
1

Unpacking The Semantics of Source and Usage
To Perform Semantic Reconciliation In Large-Scale Information Systems

Ken Smith, Leo Obrst
kps@mitre.org, obrst@mitre.org

The MITRE Corporation

Abstract. Semantic interoperability is a growing
challenge in the United States Department of Defense
(DoD). In this paper, we describe the basis of an
infrastructure for the reconciliation of relevant, but
semantically heterogeneous attribute values. Three types
of information are described which can be used to infer
the context of attributes, making explicit hidden semantic
conflicts and making it possible to adjust values
appropriately. Through an extended example, we show
how an automated integration agent can derive the
transformations necessary to perform four tasks in a
simple semantic reconciliation.

1 Background

Over the past year, the MITRE corporation has
undertaken several globally-scaled information integration
projects on behalf of the United States Department of
Defense (DoD). These efforts have been driven by a
growing need to interoperate across the military services,
and to free users from the conceptual gaps and biases
inherent in a single information source. One result has
been the emergence of the vision of an Integrated
Information Space (IIS), in which users are provided with
content-based access, via appropriate ontological
concepts, to a set of integrated concepts based on
information ultimately stored in numerous globally
distributed sources. In an IIS, user communities can
operate independently of information sources and be
insulated from the details of their operation. By providing
access to concepts which consult many sources, an IIS
provides users a more complete treatment of their subjects
of interest, and protects users from single-source bias.

An important obstacle to achieving an IIS is semantic
heterogeneity. Consider the case of altitude data. In an
orbital context, the concept of “altitude” is typically
interpreted with respect to the earth’s center. Therefore
“orbital” altitude sensors produce altitude data in which
“0” means the center of the earth. In an aviation context
on the other hand, altitude is interpreted as vertical
distance from the earth’s surface. Since the space shuttle
both orbits the earth and lands on a runway like an
aircraft, altitude data on the space shuttle may be
produced under both interpretations. If semantic
reconciliation is not performed, this data cannot correctly
interoperate. In fact, unreconciled data can “lie to you” in
that a person or system’s assumptions about meaning may
result in an incorrect interpretation of values. For
example, applying an orbital interpretation to an aviation
altitude would make it appear that the space shuttle was

somehow flying deep beneath the surface of the earth!
Such “lies” may also be less dramatic, causing them to
remain undetected until the integrated system is well into
its use, if ever.

Note that this problem cannot be resolved by purely
syntactic or structural approaches. Syntactic
heterogeneity pertains to representational differences
between data. For example altitude data could be given in
meters or kilometers, or with differing significant digits,
and in dates the month can be spelled out (“June 4th”) or
represented numerically (“6/4”). Structural heterogeneity
pertains to differences in data structure. For example,
web sites can structure similar content in many ways.
However, these do not fully characterize the above
problem: even if the format and units of an altitude
measurement are reconciled, the interpretational
difference remains. The semantics1 of the data is an
issue as well.

Some of the syntactic and structural aspects of
integration are becoming much easier due to advances in
middleware (e.g. [1,2]), emerging standards (e.g. XML
namespaces), and sheer accumulation of experience.
However no similar infrastructure is in place to help
address this challenge of semantic reconciliation.

In this paper, we present some initial and practical
insights into a semantic reconciliation infrastructure
suitable for an IIS, and into an approach to semi-automate
reconciliation. These insights are the basis of an ongoing
prototyping effort, and are derived from the experiences
of the authors and of numerous DoD “integration
engineers” we interviewed. The infrastructure we describe
includes: an architecture (Section 2), a reconciliation
process (Section 3), and a set of explicitly represented
semantic information about data sources, data usage, and
canonical attributes (Section 4). In Section 5 we use an
example to illustrate the automation of basic semantic
reconciliation tasks using this framework.

2 Architecture

The 4-level architecture shown in Figure 1 illustrates one
approach to building an IIS, and is being followed in an

1 The issues we describe as “semantics” actually cover

both semantics and pragmatics, with “pragmatics”
more appropriate terminology for usage, user intent,
and (generally) metadata aspects, and “semantics”
more appropriate for the ontological coverage and the
general “semantic” reconciliation process.

2

ongoing DoD integration project. The highest levels (3
and 4), represent the user’s view of the IIS. Level 4
consists of an ontology O of very general concepts (e.g.
“event”, “unit”) to support content-based search.
Typically, O is determined by an integration engineer
working with the important user communities. Multiple
user communities may interpret these concepts differently,
as will be shown, but at this highest level we assume the
list of terms in O are shared2. For a given user community
(e.g. analyst, logistician), each concept Oi O in level 4
is in a 1-1 correspondence with an elaborated reconciled
concept RCi in level 3. A reconciled concept is a named
class definition with a set of attributes, a set of instances
(reconciled objects), and a hyperlinked structure (which
we omit for the purposes of this paper). Intuitively, a
reconciled concept contains an integrated view of “all the
information space has to say” about its ontological
concept. Note each user community may have its own
specialized reconciled concept definition, similar to the
construction of specialized database views. Therefore,
multiple reconciled concepts may be associated with each
ontological concept; the visible view depends on the
user’s community.

“Event”4) Ontological Concepts

3) Reconciled Concepts Reconciled_Event

Source2_EventSource1_Event

Source1 Source2

2) S ource-S pecific
Concepts

1) Information
Sources

Figure 1. Architecture

The lowest levels (1 and 2) address the source-
specificity of information. For each ontological concept a
given information source contains pertinent information
on, a corresponding source-specific concept (SSC) is
produced at level 2. The production of an SSC from its
source can involve denormalization (in the case of
relational tables) to gather all related information into one
object, and some simple data transformations where
community-wide standards exist. As shown in Figure 1, a
one-to-many relationship therefore exists between an RC
and the constituent SSCs associated with it. Intuitively,
for a given reconciled concept RC, a constituent SSC
derived from source Si contains “all Si has to say about
RC”. The attribute labels and data values of an SSC

2 In level 4 we assume general terms can be effectively

shared across our user communities, which appears
satisfactory in practice. Well known problems
involving multiple ontologies [3, 4] are encountered
and addressed in levels 1-3.

instance need not match the attributes of its RC. In fact,
attribute labels among a set of constituent SSCs are likely
to vary because differing ontologies may be in use at the
various data sources consulted.

Separating levels 2 and 3 in this manner has several
values. First, the process and issues of semantic
reconciliation are somewhat isolated from other types of
reconciliation. Second, this modular approach promotes
reuse, since the same set of SSCs can be repeatedly
reconciled to the RCs of multiple user communities.

3 Semantic Reconciliation Process

Semantic reconciliation results in a set of RC
instances with correctly interpreted values assigned to
their attributes. In the following, we define four tasks
comprising this process. Although we formalize these
tasks somewhat for descriptive purposes, note that the
following tasks are presently done without automated
tools or a guiding formal framework.

1) Ontology Development. The IIS-ontology, the
RCs and their attributes, and the SSCs and their attributes
provide the basic framework for reconciliation. First, the
set of terms in the IIS-ontology is developed in concert
with relevant user communities. These are then further
elaborated into a set of RCs, one set for each user
community. (We assume a great deal of overlap.)
Separately, a set of SSCs is developed for each data
source

2) Relevance Mapping. For each attribute Ai of an
RC, a set of relevant SSC attributes {Ajk, Alm, ...}
(where Ajk is the kth attribute of the jth SSC) is identified
which may affect its value. As shown in Figure 2,
identifying relevant attributes can be straightforward:
SSC attributes “pretax-salary” and “weekly-pay-amt” are
relveant to the RC attribute “pay”.

Reconciled_Employee

Source2_Employee Source4_Employee

“pay”

“pretax-salary” “weekly-pay-amt”

Figure 2. Relevant Attributes.

3) SSC Value Transformation. The value of each
relevant SSC attribute is adjusted by a semantic
transformation function ST(Ajk), that compensates for
the difference between the interpretation used in its data
source, and in user community of the RC it is relevant to,
producing a “correct” value with respect to the RC. In the
“altitude” example, a function transforming center-of-the-
earth to surface-of-the-earth coordinates is used.

3

4) RC Value Determination. RC value Ai equals
f(ST1(Ajk), ST2(Alm), ...). In the simplest case, f()
simply performs a selection function over the relevant
attributes, picking one (transformed) value from the list.
If the list is exactly one value, selection trivially reduces
to assignment. In practice, selection often involves a
judgment call based on perceived quality of data sources,
their accuracy, the freshness of their data, etc. In general,
f() can be an arbitrary function. Functions computing
aggregates present a special challenge, because they can
raise the complicating issue of the semantics of set
membership (as illustrated in Section 5).

4 Explicitly Represented Information

As data migrates from its environment-of-origin (in which
it is presumably well understood) and into an integrated
system, explicity represented information giving insight
into the semantics of the data is needed to ensure the data
continues to be interpreted properly in its new
environment. This is one of the major challenges in data
warehousing, and motivates the ongoing development of
metadata repositories.

Such information also provides the framework for
semantic reconciliation. For example, representing the
meaning of each attribute, along with its value, enables us
to detect a mismatch in the meanings of two related
attributes, and to begin to develop a semantic
transformation function between them. However, this
particular approach can be costly in three regards:

1) Some representations of meaning are quite
complex, requiring significant effort to encode and
are often inaccessible to human integrators (e.g.
various logics).

2) It is challenging to annotate a representation of
“meaning” onto each attribute of all information
sources which may need to interoperate; some
relational DBMSs have 1000’s of attributes.

3) Extensive information about data semantics must
be maintained and evolved (in close coordination
with source administrators), adding to what may
already be a large administrative cost [5].

These considerations led us to seek efficient semantic
information, such as simple information descriptive of
large classes of attributes.

We began by studying the information valued by
expert human users who routinely perform semantic
reconciliation, and discovered such users heavily utilize
source-of-origin information to determine how to interpret
values from a source: “Source 1 is updated weekly, and
during a crisis it’s updated every half hour. Source 2 is
only updated once a month, but it’s more accurate because
it’s been through more levels of review.” “That data
source is mostly training data and is very dirty, however I
make sure it’s up-to-date in my topic areas, and use it for
that purpose only.” “Locations in that source are
extremely accurate because they were derived by an
accurate measurement system”. Similarly, they value

usage and user community information, as illustrated in
our running “altitude” example, in which the attribute’s
intended usage (e.g. for orbital or aviation purposes)
provides important cues to how it should be interpreted.

Sophisticated users clearly “unpack” the semantics
inherent in a simple source label or usage descriptor to
determine a specific context (e.g. “training”, “orbital”…)
in which to properly interpret data for the purposes of
reconciliation. We employ a special notion of context
here, defined to be a situation in which an common
ontological term assumes a specialized meaning, hence, a
particular semantic frame of reference. Context in this
sense is a primary reason for semantic heterogeneity, and
has also been identified as a powerful tool for semantic
reconciliation [4, 6, 7, 8]. This notion of context as a
particular semantic frame of reference is also particularly
efficient, because a single context can be applied to a
large set of data at once (e.g. the source-of-origin context
applies to all attributes in a source). Information about
meaning can be inferred from this context, so the meaning
itself may not always have to be explicitly represented as
long as it can be inferred or attached from the context. In
the following, we describe three types of information
which efficiently support the use of context to perform
semantic reconciliation.

Source-descriptors. We associate a source-descriptor
with each source, and with the SSC attributes derived
from it. A source-descriptor is a record with nine fields:

1) Mission. Label describing data source mission
(e.g. logistics, medical records, training, etc.)

2) Organization. The organization maintaining the
data (e.g. which military service).

3) Label. The official name of the data source.
4) Periodicity. Frequency of refresh.
5) Age-avg. Average time since last update for values

in the data source.
6) Age-stdev. Standard dev. of time since last update.
7) Fill. Percentage of non-null values (a measure of

data quality).
8) Accuracy. Minimal measurement standards for

data in this source.
9) Coverage. A list of ontological concepts for which

SSCs have been constructed.
Some field domains are shared by fields in the usage-
descriptor (below), to permit them to be used together.
We make no claims of completeness (e.g. a name and
phone number of a human point of contact would also be
quite useful); our goal here is to illustrate a means to
substantially improve the current reconciliation process at
reasonable cost. Note also that many data sources are
themselves integrations of data sources (three levels of
integration being not uncommon in the DoD), with
partitions varying by the ultimate source-of-origin. This
problem can be addressed by assigning source-descriptors
to important partitions of a source.

Usage descriptors. While source-descriptors provide
context information about information sources, usage-

4

descriptors provide context information about the task (or
major concern) of a particular user community using the
data. A usage-descriptor can be statically associated with
a set of RCs and their attributes, or dynamically associated
with an individual query over the set of RCs (as in [9]),
differing in when the usage information is held to be valid
for the purposes of semantic reconciliation. A usage-
descriptor is represented as a record with 6 fields:

1) Mission. Label describing mission of those using
this information (e.g. medical administration,
ballistic missile defense, logistics planning).
Domain corresponds to the domain of “mission” in
the source-descriptor.

2) Organization. Organization of users. Corresponds
to source-descriptor “organization”.

3) Recency. Maximum permissible age of information
for this usage. Domain corresponds to source-
descriptor “periodicity”.

4) Accuracy. Minimal permissible accuracy.
Corresponds to source-descriptor “accuracy”.

5) Interests. Ontological concepts relevant to the
mission and users. Corresponds to “coverage”.

6) Selector. Function of source-descriptor attributes;
used in the “selection” task.

Canonical attributes. A canonical attribute (CA)
represents a class of similar attributes (comparable to a
data type) and contains information about how the
meaning of this class of attributes varies with its context.
We assume a set of predefined CAs suitable to the DoD,
such as “quantity-on-hand”, “unit size”, “altitude” and
“location”. During ontology development, a CA can be
associated with an RC attribute. A canonical attribute
includes the following:

1) Attribute name. The canonical name used in RC
definitions.

2) Context list. A list of semantically important
context identifiers (e.g. Army, Joint, Planning,
Space, Aviation...) for this attribute, for which
variation of interpretation is known to exist.

3) Context inference mechanism. A means of
assigning a unique context to an RC attribute (from
the context list of its CA), or to one of its relevant
SSC attributes. Context inference is based on the
information in source and usage descriptors.

4) Description. Textual description of how this
attribute is interpreted in each context in the list.

5) A library of semantic transformation functions
(STFs). Given context X of an RC attribute
associated with this CA, and context Y of a relevant
SSC attribute, where X and Y are in the attribute’s
context list, the Y->X() STF performs the required
transformation.

Canonical attributes address an important DoD-
specific problem. Recent efforts have attempted to
achieve DoD-wide interoperability among classes of
similar attributes by the syntactic standardization of all
attribute names (thus identically named attributes are
expected to interoperate). Unfortunately, a confusing

proliferation of new names has resulted to distinguish
specific semantic differences. For example, 35 separate
standardized attributes have been defined pertaining to
“altitude” alone, including: “accident-aircraft-flight-data
pressure altitude identifier” and “joint-air-operations-
training-event altitude dimension”. Note that important
context information (e.g. “joint”, “training”) is buried in
attribute labels, limiting its usefulness (and frustrating
would-be authors of SQL queries!). A more appropriate
approach semantic differences would be to associate
existing altitude-relevant attributes with a cannonical
attribute for “altitude”, and interoperating by reasoning
about each attribute’s context.

5 Enhanced Semantic Reconciliation

In this section, we describe a (fabricated, but realistic)
simple example of semantic reconciliation, illustrating the
use of the semantic information described in Section 4 to
improve, and to some extent automate, the reconciliation
tasks described in Section 3. We assume a human
integrator, assisted by an automated “integration agent”,
and show how each exploits semantic information.

As illustrated in Figure 3, an integration is being
performed for air and space tracking communities.
Despite tracking different objects (aircraft and satellites),
these two communities periodically must interoperate and
share data. We focus on the specific problem of
reconciling the notion of “altitude”. Figure 3 shows an
RC attribute “altitude” used by both communities (with a
specialized meaning in each), and its relevant SSC
attributes (with their own specialized meanings), each
from a relevant information source. The user groups are
characterized by their usage-descriptors, and the
information sources by their source-descriptors. In
addition to the descriptors shown, we also assume the
existence of canonical attribute “altitude” with two
contexts: “space” and “atmospheric” having the
previously described semantics, and two STFs: “space-
>atmospheric()” and “atmospheric->space()”.

1) Ontology Development. In ontology development,
the canonical attribute “altitude” is used in RC definition.
Canonical attributes make ontology definition both easier,
since a library of canonical concepts can be drawn on, and
more precise, since semantic information is explicitly
represented.

2) Relevance Mapping. Relevant mapping is
simplified because both a human integrator and an
automated integration agent can infer that Source_1 is
inadequate for either user community, and eliminate any
SSC attributes derived from it from consideration. The
human will notice Source_1’s use in training, and
immediately recognize that training systems are not good
sources of “live” data. The agent can detect that Source_1
is an aperiodic source which appears to have been loaded
with data about 6 months ago, and the probability of
finding data meeting the requirements of either user
community is extremely low. Thus, only SSC_2 attribute

5

“altitude” and SSC_3 attribute “height” are relevance-
mapped to canonical RC attribute “altitude”.

Note that the ability use descriptor information to
match sources with usages generalizes powerfully beyond
the task of relevance mapping: a form of data source
brokering [3] can also be performed in this manner. In a
global information space with many unfamiliar (but
characterized) data sources, a user (who characterizes his
or her data usage appropriately) could be automatically
matched with a ranked list of data sources based on a
correlation of fields in descriptors (e.g. ontological
interests correlated with ontological coverage).

3) SSC Value Transformation. To utilize the
semantic transformation functions supplied with the CA
“altitude”, we must first infer context. For the human, it is
straightforward to assign the “space” context to usage 1
and source 2 (both associated with NASA and dealing
with satellites), and similarly the “atmospheric” context to
usage 2 and source 3. An agent could make these
inferences by automated means. In the simplest case,
contexts could be preassigned to usages and information
sources by a human expert, and later looked up by the
agent. In a more sophisticated approach, production rules,
Bayesian techniques [10], or data mining could be used to
automatically infer context.

mission: satellite
trackingorganiz:
NASArecency: 5
minutesaccuracy: 100
metersinterests: track,
satelliteselector: best
(recency)

mission: flight plan
monitoringorganiz: Air
Forcerecency: 3
minutesaccuracy: 10
metersinterests: track, aircraft,
facilityselector: best
(recency)

mission: tracking
trainingorganiz: Air
Forcelabel:
Source 1period:
--age-avg: 6
monthsage-stdev: 3
daysfill:
--accuracy: 100
meterscoverage: units,
tracks, radar

RC:altit
ude

SSC_1:
track_ alt

SSC_2:
altitude

SSC_3:he
ight

usage
descriptor 1

usage
descriptor 2

source
descriptor 1

source
descriptor 2

source
descriptor 3

mission: orbital
locationorganiz:
NASAlabel:
Source 2period: 3
minutesage-avg:
--age-
stdev: --fill:
90%accuracy: 10
meterscoverage: track,
satellite

mission: North
Pacific radarorganiz:
Navylabel:
Source 3period: 1
minuteage-avg:
--age-
stdev: --fill:
45%accuracy: 5
meterscoverage: tracks, radar,
facilities

Figure 3. Descriptors for Reconciliation of “Altitude” Attribute

Given a context for RC:altitude, and for
SSC_2:altitude and SSC_3:height, an STF can be chosen
from the canonical attribute to do the transformation. In
our example, two functions are needed: atmospheric-
>space(), space->atmospheric(). For example, when “RC:
altitude” is contextualized as “space” for satellite tracking,
the correct value of SSC_3: height is computed by:

atmospheric->space(SSC_3: height)
which changes surface-of-earth coordinates to center-of-
earth coordinates. When contexts are identical, as is
frequently the case, no STF is used.

4) RC Value Determination. Assume Source2 and
Source3 both track the same high flying aircraft, and we
must determine its altitude for the satellite tracking
community. In the (simple) case of selection, value
determination consists of generating a function f() which
returns the value of one of the relevant (and transformed)
SSCs based on some selection criteria:

RC:altitude = f(SSC_2:altitude, atmospheric-
>space(SSC_3:height)).
Human integrators typically use the qualities of each SSCs
data source as a selection criterion, and select the value
from the most appropriate source. Clearly, source-
descriptors greatly enhance the human’s ability to make
such a judgement by providing more knowledge about data
source qualities, especially in the case of unfamiliar data
source (increasingly the case in a global environment). The
human integrators we interviewed were excited at the
prospect of access to such information; measures such as
fill, mission, and organization tell them a “deeper story”.
Integration agents can generate a selection function f() by
using the usage-descriptor’s selector function as the
selection criterion. In our example, both user groups
specify best(recency), which selects the value from SSC_3
in each case.

6

 Therefore, based on the information provided, an
integration agent would (automatically) derive the correct
“altitude” in the RCs for satellite tracking to be:

RC: altitude = atmospheric->space (SSC_3:height).
When values are determined by some combination of

the relevant values (e.g. aggregation), it can be more
challenging to derive f(). Consider a request for the
“total_units” in the joint armed forces. In the Army, a
special case of “unit” exists: a unit’s equipment can be
positioned in advance of its arrival. In the Army only, the
equipment receives a separate unit number of its own,
distinct from that of the arriving unit. Assume the “joint”
context for a canonical attribute “unit”, which semantically
requires the presence of people. If each military service has
an information source with (locally contextualized) attribute
“total_units”, we cannot simply total these attributes,
because the Army’s “total_units” is semantically
incompatible with the joint “total_units”. Note that it is
impossible to write an STF correctly transforming Army
“total units” according to joint semantics given this
information alone, since we cannot tell how many Army
units in the total contain no people! However, we can write
an (SQL-based) STF by accessing information on the
individual Army units:

SELECT count(unit.id) as army_total_units
FROM army_units
WHERE head_count > 0.
In general, “missing knowledge” (such as information

on individual units) may not be available anywhere in the
data source, and may require the collection of additional
information than that described in Section 4 for semantic
reconciliation of aggregates to take place.

6 Summary And Future Work

Semantic heterogeneity is becoming an increasingly
important problem as user communities seek to interoperate
in global information spaces. Recent advances in
information integration infrastructure have not had a
significant impact on the task of semantic reconciliation; an
infrastructure for semantic reconciliation must be built as
well. In this paper, we have illustrated how specific types
of information about data semantics can help automate the
reconciliation process, significantly aiding human
integrators as well. We have defined three useful types of
information: source-descriptors, usage-descriptors and
canonical attributes. Source and usage descriptors are
succinct descriptions of a source-of-origin and of an
intended data usage, respectively. Canonical attributes are
an augmented typing mechanism for attributes being
reconciled. Together, they can be used to appropriately
contextualize attributes, revealing hidden semantic conflicts
and making it possible to adjust values accordingly. Each
of these types of information efficiently characterizes large
classes of attributes. Through an extended example, we
have shown how an automated integration agent derived the
transformations necessary to perform the four tasks of a
simple reconciliation.

We are continuing to incorporate these ideas in an
ongoing integration project. In our current application
work, we have chosen to compromise against representation
in favor of efficiency. Further work, however, is needed in
several areas including: more extensive semantic
representations for aggregates, parts and wholes, and
similar specialized relations; context representation and
inference; and more extensive automation of reconciliation.
Pertinent to the latter, we are seeking to further develop the
basic semantic mappings described in this paper into a
more general semantic algebra [11, 12].

Acknowledgments. We gratefully acknowledge comments
on previous versions of this paper from the editors and
several anonymous reviewers. We would also like to thank
Lou Mason, Terry Boschert, David Markham, Bonnie
Blades, Chuck Yokely, Rex Haddix, and others for
discussions concerning semantic interoperability problems
they have encountered; any inaccuracies are our own.

References.

[1] http://cjis.telos.com/catalog/eworks/virtualdb.html
[2] http://www.cyberexp.com/products/ceframe-eng.html
[3] Mena, E.; Kashyap, V.; Illarramendi, A.; Sheth, A.

1998. Domain Specific Ontologies for Semantic
Information Brokering on the Global Information
Infrastructure. In Formal Ontology in Information
Systems, N. Guarino, ed., pp. 269-283. Amsterdam:
IOS Press.

[4] Kashyap, V.; Sheth, A. 1997. Semantic Heterogeneity
in Global Information Systems: The Role of Metadata,
Context and Ontologies. In M. Papazoglou, and G.
Schlageter, (Eds.), Boston: Kluwer Acad Press, 1997.

[5] Rosenthal, A. and L. Seligman, "Data Integration in the
Large: The Challenge of Reuse," Proc. of 20th Int’l
VLDB Conf., Santiago, Chile, September 1994.

[6] Kashyap, V.; Sheth, A. 1996. Schematic and Semantic
Similarities between Database Objects: A Context-
based Approach. VLDB Journal 5 (4), 1996.

[7] Ouksel, Aris M; Naiman, Channah. 1994. Coordinating
Context Building in Heterogeneous Information.
Journal of Intelligent Info. Sys. 3,1,151-183, 1994.

[8] McCarthy, J., “Notes on Formalizing Context”, In
Proceedings of the 13th Int’l Joint Conference on
Artificial Intelligence (IJCAI), pages 81-98, 1993.

[9] Ouksel, Aris M. 1999. Ontologies are not the Panacea
for Data Integration. To appear in Journal of Parallel
and Distributed Systems, 7, 1-29, 1999.
http://www.uic.edu/cba/arisol/.

[10] Pearl, J. Fusion, propagation, and structuring in belief
networks. Artificial Intelligence, 29:241-288.

[11] Meseguer, Jos . 1998. Formal Interoperability. In
Proc. 5th Int’l Symp. on Artificial Intelligence and
Mathematics, Fort Lauderdale, January 4-6, 1998,

[12] Wiederhold, Gio. 1994. An Algebra for Ontology
Composition. Proceedings of 1994 Monterey
Workshop on Formal Methods, Sept 1994, U.S. Naval
Postgraduate School, Monterey CA, 56-61.

