management

of Data, B. Yormark, edd. pp. 286{295, 1984.

Erratum

The information on the paper discussed by Patrick Valduriez in the March, 1999 issue was incorrect.

Here is the correct reference.

M. M. Zloof, \Query-By-Example: Operations on the Transitive Closure," IBM Research Report

RC 5526, Yorktown Heights, New York, October, 1976.


