Design Principles for Data-Intensive Web Sites

Stefano Ceri, Piero Fraternali, Stefano Paraboschi
Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
ceri,fraterna,parabosc@elet.polimi.it

1 Introduction

The integrated design of the Web interface and of data con-
tent gives several advantages in the design of data-intensive
Web sites. The main objectives of this design process are
(a) associating the Web with a high-level description of its
content, that can be used for querying, evolution, and main-
tenance; (b) providing multiple views of the same data;
(c) separating the definition of information content from
Web page composition, navigation, and presentation, which
should be defined independently and autonomously; (d) stor-
ing the meta-information collected during the design process
within a repository used for the dynamic generation of Web
pages; (e) collecting information about the Web site usage,
obtained both statically (user registration) and dynamically
(user tracking); (f) supporting selective access to informa-
tion based on users’ requirements and needs; (g) using busi-
ness rules to improve the generation of effective Web pages
and to present each user with personalised views of the Web
site.

We identify ten general principles that should be consid-
ered when implementing a Web site managing large amounts
of data, yielding the following decalogue:

I: Data-intensive Web sites should have a
conceptual schema
II: Data derivation should be supported
III: Data navigation should be supported
IV: Flexible page composition should be supported
V: Flexible presentation styles should be supported
VI: Web metadata should be managed by
commercial DBMSs
VII: Page and data materialization
could be supported
VIII: Associative query paradigms could be supported
IX: Personalization could be supported
X: Event-based reactive processing
could be supported

The first five rules represent methodological issues that
should be considered in the design of a site. Rules VI and
VII are relative to the implementation of the site. Finally,
the last three rules describe special functionalities that are
needed in most, but not all, data-intensive Web applications.

2 Terminology

Before discussing each principle in detail, we try to clarify
some of the terms that will be used in this paper.

Data-intensive Web application. Web sites are data-
intensive when their primary goal is to make large amounts
of data accessible to a variety of users. A typical application
scenario is electronic commerce on the Web.

Structured and semi-structured data. We assume
that data resources used by a data-intensive Web application
are mostly structured, i.e., they are regular enough to be de-
scribed by means of a schema. In addition, data-intensive
Web applications may include semi-structured data; these
should normally be self-describing, i.e., with local descrip-
tors providing names and types for each data item. Models
such as Lorel [1] or content description languages such as
XML go in this direction.

Design process for a data-intensive Web applica-
tion. It is the process by means of which Web sites are gen-
erated; it consists of the joint specifications of the Web pages
which make up the application and of the DBMS structure
and queries for data extraction and manipulation. We dis-
tinguish between a pure top-down design process, in which
the data is defined together with the Web site, and a pure
bottom-up design process, in which the structure and content
are defined a priori and are immutable by the process. Many
cases lie in between these two extremes, as some data con-
tent pre-exists to the design process, but data sources can
be enhanced and/or restructured to take new requirements
into account.

Structural model. The structural model of a Web ap-
plication defines the content of the structured data which
is used by the application. It should be independent from
the logical and physical models used for data storage, which
may be multiple heterogeneous DBMSs. Concepts used in
such description are classical ones (e.g., entities with slots
and lists, relationships between entities, generalization and
part-of hierarchies).

Derivation. Derivation is the process of extracting data
from the various sources and producing data for specific Web
pages. There are two processes of data derivation. Ezternal
derivation is the process of extracting data from the sources
and producing data as described by the structural model;
internal derivation is the process of deriving as many con-
ceptual views of the data as needed by the various possible
interfaces supported by the Web application.

Navigation. Navigation is the process by means of
which it is possible to move from one page to another in
a Web application. Navigation is dynamically executed by
performing certain operations, associated to events on the
screen (e.g., the click on suitable icons or pieces of text),
which have a well-defined operational semantics.

Presentation. Presentation is concerned with the look
and feel of Web pages, in particular with the design of the
general page layout, with the placement of specific pieces of
information on the page, and with the selection of graphical
resources like backgrounds, icons and animations.

3 The Decalogue

I: Data-intensive Web sites should have a
conceptual schema

Structured data should be given a conceptual schema, that
describes the information content of data resources regard-
less of their storage structures. The conceptual model pro-
vides a better understanding of the information content of
the Web, and such understanding can improve the processes
of Web site generation, use, maintenance, interoperability
with external data sources, query, and evolution. With suit-
able user interfaces, the conceptual schema can be disclosed
to users and help in content analysis and query formulation.

Conceptual data models for the Web should be suitable
adaptations of conceptual data models as already in use in
other disciplines, such as database design, software engi-
neering, and knowledge representation. The ingredients of
such conceptual models should be the standard abstractions
of classification, aggregation, and generalization. In a very
broad sense, the elements of conceptual models are contain-
ers of data elements or connectors enabling the linking of
data elements; data elements have slots, with an associated
type. For instance, in the well-known Entity-Relationship
(ER) model entities are containers, relationships are con-
nectors, and attributes are slots. Additional classical ingre-
dients of conceptual models include generalization hierar-
chies, part-of relationships, and cardinality and/or existence
constraints.

A useful notion in the conceptual modeling of the Web is
that of target, which intuitively represents a class of objects
or facts of the real world that should be given an autonomous
Web presentation. Targets should be identified in such a way
that any piece of information of the conceptual schema be-
longs to a given target; target identification is a classical step
in object-oriented design. Each target could correspond to
several containers, connectors, and slots; in ER terms, each
target may include several entities, with their attributes,
and with relationships between them. Other relationships
are instead used to connect different targets.

II: Data derivation should be supported

External derivation is the process of building the data con-
tent, as specified in the structural schema, from data sources.
Derivation can be fully automatic if the data source is a
single DBMS and the DBMS schema is automatically de-
rived from (or mapped into) the structural schema. Other-
wise, external derivation requires solving classical problems
of data integration from diverse, possibly heterogeneous,
data sources.

Internal derivation is the process of producing differ-
ent viewpoints of the same information. Derivation queries
(rules) apply to the conceptual schema and define additional
concepts, whose content is intensionally derived instead of
being extensionally stored. In principle, every element of the
conceptual model can be intensionally derived; e.g., it is pos-
sible to derive containers, connectors, and slots. Coherently
with the principle that Web information should be targeted,
also each derived concept should belong to a target.

III: Data navigation should be supported

As in classical hypertext theory, it is possible to distinguish
navigation into contextual and non-contextual. The former
is associated to the shift of focus from one piece of applica-
tion content to another one along navigation paths coherent
to the conceptual structure of the site (e.g., from a target to
another one along an inter-target connector); the latter per-
mits the access to the content of an application from outside
by means of suitable access commands, e.g., entry indexes.

At a conceptual level, non-contextual navigation can be
modeled by means of collections, defined as containers of
pages not attached to any target.

Contextual navigation occurs within a container (access-
ing the members of the container) or along a connection (ac-
cessing all elements connected to a given one). It includes
the following orthogonal aspects:

e sorting: the way in which the members of a container
or the elements associated by a connector to an object
are sorted;

o filtering: the possibility to select a subset out of all the
members of a container or connector;

e indexing: the possibility to present a collective preview
of the (filtered) members of a container or connector
by means of an index;

o accessing: the actual shift of focus to one (or more) of
the members of a container or connector;

e browsing: the possibility, when one element of a con-
tainer or connector is accessed, to “scroll” through the
other elements of the same container or connector.

IV: Flexible page composition should be
supported

Page composition is the fundamental process of assigning
data targets specified during structure modelling to abstract
information nodes, called page types, which form the hyper-
text to be published on the Web. In such a mapping, it
must be possible to flexibly select a subset of the target’s
data and semantic connections to be shown on the actual
Web pages of the application.

Targets should be mapped to page types in a one-to-
many fashion: the same target should be representable ac-
cording to different page structures, but for coherence a page
type should always describe a single target. At run-time, an
instance of a target is mapped to an instance of a page type,
which then causes the production of a physical page. Multi-
ple page types per target allow the designer to represent the
information on the same real-world object in different ways,
e.g., for serving the needs of different users.

Page composition should also be concerned with non-
contextual navigation, which is supported by the definition
of collections, i.e., ad hoc containers of pages not attached
to any target, serving as entry indexes to the application
objects. An application should have many well-chosen col-
lections, to let users access the application content in several
different ways.

V: Flexible presentation styles should be
supported
Presentation specification should be pursued at the concep-

tual level, i.e., independently of the specific network lan-
guage used to render the application, to enable multiple

mappings from the same page style to different realizations
(e.g., based on Java, HTML 3, HTML 4, XML). An ap-
proach for defining the presentation of page types at the
conceptual level is to consider the screen as an abstract grid
and then to place into each cell of the grid the pieces of in-
formation that constitute the page type or collection page,
e.g., the slots and outgoing connectors that characterize the
target associated to the page type.

Presentation specifications should be collected in presen-
tation styles, which should drive the production of actual
Web pages (e.g., HTML pages). WYSIWYG tools may help
in the creation of effective presentations, typically by pre-
senting several predefined styles and then giving to the de-
signer several options for customization. For flexibility, it
should be possible to associate each page type to more than
one style; defaults may be used for the automatic genera-
tion of a basic style for each page type. The output of actual
application pages from presentation styles, page types and
database targets should be defined in a formal way, to enable
automatic implementation.

VI: Web metadata should be managed by
commercial DBMSs

Metadata describing the structural schema, external and in-
ternal derivations, navigation, composition, and presenta-
tion styles should be stored within a repository; for its im-
plementation, we advocate the use of standard DBMS tech-
nology. Given that data requirements, integrity constraints
and usage patterns are well understood, the derivation of
both logical and physical schemas for meta-information can
be supported by an automatic translation process. This
choice favors the integration of meta information with the
data content.

VII: Page materialization should be sup-
ported

The process of page generation maps conceptual specifica-
tions plus database content into pages, typically written in
HTML. It should be possible either to perform page gener-
ation just-in-time when a page is requested by a user, or to
split it into sub-steps, some of which could be anticipated for
better performance: (a) database views describing derived
concepts could be materialized; (b) all data relative to the
same page type could be clustered into one or more views
and materialized; (¢) HTML page templates corresponding
to page types could be generated by embedding database
queries into HTML tags, with the help of commercial SQL-
HTML integrators; (d) output pages could be cached, either
on the client, or on the server, or on a proxy.

Such anticipation, however, may cause disalignment be-
tween the database content and the data materializations;
this problem is critical if the database is constantly updated
and the Web application is expected to present always up-
to-date values.

VIII: Associative query paradigms could
be supported

Access to information stored in a data-intensive Web site
could be provided by query paradigms based on the site’s
semantics. To let users query the site without knowledge
of its physical organization, query languages should oper-
ate at the conceptual level, leveraging the abstractions of

the conceptual model used to describe the site. Conceptual
query languages should have a graphical interface, based on
presenting the conceptual schema to users and then asking
them to logically define navigations and predicates, so as to
select specific conceptual elements.

IX: Personalization could be supported

In many applicative contexts, the Web site could be per-
sonalized with respect to specific classes of users. To this
end, it is necessary to collect static information about users
(typically by means of user’s registration) and/or dynamic
information about usage (by means of access traces or ex-
plicit requests). Based on this information, the user could be
presented with different versions of the site, or with different
navigation commands and presentation styles. For instance,
a user could be explicitly asked for preferences and then be
offered suitable entry indexes based on his input. Personal-
ized access is essential in electronic commerce for supporting
one-to-one marketing, an approach where each user is served
by an apparently individual application interface.

Beside technical implications, the collection of profiles
and traces has also legal requirements. For example, in the
European Union privacy legislation imposes that personal
information (e.g., traces) be always kept in a secure way,
and its usage disclosed to the user and explicitly authorised.

X: Event-based reactive processing could
be supported

The dynamic generation of Web pages has the advantage
that all data manipulation events (e.g., data insertions, dele-
tions, updates) can be immediately reflected by the Web site
content; in this sense, dynamically generated Web sites are
implicitly highly reactive.

The use of commercial DBMSs for storing metadata and
content enables the use of active rules (triggers) for express-
ing domain-dependent business rules. Several applications
are possible: (a) if users register their interests in certain
data (targets), then the news relative to those targets can
be automatically delivered to them (e.g., in the form of mes-
sages or data pushes) (b) if pages are automatically gener-
ated, then content and style selection can be done dynam-
ically by triggers, which react to event-condition pairs ex-
pressing the understanding of users’ interests and needs as
explicitly or implicitly collected; (c) similarly, new naviga-
tion options and/or collections can be added to a page based
on users’ interests.

4 Classification of approaches and tools
for data-intensive Web applications

Existing approaches and tools for the design of Web appli-
cations can be classified in four categories [5].

e Authoring tools.
o Web extensions of databases.

e Tools for database export, report writing, and appli-
cation development.

o Integrated Web-database development environments.

Authoring tools include products like Microsoft’s Front
Page, NetObject’s Fusion, Claris’ Home Page, and many
more. These tools typically focus on content production;

they offer powerful graphical design capabilities, but do not
support the description of the structure and of the seman-
tic properties of the information sources that are collected
within the site and offer little or no database integration.
From a development process standpoint, they mostly con-
centrate on the implementation and maintenance of sites,
and the best tools also offer a rather rudimental support to
design, limited to the definition of the hierarchical organi-
zation of the site’s pages. The extraction of structured data
stored in databases is not integrated in the site design pro-
cess, and thus must be performed manually in ad hoc ways.
In summary, these tools simplify the development of small-
scale Web sites, but quickly become inadequate as the size
and complexity of the Web application increase.

Web extensions of databases include a variety of tools
whose common denominator is to produce Web pages from
information stored in a database, either statically or dy-
namically. Several tools perform such task by integrating
databases and Web technology at the language level, for
example by extending HTML with special tags for dynam-
ically embedding the output of database queries into static
HTML page templates. Examples include: the Cold Fusion
Web Database Construction Kit by Allaire Inc., Microsoft’s
Active Server Pages (ASP) and Internet Database Connec-
tor (IDC), StoryServer by Vignette Corporation, Informix’s
Web Integration Option, HAHT Software’s HahtSite. Due
to their focus on implementation languages, these products
lack high level abstractions for describing applications and
thus do not assist the developer in identifying the structure,
navigation, composition, and presentation aspects of an ap-
plication.

A different category of Web database extensions offer
higher-level functionalities for database export, report writ-
ing, and form-based application development. Among the
innumerable existing products there are: Microsoft’s Visual
InterDev, Visual Basic 5, and Access97, Borland’s Intra-
Builder, Sybase’s PowerBuilder, Apple’s WebObjects, Net-
Dynamics, Asymetrix SuperCede Database Edition, and Al-
laire’s Cold Fusion Application Wizards. These database
publishing tools offer Integrated Development Environments
(IDEs) and Rapid Application Development (RAD) tools for
boosting productivity in the implementation phase. How-
ever, they do not encompass conceptual modeling nor sup-
port the model-driven design and implementation of appli-
cations. Typically, data structures, business logic, and in-
terfaces are specified and designed separately and then im-
plemented with a tool of choice.

Integrated Web-database development environments have
the potential of satisfying all the rules of the decalogue. We
have included into such category Oracle’s Designer 2000 [7]
as a representative of commercial products, and a few re-
search prototypes, namely Araneus [2], AutoWeb [6], and
Strudel[4]. These are more extensively described in light of
our ten rules in the following sections.

4.1 The Oracle Web Development Tool
Suite and Designer 2000

The Oracle Web Development Suite includes Designer 2000
[7], an environment for business process and application
modeling, integrated with software generators originally de-
signed to target traditional client-server architectures. The
Web Generator enables previous applications developed with
Designer 2000 and deployed on LANSs to be ported to the
Web, as well as the delivery of novel applications directly on
the Internet or on Intranets. The Web Generator takes its

inputs from the Designer 2000 design repository and deliv-
ers PL/SQL code that runs within the Oracle Web Server
to produce the desired HTML pages of the application.

Designer 2000 adopts a development process for Web
applications identical to that for traditional client-server
database applications. The modeling abstractions offered
by Designer 2000 are database-centric (mainly, tables and
foreign-key links), and thus the designer can adequately
represent the structure of the extensional and intensional
information hosted in the site (Principles I and II), but is
limited in the specification of navigation, page composition,
and presentation styles (Principles III, IV, and V).

Performance is guaranteed by the tight integration be-
tween the Designer 2000 Web Generator and the Oracle Web
Server, which manages metadata in the DBMS (principle
VI) and uses page caching transparently to the user (Prin-
ciple VII). Advanced functions like user modeling and pro-
filing and business rules (Principles IX and X) are not in-
tegrated with the modeling notations of Designer 2000, but
can be added manually to the application generated by the
tool.

4.2 Araneus

Araneus is a project of Universita di Roma Tre, defining an
environment for managing unstructured and structured Web
content in an integrated way, called Web Base Management
System (WBMS). In a WBMS, database technology is used
to store both data and metadata describing the hypertextual
structure of Web sites. The major components of Araneus
are [8]:

e A conceptual data model, called ADM (Araneus
Data Model), used to represent the structure of the
site’s documents. ADM is a hypertextual data model
based on the notion of page scheme, a language inde-
pendent page description notation based on such ele-
ments as attributes, lists, link anchors, and forms.

e Several languages and tools for Web sites manage-
ment and querying. Ulixes is a language for querying
Web sites, which implements a navigational algebra.
Polyphemus is a diagrammatic query interface for ex-
pressing Ulixes queries. Editor is a text-management
language for the definition of wrappers, which are used
for loading external data stored within semi-structured
or unstructured data sources (e.g., existing Web sites).
Minerva is an extension of Editor, based on a declar-
ative specification of the grammar of the source text
to parse and on an exception mechanism to manage
inconsistencies in the sources. Penelope is the system
for the definition and maintenance of new sites.

¢ A methodology for Web site design and implemen-
tation. The methodology is based on the distinction
between data structure, navigation, and presentation.
The structure of the application domain is described
by means of the Entity Relationship model; the naviga-
tion aspects are specified using the Navigation Concep-
tual Model (NCM) [2], a notation inspired to RMM,
simplified in several operational details. Conceptual
modelling is followed by logical design, using the re-
lational model for the structural part, and the Ara-
neus Data Model (ADM) for the navigation aspects.
Presentation is built starting from HTML files with
appropriate tags.

Araneus focuses on data-intensive Web sites by adopt-
ing a database-centric process. Development proceeds ac-
cording to a structured process organized along two tracks:
database and hypertext. Database design and implementa-
tion are conducted in the customary way using the Entity-
Relationship Model and mapping it into relational struc-
tures. After ER modeling, hypertext conceptual modelling
formalizes navigation by turning the ER schema into a NCM
schema, this shift requires several design activities. The next
step, hypertext logical design, maps the NCM schema into
several page-schemas written in ADM. Finally, implemen-
tation requires writing page-schemas as declarations in the
Penelope language, which specifies how physical pages are
constructed from logical page schemas and content stored
in a database, in a way similar to commercial HTML-SQL
integrators.

Araneus offers a semantic description of the site content.
A conceptual schema is used to represent the structure of
data (Principle I). Internal derivation is supported within
NCM, while external derivation is available, if needed, by
means of wrappers (Principle IT). Data navigation is explic-
itly represented in ADM (Principle III). Pages are composed
with the Editor and Minerva tools (Principle IV). Presenta-
tion may be defined with any commercial HTML construc-
tion tool, as it is based on ad hoc tags in an HTML file
(Principle V). A relational DBMS is used as a repository
of the metadata (Principle VI). Araneus offers both a pull
and push approach to page generation (Principle VII): in
the former, pages are dynamically generated, in the latter
pages are materialized off-line, with mechanisms to propa-
gate updates from the database to the materializations. The
Ulixes and Polyphemus tools support declarative queries on
the site (Principle VIII). Currently, the system does not offer
support for personalized access (Principle IX): the access to
certain pages may be protected by the standard protection
mechanisms of the Web server, requiring a username and
password to access them, but this is not integrated into the
model. Finally, no support is currently offered for event-
based reactive processing (Principle X), except for the re-
computation of materialized pages following database and
schema updates.

4.3 AutoWeb

AutoWeb [6] is a project developed at Politecnico di Milano
with the goal of applying a model-driven development pro-
cess to the construction and maintenance of data intensive
Web sites. The AutoWeb approach emphasizes the use of
conceptual modeling to specify the semantics of Web ap-
plications and of a structured development process backed
by CASE tools for reducing the development effort through
the automatic generation of application pages. AutoWeb
consists of three ingredients:

¢ A concepual model for Web sites, called HDM-
lite, which is an evolution of previous hypermedia and
database conceptual models, specifically tailored to
the Web.

e Several automatic transformations, which address
the description of conceptual schemas into relational
database structures, and the production of pages (in
HTML and Java) from data and metadata stored in
the database.

A set of design-time and run-time CASE tools
that completely automate the design, implementation,
and maintenance of a Web application.

An AutoWeb application is constructed starting from an
HDM-lite schema, drawn with the Visual HDM Diagram
Editor; presentation specification is assisted by an ad hoc
tool (called Visual HDM Style Sheet Editor), which per-
mits the designer to define presentation styles applicable
to conceptual objects in a WYSIWYG manner. The con-
ceptual model is automatically translated by a tool called
Visual HDM Relational Schema Generator into the schema
of a relational database for storing application data, plus
a mini-database (called metaschema database) containing a
relational representation of the site’s structure, navigation
and presentation.

The site is populated either using an automatically con-
structed data entry application, produced by the AutoWeb
Data Entry Generator, or manually defining a mapping be-
tween the automatically generated relational schema and the
schema of the pre-existing database. As the last step, ap-
plication pages are dynamically constructed from database
content and metadata by the AutoWeb Page Generator, in
such a way that all the prescriptions of the conceptual model
are enforced. A tool called AutoWeb Page Grabber also per-
mits the user to selectively materialize portions of the site
based on semantic criteria.

The AutoWeb conceptual model, HDM-lite, consists of
primitives for the orthogonal specification of structure, navi-
gation and presentation, as required by Principles I, ITI, and
V. However, HDM-lite presently neither supports a language
for data derivation nor the flexible composition of the page
(Principles IT and VI). As a consequence, the page structure
is directly inferred from the schema of application targets
(called entity in the HDM-lite jargon), which induces a reg-
ular structure also in the HTML pages generated from the
conceptual schema.

AutoWeb stores into a relational DBMS both metadata
and application data; this greatly enhances the possibility of
quickly adapting the output pages to the user’s needs, even
at run-time (Principle VI). To increase performance, dy-
namic page generation can be bypassed by a flexible caching
mechanism (Principle VII).

AutoWeb presently does not support any form of query
language, as required by Principle VIIT; AutoWeb exten-
sions support the addition of explicit user modeling facili-
ties, which constitute the basis for conceptual-level business
rules tracking the user and reacting to significant events by
manipulating the page generation process (Principles IX and
X). For example, such extensions permits the registration of
users, the collection of explicit and implicit preferences, and
the specification of business rules mapping users with given
preferences to dedicated navigation commands and presen-
tation styles. In the present version, conceptual-level busi-
ness rules are manually transformed into relational triggers.

The AutoWeb project is currently under evolution in the
context of the W3I3 (Web-based Intelligent Information In-
frastructure) Consortium (a project of the Esprit IV Frame-
work with a 3 million Euro budget, sponsored at 50% by
the EU). The Consortium includes Politecnico di Milano as
technology provider, TXT Ingegneria Informatica as solu-
tion integrator, and a large-scale Web development company
Digia (Digital Information Architects) Inc., together with
pilot applications OTTO Versand (the world’s largest mail
order company) and KPN Research (the research branch of
the major telecom company of the Netherlands).

W3I3 modeling will distinguish the five perspectives of
structure, derivation, navigation, page composition, and pre-
sentation; thus it will fully comply with the first five rules.
Meta-data will be stored on a relational server, thus adher-

ing to rule VI; content, possibly distributed across different
data sources, will be integrated into a global view of the
site, obtained by mapping the conceptual schema into a re-
lational representation. A special feature of W3I3 is the
integration of user modeling and business rules: users are
explicitly modeled through demographic and psychographic
variables and business rules are used to map users or user
groups to personal views of the site, computed dynamically,
thus obeying to rules IX and X. Presently, W3I3 is in the de-
sign phase; most of the AutoWeb technology will be reused.

4.4 Strudel

Strudel is a project originally developed at AT&T Research,
now being extended at AT&T Research, INRIA in France,
and the University of Washington. The major features of
Strudel are [3]:

e Uniform Graph Model. Every application object is
represented as a named node in a graph. Each node
has a set of attributes. Edges connect nodes, labeled
with an attribute name.

e Data integration. Strudel emphasizes the integra-
tion of data originating from different sources. Wrap-
pers are defined enabling the mapping from the data
source to the internal Graph Model. Sources may be
data in a relational database, or even pages of an ex-
isting Web site.

¢ Query and transformation language. A language
is provided to extend the graph. Pages are repre-
sented as nodes in the graph; pages and page links can
be specified starting from queries on the graph. The
graph defines only the structure of the pages; HTML
code is generated by a separate page composer, respon-
sible of managing data presentation.

Strudel conceptually separates content, structure, and
presentation. The description of content is based on the
Uniform Graph Model. Strudel focuses on a bottom-up de-
sign process, where data usually pre-exists to the Web ap-
plication design.

The conceptual schema is based on the Uniform Graph
Model for semistructured data (Principle I). Data deriva-
tion and navigation are supported by StruQL, the query
and transformation language operating on the Graph Model
(Principles IT and III). StruQL can also be used as a tool for
the specification of page structure (Principle IV). Presenta-
tion is managed by writing HTML templates that are then
fed to the HTML generator. Strudel offers the generation
of independent presentations on the same data, satisfying
Principle V.

Strudel differs significantly from other proposals with re-
spect to DBMS integration (Principle VI), as it stores meta-
data in an ad hoc repository for semistructured data. Data
that resides in a DBMS may be part of a Strudel site via
a wrapper translating StruQL queries in the corresponding
DBMS queries, but the DBMS is external to the system.
The current Strudel prototype materializes the pages; there
is a plan to extend the system, giving the designer the choice
between materializing and composing pages on the fly (Prin-
ciple VII).

Strudel does not currently envision facilities for the def-
inition of user queries (Principle VIII). The designer can
access the schema of the site (which is kept in the inter-
nal repository and is directly accessible by StruQL), but no

user-friendly interface is currently provided for the unexpe-
rienced user. Personalized access (Principle IX) could be
supported. In [4] there is a reference to the interest demon-
strated by industrial users on the capabilities of user person-
alization; Strudel has the potential for offering this function-
ality, but to our knowledge it does not currently integrate
user tracking facilities. Event-based reactive processing is
not addressed (Principle X).

5 Conclusions

‘We have presented ten design principles which should drive
the development of data-intensive Web applications; current
practice highlights very high development and maintenance
costs for such Web applications, and we argue that this sit-
uation is in part motivated by the lack of suitable design
tools and environments. However, this paper reports of a
trend in research prototypes, partially reflected in commer-
cial systems, to improve the compliance to our decalogue.
We believe that this trend will characterize future environ-
ments for the design of large Web applications.

Acknowledgement

We thank Paolo Atzeni and Alon Levy for very useful com-
ments on an early draft of this paper, and for providing
feedbacks on our descriptions of Strudel and Araneus.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. L. Wiener. The Lorel query language for semistruc-
tured data. Int. Journal on Digital Libraries, 1(1):68
88, 1997.

[2] P. Atzeni, G. Mecca, and P. Merialdo. Design and main-
tenance of data intensive Web sites. In Proc. EDBT98,
Valencia, Spain, March, 1998.

[3] M. Fernandez, D. Florescu, J. Kang, A. Levy, and
D. Suciu. Strudel: A web-site management system. In
Proc. ACM SIGMOD, pages 549-552, Tucson, Arizona,
May 1997.

[4] M. Fernandez, D. Florescu, J. King, A. Levy, and D. Su-
ciu. Catching the boat with Strudel: Experiences with
a web-site management system. In Proc. ACM SIG-
MOD, pages 414-425, Seattle, Washington, June 1998.

[5] P. Fraternali. Tools and approaches for data-intensive
Web applications: A survey. To appear in ACM Com-
puting Surveys.

[6] P. Fraternali and P. Paolini. A conceptual model and
a tool environment for developing more scalable and
dynamic Web applications. In Proc. EDBT98, Valencia,
Spain, March, 1998.

[7] M. Gwyer. Oracle Designer/2000 WebServer Generator
Technical Overview (version 1.3.2). Technical report,
Oracle Corporation, Sept. 1996.

G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sin-
doni. From databases to web-bases: The ARANEUS
experience. Technical Report 34-1998, Universita di
Roma Tre, May 1998.
http://www.dia.uniroma3.it/Araneus/articles.html.

8

