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Abstract

Given the complexity of many queries over a Data
Warehouse (DW), it is interesting to precompute and
store in the DW the answer sets of some demanding
operations, so called materialized views. In this
paper, we present an algorithm, including its
experimental evaluation, which allows the
materialization of several views simultaneously
without losing sight of processing costs for queries
using these materialized views.

1 Introduction
The need to provide integrated access to multiple

and heterogeneous databases, as well as other sources
of information, has become one of the priority areas
of database research. One of the solutions to this
problem is based on the so-called mediator approach
[8],  as follows:
1. Accept a query, determine the set of sources of

information to answer the query and create the
appropriate sub-queries for each source;

2. Obtain the results from the sources, translate, filter
and integrate them, and return the final results to
the user.
This requires implementation of an efficient

mediator, which is a practically impossible task,
owing  to the scattering of information.

A more viable alternative would be an anticipated
approach to the integration of data. This approach
would function as follows:
1. The information from the sources is periodically

extracted, translated, filtered, integrated and
aggregated and then stored in a centralized
repository, a Data Warehouse (DW);

2. When a query is submitted, it is evaluated directly
in the DW, without accessing, therefore, the
primitive sources of information.
Note that the DW is not actually updated during a

user session in order to maintain temporal consistency
[3], i.e., during a (possibly long) interactive session
the DW should not change its state.

A DW is normally a very large database, even
when its information aggregation level is high, in fact
it can maintain several years of historical information

stored. Historical series are an essential requirement
of On-line Analytical Processing (OLAP) applications
developed to help decision-making processes [3]. The
reduction of the costs of OLAP queries is an
important research objective.

1.1 A Typical OLAP Session
Decision Support Systems are those which have

the capacity to alert the users (in general, high and
middle managers) about the occurrence of exceptions,
giving them the means to find root causes. OLAP
queries are inserted in this context: they are
interactive system-user activities in which the user
may want more details (drill down) or less details
(drill up) of a report showing business trends. Trends
are generally comparisons of data at a certain level of
aggregation, throughout time. The user may still want
to logically combine interlinked reports (drill across)
[3].

Consider the following table of a relational DW
Fact(Product#, Store#, Time#, Sale): Product#,
Store# and Time# are respectively the keys of the
dimension tables Product, Store and Time, while Sale
is an additive attribute. Suppose that the aggregation
level of the Fact table is day. The dimension table
Time contains the semantics of each value of Time
(week-day, weekend, week, month and other
attributes). In this way the Product and Store
dimension tables describe, respectively, the semantics
of Product and Store.

A user wanting to analyze the sales of some
products over a number of months can initiate an
interaction with the system. If this type of analysis
were quite common, a materialized view of the Fact
table could be created previously, PST(Product#,
Store#, Time#, Monthly-sale), sorted by Product,
Store and Time. As PST would still be very large,
other materialized views of the Fact table could also
be created, PS(Product#, Store#, Sale-in-the-Period)
and P(Product#, Sale-in-the-Period). This sequence
of interactions  query of the PST, and afterwards of
the P (drill up), followed by the PS (drill down),
returning to the PST (drill down)  would be
efficient.



Unfortunately, given the nature of an OLAP
session, user activities are not completely foreseeable.
Coming back to our example, the user can, in the
middle of a session, direct his attention to stores. The
materialized views PST, PS and P do not favor the
new OLAP operations desired by the user.

To speed up programming, the group bys
corresponding to each of the combinations in P, S and
T could be computed by a single operator, cube by
[1]. But the question is still not totally solved: are all
the possible group bys necessary? Is it better to store
PS or SP, taking into account the relative frequency
and importance of the queries to the DW? Are there
constraints as to the time necessary for the creation of
all the views?

1.2 Contributions and Organization of the Paper
We are dealing with the following combinatorial

problem: what is the best global cost of materializing
a set of views (in short, the computing of all or part of
the group bys of a cube by operation), taking into
consideration the possibility of creating various
simultaneous views and without loosing sight of the
cost of queries which will use these views? The
advantages of reducing the costs of a query are
obvious. Reducing the costs of creating views is also
important. Even though this process generally
operates in batch mode, it can take several hours, and,
during this time, the DW would remain unavailable to
users.

In section 3 of the paper, we shortly present an
algorithm which yields a solution to the combinatorial
problem mentioned above1.  We will show that the
best solution is not always possible, as there could be
irreconcilable conflicts between the two objectives:
efficient view creation versus efficient queries to the
DW. In this case, the algorithm will seek to find a
solution as close as possible to the best global cost for
view creation. We include a glossary (section 2)
before section 3, to precisely describe various terms
which are used in explaining the algorithm. Three
additional sections complete the article: section 4
presenting experimental evaluation of the algorithm,
section 5 about related works, and section 6
presenting conclusions.

2 Glossary
In this section we give the meaning of various

terms and expressions used throughout the article.
Some of these expressions (“clustered table”, “sorted
query” and “clustered query”) are not commonly

                                                          
1 - Full details about the algorithm can be found in

http://www.dsc.ufpb.br/~lsi/sbbd98-sigmod.ps

used, while the rest of the terms and expressions are
frequently found in the DW literature.
Clustered Table   In such a table the records are
physically clustered by some clustering criteria
involving one or more of its attributes.
Clustered Query   A sorted query to a clustered table
in which the sorting criteria and the clustering
coincide. The query processing cost is optimal.
Cube by    An operator associated with a set of n cube
dimensions which computes 2n group bys for each of
the combinations of the n dimensions, including the
group by null. For example, select ... from table ...
cube by d1, d2 will result in a computation of 22 = 4
group bys, group by d1, d2; group by d1;  group by
d2 and group by null.
Cuboid   Each of the combinations of the dimensions
of a cube by operator. For cube by d1, d2, the cuboids
are d1d2, d1, d2, null.
Data Cube   Synonym of a multidimensional database
seen as a n-dimensional cube, or simply cube; each
dimension is an aggregation criterion, and each cell of
the cube contains numeric measures or facts
associated with a value for each cube dimension. A
cube can be represented by a relational schema called
star schema.
Dimension Table   A table containing a dimension
key and the attributes to describe the semantics of
each key value.
Fact Table   A table characterized by a key composed
of foreign keys for each dimension, and of attributes
which are generally additive.
Materialized View     The name given to a clustered
table corresponding to a cuboid and stored in a DW.
In the rest of this paper, when we refer to a cuboid we
will be thinking of the materialized view associated
with it.
Relational Data Warehouse    A cube with a star
schema.
Sorted Query   A query with an order by clause.
Star Schema A representation of a cube,
composed of a fact table (the star) and dimension
tables related to the fact table (the star satellites).
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                Figure 1: Star schema.

Fig. 1 is an illustration of a star schema with the fact
table fact and four dimension tables d1,d2,d3 and d4.

3 Quasi-optimal Algorithm



We propose an algorithm (referred to as quasi-
optimal) which either optimizes the global cost of
computing a cube by or approximates, in a strong
sense, the computed global cost to the optimal cost.
The computation may be total (all of the cuboids) or
partial (some cuboids). With respect to the global
cost computation, the algorithm considers two costs:
the cost of direct and indirect derivation of a cuboid
from another cuboid  these costs will be explained
up further on  , taking into account the use made of
cuboids by the users.

Derivation Graph

The algorithm’s input is a derivation graph
(G, ), where each vertex vk  G is a cuboid of a
cube by. The edges in  are derivation-oriented
edges (vi, vj), i  j, from vi to vj, if vj has all the
dimensions of vi, less one. Each edge is labelled with
two derivation costs: Direct and Indirect. The cost
D(vi,vj) means that vj is a prefix of vi; consequently vj

can be computed directly from, and simultaneously
with, vi. On the other hand, if vj is not a prefix of vi,
then the cost of computing vj from vi is indirect,
I(vi,vj), meaning that vi should be re-sorted to create vj

directly from it. It is then obvious that the direct cost
D to derive a cuboid is always less than the indirect
cost I. This derivation graph is similar to the hierarchy
of group by operations in [7]

Besides the derivation graph, one must indicate a
list of the sorted queries related to some or all of the
cuboids. There could be more than one sorted query
to a given cuboid.

See the derivation graph in Fig. 2. Consider
cuboid C2; the edges from C2 (a deriver cuboid) to
cuboids C5 and C6 (derived cuboids), respectively,
are derivation edges which indicate that C5 and C6
are derived from C2, that is, C5 (C6) has all the
dimensions of C2, less one. These edges are labelled
(D, I). The cost of deriving C5 (C6) is D, when C5
(C6) is a prefix of C2; when C5 (C6) is not a prefix of
C2, then the cost is I. There could be more than one
sorted query to C2.

We make a fairly reasonable hypothesis that,
given a deriver cuboid and all which are derived from
it, all the deriver–derived edges have the same D and
I costs. Thus, for example, for the edges from C2 to
C5 and C6, the value of (D, I) is common to both.
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Figura 2: A derivation graph, input to the quasi-
optimal algorithm.

The level k of a derivation graph represents all the
cuboids with k dimensions. Note that given a n-
dimensional cube by, the number of levels of the
graph (G, ) is always n+1 (level 0, level 1, ..., level
n). The level 0 represents the cuboid null. The level n
represents the deriver cuboid of the cuboids of other
levels, direct or indirectly. By examining the number
of levels for the graph in Fig. 2, it can be concluded
that the cube has three dimensions.

For lack of space, we will not detail how to
estimate the derivation costs from a cuboid. We will
only say that they are dependent on the cuboid size
(actually, the size of the result of the group by
associated with it) and on the characteristics of the
hardware (memory size and processing speed). [7]
presents a procedure for estimating the size of a
cuboid.

Quasi-optimal Derivation Graph

One of the algorithm’s goals is to guarantee that
queries supplied remain clustered to the
corresponding derivation graph cuboids. The other
goal is to explore to the full the possibility of deriving
cuboids directly, or simultaneously, from others,
aiming to diminish the creation costs of materialized
views. Ideally, both goals would be fully achieved.
Unfortunately, these goals may be conflicting.

The algorithm’s output is a sub-graph called
quasi-optimal derivation graph, generated from the
derivation graph given as input to the algorithm, in
which the global sum of all of the costs D and I is
minimal, or is a value as close as possible to the
minimum, in relation to the two goals being pursued.
In this graph, each cuboid, with the exception of the
highest level cuboid, is connected to a single higher
level cuboid (the deriver cuboid), the edge being
labelled as D or I. To distinguish between a D value
and an I value, the edges with costs D are solid edged
while the edges with costs I are dashed. The deriver
cuboid of all of the other cuboids, direct or indirectly,
is a cuboid in the highest level of the quasi-optimal
derivation graph. An example of a quasi-optimal



derivation graph (there are others) for the derivation
graph in Fig. 2 is shown in Fig. 3.
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Figura 3: A quasi-optimal derivation graph.

Imagine four sorted queries, to C1, C2, C5 and
C6. If the two goals of the algorithm had been fully
achieved, then among all the related combinations of
edges in Fig.2, the combination of edges in Fig.3
would have a minimal cost (in other words, the sum of
all edge costs would be minimal), and the queries
would also be clustered to their respective cuboids. In
the case of a conflict between the two objectives, the
queries would be still clustered to their cuboids, but
the sum of all edge costs would not be exactly
minimal.

To understand the way in which a quasi-optimal
derivation graph is created, we need to describe the
algorithm.

Algorithm Description

In order to obtain a quasi-optimal derivation graph
from a derivation graph (G, ), the quasi-optimal
algorithm uses iteration; each iteration considers two
consecutive levels of (G, ), from level k = 0 to level
k = n-1, where n is the number of dimensions of a
cube by represented by (G, ). For each level k, the
algorithm finds the mininal cost to derive level k from
level k+1. This problem is solved through an
algorithm implementing the Hungarian method [4],
which determines what is called minimal-cost-
matching in an directed bipartite graph.

With the help of the quasi-optimal algorithm’s
Minimal_Cost_Matchings procedure, which
implements the Hungarian method, we can arrive at a
minimal cost matching, as shown in Fig. 4, between
the two sets of cuboids at levels 1 and 2, respectively,
of the derivation graph in Fig.2.
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Figure 4: A minimal cost matching for the cuboids at
levels 1 and 2, respectively, of the
derivation graph in Fig.2.

As we can see, this matching is not unique, and the
Minimal_Cost_Matchings procedure actually finds all
matchings. The existence of several minimal-cost

matchings allows us to exhaustively test the
alternatives in order to resolve conflicts between the
order of the cuboids and the order of the queries.

Detection and Solution of Conflicts

There exist two kinds of conflict which are
detected by the quasi-optimal algorithm’s
Conflict_Detector procedure: the first is a conflict
among the several sorted queries to the same cuboid;
the second type of conflict is between the order of the
cuboids and the order of the queries.

To illustrate the first type of conflict and its
solution by the Conflict_Resolver procedure, imagine
two queries to cuboid C2. It is clear that only one of
them can be clustered with C2. The solution to the
conflict, as determined by the Conflict_Resolver
procedure, is the following: the procedure chooses the
query which is clustered with C2, maintaining the
minimal cost matching among the cuboids at levels 1
and 2. With respect to the other query, a careful
choice of indices to access C2 can make its processing
cost acceptable [6].

For the second type of conflict and its solution,
consider that the orders of C4 and the query submitted
to it are different. In this case, C4 is re-sorted to
cluster it with the query to it, and consequently the
direct derivation cost of C7 is substituted by this
cuboids’ indirect derivation cost (that is, the edge
from C4 to C7 changes from solid to dashed). As a
result, the matching between the cuboids at levels 1
and 2 is not now of minimal cost. Note that the
solution for these conflicts will always privilege the
queries.

It is important to point out that a conflict of the
second type is still frequently solved by maintaining
the minimal cost matching. Observe again the
bipartite graph in Fig.4: we could change the order of
C2, and as such invert the derivation costs of C5 (now
a dashed edge) and of C6 (now a solid edge)  it is
obvious that the sum of all costs will remain
unaltered.

The Conflict_Detector and  Conflict_Resolver
procedures are applied to each matching generated by
the Minimal_Cost_Matchings procedure. The final
solution for levels  k+1 and k is the one closest to the
minimal cost matching.

3.1 Partial Computing of a Cube by Operation
Often, a DW administrator is interested in

materializing only some views, among all of the views
corresponding to each of the cuboids of a cube by. If
this is the administrator’s option, the algorithm’s
output is a partial quasi-optimal derivation graph,



constructed from the quasi-optimal derivation graph,
when the option is a total cube by computation. This
partial graph consists of cuboids corresponding to the
desired materialized views, as well as the intermediate
cuboids necessary to create them, along with the
appropriate edges. The following refinement consists
of changing the dashed edges of the partial graph into
solid edges, wherever possible. The example in the
following sub-section gives additional details about
this operation of the algorithm.

3.2 An Application Example of the Algorithm
Take four dimensions, Product (P), Promotion

(Pr), Store (S) and Time (T), and six very frequently
sorted queries pspr, sprp, ps, spr, p and s to a
relational DW. Also consider the table Fact (P#, Pr#,
S#, T#, additive_attributes) and the dimension tables
Product, Promotion, Store and Time. The DW
administrator then wishes to materialize the views
PPrS, PS, PrS, P and S, so as to guarantee good
performance for the queries.
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Figure 5: Derivation graph for Cube by P, Pr, S, T.

The input to the quasi-optimal algorithm is the
derivation graph in Fig. 5, with the list of six queries.

Each pair of numbers is of the type (D, I). Thus,
for example, (20, 60) under the cuboid  PST means
that the direct cost of derivating PS, or PT, or ST
from PST is 20, while the indirect cost of derivating
PS, or PT, or ST from PST is 60.

Figure 6 is a quasi-optimal derivation graph
created by the algorithm, whose semantics are the
optimal cost plan for the construction of all
materialized views concerning the cube by P, Pr, S, T
operation, taking into account the given queries and
the possibility of simultaneously creating several
views. Among all alternatives for the construction of
optimal plans, the algorithm chooses this one, which
privileges the pspr query instead of sprp, and in which
the queries pspr, ps, spr, p and s are clustered
respectively with PSPr, PS, SPr, P and S.
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Figure 6: The best plan to materialize the views of
Cube by P, Pr, S, T.

As an example of a plan which is not exactly
optimal, add a sorted query sprpt to the given queries.
In this case, we would have a cuboid SPrPT and the
cost of deriving STP of SPrPT would be indirect
(320, instead of 100), and the global cost would not
be minimum.

From the graph in Fig. 6, the algorithm creates a
partial graph as in Fig. 7 where the cuboids
correspond to the given queries. An intermediate
cuboid necessary to the first ones is also shown.

P S P r T
( 1 0 0 )

P S P r
( 3 0 , 8 0 )

S P r
( 1 0 )

P S
( 1 0 )

SP

Figure 7: Graph to partial computing of Cube by  P,
Pr,  S, T.

Observe that the intermediate cuboid PSPrT is
necessary to simultaneously derive the cuboids PSPr,
PS and P.

4 Experimental Evaluation
The critical point in terms of the quasi-optimal

algorithm’s performance is the
Minimal_Cost_Matchings procedure which
implements the Hungarian method to compute the
minimal cost matchings between two sets of vertices
of a bipartite graph. The complexity of the procedure,
for two consecutive levels k and k+1 of the derivation
graph, is cubic, O(n3), where n is the number of
vertices at level k+1.

The test involved the materialization of 5 views
PSPr, PS, SPr, P and S, with and without the help of
the cost plan in Fig. 7. The hardware for the test was
the IBM RS/6000, with 32 MB of memory, while the
software used for table creation was the Postgresql
DBMS [5]. Assuming that all record fields in the Fact
table are 4 bytes, the tests were made for the Fact
table with 54,750,000 records (  1,1 GB).



Firstly, we created a file PSPrT, sorted by P, S, Pr,
and T, with the contents of the Fact table. From this
file, a Postgresql clustered table, PSPrT, was created.
The remaining Postgresql tables, PSPr, PS, SPr, P and
S, were created according to the quasi-optimal
derivation graph in Fig. 7. Let Time1 be the total
creation time for these 5 tables.

For the tests without the Fig. 7 plan, a Postgresql
clustered table, PPrST, was initially created.
Afterwards, each of the 5 tables, PSPr, PS, SPr, P and
S were created separately. Let Time2 be the total
creation time for these 5 tables.

Since Time2 is more than 8 times larger than
Time1, the test unambiguously shows that the creation
of materialized views according to the plan exposed is
vastly superior.

5 Related Works
A large DW research project is being developed at

Stanford University, USA. With respect to the cube
by operator and materialized views, refer to the work
by [2], who presents an algorithm to decide which
group bys should be pre-computed and indexed. This
research, however, does not deal with the
optimization of related group bys.

[7] and [6], in which the last complements the
first, are related to one another. The focus of [7] is the
cube by operator, which may be seen as a hierarchy of
group by operations. It thus considers related group
bys, but the performance of complex queries to a DW
is outside its scope. On the contrary, [6] exclusively
considers the efficiency of complex queries to DWs,
supposing that the materialized views have already
been created.

6 Conclusions
In this paper we present an algorithm for the

efficient computing of multiple group bys of a cube
by. The results of all or some of the group bys of a
cube by should be stored in the Data Warehouse
(materialized view process), aiming for their later use
in queries to the Data Warehouse.

However, it would not be worthwhile to
materialize views without considering the queries that
could use them. Without this care, it could happen
that (1) a view would be used very little or not at all;
and (2) that a view and a query that frequently uses it
could have incompatible orders, requiring the sorting
of very large temporary files, thus resulting in large
query processing costs.

The algorithm takes the following two costs into
account: the cost of creating a materialized view and
the cost of processing a query to a Data Warehouse. It
has as input a graph called derivation graph which
indicates that the result of a group by may be derived

directly or indirectly from another (that is, in the case
where it is not or is necessary to re-sort the last to
obtain the first), with their respective costs, as well as
a list of frequent queries to the Data Warehouse which
could use these views.

As output, the algorithm produces an optimal, or
quasi-optimal, plan to create the views. In an optimal
plan the view creation cost is mathematically the least
in relation to all the other costs, and the view orders
are compatible with the query orders; in a quasi-
optimal plan, the cost is closest to the least cost, and
the view orders are still compatible with the query
orders.

The tests with the algorithm unambiguously show
its superior performance when compared with ad hoc
view materialization processes.
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