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1 Abstract

A point data retrieval algorithm for the HG-tree is
introduced which improves the number of nodes ac-
cessed. The HG-tree is a multidimensional indexing
tree designed for point data and it is a simple mod-
ification from the Hilbert R-tree for indexing spatial
data. The HG-tree data search method mainly makes
use of the Hilbert index values to search for exact
data, instead of using conventional point search meth-
ods as used in most of the R-tree papers. The use of
Hilbert curve values and MBR can reduce the spatial
cover of an MBR.

Several R-tree variants have been developed; R*-
tree, S-tree, Hilbert R-tree, and R*-tree combined
with the linear split method by Ang et al. Our search
method on the HG-tree gives a superior speed perfor-
mance compared to all other R-tree variants.

2 Introduction

Multidimensional indexing methods have been widely
used on multimedia systems, geographical informa-
tion systems, and for many other purposes. Among
these methods, the R-tree [12] is the most popular
model, since it has features such as support for dy-
namic databases, low I/O costs, and auto-balanced
trees. Other successful R-tree variants, R*-tree [4],
X-tree [5], and Hilbert R-tree [14] also achieve satis-
factory performance.

As the fast growing research continues on multime-
dia, rapid data retreival on large media databases is
required. Media content based retrieval also demands
efficient similarity matching, and several techniques

for nearest neighbour search for R-tree type models

are being developed [19] [13] [17].

In this paper, we investigate the point search is-
sue on the HG-tree. The HG-tree [9] is a simple ex-
tension of the Hilbert R-tree to support point data
only. However in [9], Cha and Chung do not indi-
cate that the potential of the HG-tree can provide a
very fast point search mechanism. The technique of
using space filling curves to retrieve data has been
studied a long time ago. Some of the early research
by Cook [10] applied linear quadtrees (Morton codes
or z-order filling curves) for accessing geographical
data. Abel and Smith [1] applied linear quadtrees to
retrieve geographical data in the form of rectangles.
Most of the point search techniques in R-tree vari-
ants check whether the query point is overlapped by
the bounding rectangle of a node. If so, the search
is traversed to a lower level, recursively searching the
overlapping nodes until point data is found. Instead
of using this technique, we investigate the algorithm
for searching points which is based on values from the
Hilbert space filling curve.

A brief description of R-tree, Hilbert R-tree, and
HG-tree is given in the next section, followed by stud-
ies on normal point search and the new point search
based on Hilbert values in section 4 and 5 respec-
tively. The experiments on the point search method
use a database of point data containing 120,127 items
varied from 2 to 16 dimensions, and compared against
several R-tree variants; these are R*-trees [4], S-tree
[2], Hilbert R-tree [14], HG-tree [9] with normal point
search, and R*-tree combined with the linear split
method by Ang et al. [3]. A detailed evaluation of
these results is described in section 7.



Figure 1: General structure of R-tree

3 R-tree, Hilbert R-tree, and
HG-tree

The R-tree [12] is a multidimensional indexing tree
that contains three types of nodes: root, non-leaf, and
leaf nodes. A root node is located at the top level and
it can either have non-leaf or leaf nodes as children
nodes. Non-leaf nodes can either have leaf or non-leaf
children, and leaf nodes are at the bottom of the tree
that contains a set of data objects. The structure
of the R-tree is automatically balanced, such that all
the leaf nodes are at the same level. Each node in the
R-tree accommodates a multi-dimensional minimum
bounding rectangle (MBR). This MBR encapsulates
all the node children’s bounding rectangles. A set
of child-pointers and children MBRs are also stored
in each node, the child-pointer addresses where the
child node is stored.

The Hilbert R-tree [14] uses the index values of the
Hilbert space filling curves to represent n-dimensional
data for indexing. The Hilbert space filling curve [6]
[8] [20] basically maps from n-dimensional data to a
one dimensional value, and vice versa. In [15], Ja-
gadish shows that the Hilbert space filling curve has
a better clustering property compared to other space
filling curves. In the Hilbert R-tree, each child en-
try of a node is associated with a Hilbert indexing
value, and the largest Hilbert value (LHV) among
all the children Hilbert values is also kept inside the
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Figure 2: Example of HG-tree structure

node. For insertion, the n dimensional data is first
mapped to a Hilbert value and then the node that
has the closest LHV is selected for insertion. The
operation is processed recursively until the leaf node
level. Since the single dimensional Hilbert values are
used mainly in insertion and split operation, the con-
struction of the Hilbert R-tree achieves a high speed
performance and simpler implementation than other
R-tree variants.

The HG-tree [9] is a slight modification of the
Hilbert R-tree for indexing point data only. Instead
of having a single entry of Hilbert value, Cha et al. [9]
use two Hilbert values, LHV and the smallest Hilbert
value (SHV), to represent the interval of Hilbert val-
ues in each node. Each internal node has a list of
tuples as (I, ptr), where I is the Hilbert values in-
terval which plays a similar role to MBR and ptr is
the address of a child node. However, we are doubt-
ful about the value of this node structure as it does
not seem to extract the correct MBR. For example,
figure 2a illustrates a set of nodes with fanout of 2.
According to the HG-tree node structure specified in
[9], figure 2b shows the corresponding tree indexing



structure.

From figure 2b, it appears to us that the only way
to regenerate MBR with correct spatial information
is to traverse down to the leaf nodes which is imprac-
tical. The alternative is to trace the Hilbert values
interval and convert to coordinates while expanding
the rectangle but this can cause drastic computation
and large dead space in the MBR.. In fact, it creates
a slightly enlarged version of MBR if the stored data
are real values which may cause overlap. For this
reason, we use the node structure as (I, M BR, ptr)
instead for the HG-tree throughout the evaluation.

4 Data object retrieval

To access data rapidly with multiple attributes is es-
sential in multimedia database systems. The R-tree
spatial indexing structure offers an efficient model
with low disk access to index a data item. It is a
well known fact that the performance of the R-tree in
range search and nearest neighbour search degrades
dramatically with an increase of dimension. The
typical R-tree data object retrieval algorithm checks
which child node’s rectangle overlaps with the query
object under all dimensions and proceeds in a recur-
sive manner until the leaf node is encountered. Then
all the items in the leaf node are matched against the
query item. The following is the conventional algo-
rithm for searching data objects:

1) PointSearch(QueryObject, RtreeNode)
2)  if (RtreeNode.type == LEAF)

then
3) for i in each child of RtreeNode
4) for n in each dimension
5) if (QueryObject.datal[n] !=
RtreeNode.child[i] .data[n])
return(NULL) ;
6) return(RtreeNode)
else
7) for i in each child of Rtree_node
8) if (QueryObject cover by
RtreeNode.child[i])
9) PointSearch(QueryObject,

RtreeNode.child[i])

5 Data object retrieval with
Hilbert values

In this section, a point search algorithm for HG-tree
is presented. The method mainly uses the Hilbert
value for matching data items. If there is a data item
that has an exact match of Hilbert value against the
query item, then a further match on each attribute is
necessary. It is likely to happen that close real data
may have been mapped to the same Hilbert values, as
the attributes are first rounded to the nearest integer
coordinates and then transformed to a single dimen-
sional data value. Conversely, it may even happen
that a multi-dimensional data point has exactly the
same real value attributes in a very large database.
The following code demonstrates a new approach to
searching for a point data item from the HG-tree:

1) HilbertPointSearch(QueryObject,

HGtreeNode)
2) if (HGtreeNode.type == LEAF)
then
3) for i in each child of HGtreeNode
4) if (QueryObject.Hilbert ==
HGtreeNode.child[i] .Hilbert)
then
5) for n in each dimension
6) if (QueryObject.dataln] !=
HGtreeNode.child[i] .data[n])
return(NULL) ;
return(HG-tree_node);
else
return(NULL) ;
else
7) for i in each child of HGtreeNode
8) if ((QueryObject.Hilbert within
HGtreeNode SHV and LHV) &&
(MBR of HGtreeNode covers
QueryObject))
9) HilbertPointSearch(QueryObject,

HGtreeNode.child[i])

The above algorithm clearly shows that step 4 is only
a simple integer matching operations, which is always
in order of 1. Step 4 is an extra boolean operation
compared with the normal search algorithm but it
helps to reduce a number of calls to step 5. Although
the HG-tree uses the range of Hilbert values instead of
minimum bounding rectangles, only applying Hilbert
values for point search is not robust enough, as unnec-
essary node access can be involved with query points



that are not indexed in the database. This can be
avoided by generating minimum bounding rectangles
from the Hilbert values but overlap area can be in-
duced between nodes and redundant search can oc-
cur.
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Figure 3: Example of overlapping area generation be-
tween nodes using Hilbert values

The reason that the above hybrid algorithm out-
performs the PointSearch method is that the size of
spatial search is minimized in some cases. Imagine
a set of 2D integer data which are indexed into a
tree with a branch factor of 3 as shown in figure 3a.
According to the indexing algorithm of HG-tree, the
Hilbert values are sorted in ascending order. Two
nodes are created as demonstrated in figure 3b, rect-
angles A and B with the black and hollow dots respec-
tively. Node A are indexed with Hilbert range values
2 — 6, and node B with values 7 — 15. Because of
the nature of Hilbert space filling curves, overlapping
area can be introduced between the minimum bound-
ing rectangles. Therefore the normal spatial search at
points (1, 1) and (1, 2) in figure 3b can involve both
rectangles, whereas the Hilbert PointSearch on points
(1, 1) and (1, 2) as in Hilbert values of 2 and 7 re-
spectively traverse to the correct node. If the point
queried is location (3, 3) as in Hilbert value 9, the
search on only Hilbert values can cause unnecessary
processes. Figure 4a shows the reduced spatial size
of the HilbertPointSearch, whereas the vertically and
diagonally shaded area corresponds to nodes A and B
respectively. However, there is an exception that the
spatial search would not be smaller than the MBR, if
the start and end points in the Hilbert values range
meet in the same neighbourhood, see figure 4b.

y y
—_—___
3 3 s
2 2 |
1 1 Y
__
0 o - CL
01 2 3 X 01 2 3

Figure 4: Spatial area of the HilbertPointSearch func-
tion

6 Evaluation

A set of image databases with various dimensional-
ities are constructed; they all have the same size of
120,127 feature vectors. The feature vector dimen-
sion ranges from 2 to 16 in steps of 2. The images
are textures obtained from Brodatz [7], VisTex [18],
and commercial catalogues. A texture feature ex-
tractor [16] is applied to these images and the first 16
features are used for the experiment.

The following indexing methods are used for eval-
uation in this paper:

1. Hilbert R-tree [14]

2. R*-tree [4]

3. S-tree [2]

4. R*-tree using Ang et al.’s new linear split [3].
5. HG-tree [9] with PointSearch function

The R*-tree [4] is one of the most successful R-tree
variants and it has been used by a popular image
query application, QBIC [11]. The R*-tree achieves
a better storage utilization and retrieval than R-tree
with re-insertion and improved split techniques. The
S-Tree is a height imbalanced tree and it is con-
structed through two stages, binarization and com-
pression. The binarization process organises all the
data into a large binary tree form and the com-
pression process creates an R-tree style tree by re-
collapsing nodes iteratively. The new linear split [3]
by Ang et al. is processed by pushing the rectan-
gles to either side in each dimension, such that the
rectangles end up in the furthest separation with less
overlap. They evaluate the split method with the R-
tree model. However, we are interested in integrating



Methods
Dimension (node size) 1 | 2 | 3 | 4 | 5
2D (1K) 35,4168 | 49, 3339 | 49, 4976 | 49, 3806 | 27, 4418
4D (2K) 45,3294 | 55, 2891 | 55, 4263 | 55, 3535 | 38, 3337
6D (2K) 32,4739 | 38, 4228 | 38, 6418 | 38, 4356 | 28, 4714
8D (4K) 52, 2856 | 59, 2681 | 59, 3721 | 59, 2770 | 47, 2828
10D (4K) 43,3462 | 47, 3369 | 47, 5330 | 47, 3386 | 39, 3483
12D (6K) 55, 2695 | 60, 2642 | 60, 3669 | 60, 2701 | 51, 2694
14D (6K) 48,3135 | 51, 3128 | 51, 4676 | 51, 3098 | 45, 3093
16D (6K) 42,3571 | 45, 3523 | 45, 5406 | 45, 3584 | 40, 3540

Table 1: Fanout and Number of Pages For R-tree Variants

Methods
Dimension 1 | 2 | 3 | 4 | 5
2D 85.2% | 76.4% | 51.3% | 66.5% | 81.4%
4D 83.3% | 77.4% | 53.1% | 63.6% | 82.6%
6D 82.3% | 78.1% | 51.9% | 75.2% | 83.2%
8D 82.8% | 77.9% | 56.4% | 75.2% | 83.8%
10D 83.0% | 78.0% | 50.1% | 77.6% | 82.8%
12D 82.9% | 78.1% | 56.2% | 75.8% | 83.0%
14D 81.9% | 78.1% | 52.3% | 78.0% | 83.1%
16D 82.5% | 78.0% | 51.6% | 76.7% | 83.3%

Table 2: Storage Utilization of R-tree variants’ structure

such a method with the R*-tree. The parameters of
all experimental methods are those recommended in
the papers. The only parameter adjusted for these
experiments is the node size and it is shown in table

1.

Tables 1 and 2 show the node size, fanout, stor-
age utilization, and number of pages created in each
dimension by each method. In table 1, the num-
bers from 1 to 5 appearing on the top row represent
the methods according to the above enumerated list.
The first column is a list of dimensions, and along
with each dimension the value inside the bracket is
the node size set up in these experiments. For ex-
ample, the first item in the dimension column, 2D
(1K), means that the node size of each method is set
to 1K byte in a 2 dimensional case. The column of
each method has tuples which each correspond to the
fanout of nodes, and number of pages created respec-
tively. The number of pages created for the various
methods in table 1 indicates the storage requirement
to index all the data. For instance, in order to in-
dex 120,127 2D data with node size of 1K, Hilbert
R-tree takes 4168 x 1K to store the data efficiently
whereas R*-tree needs 3339K. This is because of the

extra Hilbert values stored in Hilbert R-tree.

Table 2 is constructed in a similar manner and
it indicates the results of storage utilization of each
method. The storage utilization is a percentage of
the number of objects stored in each node. The
higher the value, the less space is wasted in each node.
Among these methods, the S-tree is the method that
only supports static databases. The fanout of the
HG-tree shown in table 1 is the branch factor of root
and non-leaf nodes, whereas the fanout of leaf nodes
is the same as for the Hilbert R-tree. Generally,
Hilbert curve variant trees (methods 1 and 5) achieve
the best storage utilization (above 80%), whereas the
R*-tree and R*-tree with linear split (methods 2 and
4) are under 80%. However, the S-tree (method 3)
has only just above 50% storage utilization.

A phenomenon of the split algorithm by Ang et al.
is observed by experimenting with large databases.
The method can lead to a severe imbalance of split.
When the dimension is low, in some cases the chances
of having inbalanced split in each dimension may oc-
cur (please refer to the first 5 lines of code in [3].)
Moreover, if there is a case that all the data objects to
be split have the same attributes, then the algorithm



Methods
Dimension 1 | 2 | 3 | 4 | 5 | 6
2D 26.8 | 16.3 | 6.7 | 16.8 | 24.6 | 26.1
4D 14.8 | 63.8 | 6.2 | 45.7 | 16.0 | 15.9
6D 20.2 | 406 | 7.8 | 386 | 11.1 | 9.6
8D 172 | 41.1 | 5.3 | 58.0 | 8.6 5.5
10D 8.0 [ 376|401 400 | 7.5 4.0
12D 74 | 35935412 | 7.2 4.1
14D 75 | 35.0 |47 414 | 7.3 4.2
16D 83 | 299 |56 |34.0| 74 | 4.3

Table 3: Average nodes accessed for each point search

can even return empty and overflow splits. Although
this hardly arises for spatial data, there is more pos-
sibility for point data. We use the split technique of
the R*-tree instead, if this condition of an empty split
occurs.

Table 3 illustrates the main results of this paper,
i.e. the average number of nodes accessed to retrieve
a point from the trees. The performance is measured
on a SGI machine with 180 MHz RS10000 CPU and
128 MB Ram. The column labelled with 6 is the
HG-tree with HilbertPointSearch function.

The S-tree achieves the best performance in point
search overall, since it calculates the optimized sep-
aration of the entire database. Although this may
not be a fair comparison as the S-tree is designed for
static databases only, this shows how large the perfor-
mance difference is between static and dynamic mod-
els. After the 4 dimensional case, our point search
method outperforms all the other methods except the
S-tree model with less nodes accessed. The S-tree
generally has fewer nodes touched than any method
but with low storage utilization. From 6D case on-
wards, our method has comparatively fewer nodes
touched than all other R-trees variants and has a very
close performance to the S-tree.

7 Conclusion

A point search algorithm is introduced for the HG-
tree which uses Hilbert curve values as the main
matching target. This is different to the conven-
tional approach of point search methods of R-tree
variants. We compared the new approach with sev-
eral other techniques, namely R*-tree, Hilbert R-
tree, S-tree, R*-tree with the new linear split, and
HG-tree with normal point search on a set of large

databases (120,127 data) with various dimensions.
The properties of these R-tree variants are also anal-
ysed. Since the S-tree is designed for indexing fixed
size databases, it generally has the best performance
due to its searches for optimal split of the entire
database. However, the alternative point search tech-
nique with the HG-tree has very close node access
rates to the S-tree in the higher dimensional cases.
Compared to other methods, the results for our alter-
native point search technique show that it has fewer
nodes touched. The main disadvantage of the HG-
tree is the extra computation of minimum bounding
rectangle from the range of Hilbert values required
for point search, range search and nearest neighbour
search.
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