
SQLJ Part 0, now known as SQL/OLB
(Object-Language Bindings)

Andrew Eisenberg
Sybase, Burlington, MA 01803
andrew.eisenberg@sybase.com

Jim Melton
Sybase, Sandy, UT 84093
jim.melton@sybase.com

Introductions
For about a year and a half, an informal and open
group of companies has been meeting to consider
how the Java programming language and relational
databases might be used together. Initially called
JSQL and later SQLJ, the companies that have
participated in this group are Compaq (Tandem),
IBM, Informix, Micro Focus, Microsoft, Oracle, Sun,
and Sybase.

The intent of this group when it was formed
was to suggest and review one another’s ideas,
meeting fairly often, see where there was common
understanding and agreement on syntax and
semantics, and to eventually provide a basis for one
or several formal standards.

The work began with a proposal on how
SQL statements might be embedded in Java, put
forward by Oracle. Later Sybase put forward
proposals on how to use Java in the database to
provide the implementation of stored routines and
user-defined data types (UDTs). Once an initial draft
of a specification was put forward, the entire group
participated in reviewing it, spotting problems, and
suggesting enhancements. These 3 parts are, then,
roughly described as:

Part 0 Embedded SQL in Java
Part 1 Java Stored Routines
Part 2 Java Data Types

These three parts have all progressed
rapidly. Since work on Part 0 was started before the
other parts, it was the first to be submitted to a formal
standards body. SQLJ Part 0 has been processed as
Database Language SQL — Part 10, Object
Language Bindings (SQL/OLB), by NCITS H2, the
Database Language technical committee. The name
for this part of the SQL standard implies a broad
scope, with SQLJ Part 0 being the first such binding

Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other
countries.

to be defined; although there are presently no
proposals to extend this to other languages, several
participants have expressed interest in supporting
other object-oriented languages, such as C++ or
Smalltalk.

As this article is being written, the editor has
just submitted his resolution of comments for the
U.S. public review that just took place. It is expected
that SQL/OLB will be formally approved by the end
of 1998. When it is approved, it will be available for
purchase from ANSI as ANSI X3.135.10:1998.

Javasoft’s JDBC
JDBC, initially provided in JDK 1.1, defines a Java
API for accessing relational DBMSs. It is mentioned
here because SQLJ Part 0 layers upon it.

The JDBC API is a fairly rich one. It
provides classes and methods to:

• connect to the database
• get capability, syntax, and limit

metadata from the database
• execute a query or DDL statement
• prepare a DML or call statement, with

parameters to be supplied at the time the
statement executes

• retrieve both data and metadata for
result sets produced by statement
execution

JDBC provides for the dynamic execution of
SQL statements. Any syntax or semantic errors in the
SQL statements will raise exceptions at the time the
application runs.

A JDBC driver must support Entry SQL-92
statements, with some extensions defined in the
JDBC specification. It may also support statements
from other levels of SQL and statements that are
vendor-extensions to the SQL standard.

A very straightforward program to retrieve
some data from a table might look like this:

try {
 String url
 = "jdbc:sybase:Tds:localhost:2638";
 Connection con =
 DriverManager.getConnection
 (url, "DBA", "sql");

 String stmt_source =
 "SELECT distinct city, state "
 + "FROM employee";

 Statement stmt = con.createStatement();
 ResultSet rs
 = stmt.executeQuery(stmt_source);

 while (rs.next()) {
 System.out.println
 (rs.getString("city")
 + " " + rs.getString(2)
);
 }
 con.close ();
}
catch (SQLException sqe) {
 System.out.println (sqe.getMessage());
}

SQLJ Part 0 Features
SQLJ Part 0 allows SQL static statements to be
embedded in a Java program, in somewhat the same
way that SQL-92 allows SQL statements to be
embedded in C, COBOL, and several other
languages. Dynamic SQL statements are handled just
fine by JDBC, and so were not included in this effort.

A simple SQLJ Program
The following code fragment shows how SQLJ Part 0
can be used to access a database:

try {
 #sql { DELETE
 FROM employee
 WHERE emp_id = 17
 };
}
catch (SQLException sqe) {
 System.out.println
 (sqe.getMessage());
}

This example does not show some of the
setup that is necessary for this example to be used. A
JDBC driver must be registered with the JDBC
Driver Manager, and a connection must be made to a
database.

“#sql { ... };” identifies an SQL
executable statement. The curly braces ({}) have
been used to delimit the SQL statement and separate
it from the rest of the Java program. An SQLJ
translator will look for these embedded statements,
and replace them with Java statements that cause the

SQL statements to be executed. The resulting Java
source program will be compiled normally.

At the time that the SQLJ translator runs, it
can be told to connect to an exemplar database and
use the metadata it finds there to validate the SQL
statements. If the employee table did not exist, or
the emp_id column did not exist, then the SQLJ
translator would notify the user of the error.

It is also possible that the vendor of the
SQLJ translator will provide off-line checking, which
could do the part of the checking of the statement that
does not require metadata. If the “=” in the above
statement were a “+” instead, then off-line checking
would be able to catch this mistake.

At execution time, the application can
connect to the same database against which it was
checked, or to another database with the same
schema.

The example above also shows that the
JDBC model for dealing with SQL exception
conditions has been used. In other host language
bindings, the SQLSTATE variable is used to inform
the application of a SQL exception condition. In
SQLJ Part 0, such an exception condition will cause
the SQLJ statements to throw a Java exception,
java.sql.SQLException.

In the sections below, we will make this
example more complicated to show additional SQLJ
Part 0 features.

Connection Contexts
A connection context object is used to associate the
execution of an SQL statement with a particular
connection to a database. In the example above, an
implicit connection context object was used. In the
following example an explicit connection context
object will be used.

#sql context EmpContext;

String url
 = "jdbc:sybase:Tds:localhost:2638";
EmpContext empCtxt =
 new EmpContext(url, "dba",
 "sql", false);

#sql [empCtxt] { DELETE
 FROM employee
 WHERE emp_id = 17
 };

The example begins with “#sql context
...” to declare of the connection context class (a
subclass of ConnectionContext), called EmpContext.
Later, an empCtxt object of this class is created. It
appears in square brackets ([]) to indicate its use in
the execution of the DELETE statement.

A connection context class is used by an
SQLJ translator to determine which database schema
is to be used to check the validity of all of the
statements that specify connection context objects of
that class.

This type of explicit context is more
portable than the use of an implicit context. The
connection context class provides methods that can
examine and change some of the properties of the
connection.

An application can operate on multiple
connections to the same database, or multiple
connections to different databases, using explicit
connection context objects. Connection contexts may
be safely shared among threads in a multithreaded
application.

In some environments, such as within a
DBMS, an SQLJ application may be invoked with a
connection context already provided for its use. The
ConnectionContext.getDefaultContext()
method can be used to determine if this is the case.

Execution Contexts
An execution context object allows some aspects of a
statement’s execution to be controlled, and it allows
the retrieval of information about the execution after
it has completed.

sqlj.runtime.ExecutionContext execCtxt
 = new sqlj.runtime.ExecutionContext();

#sql [empCtxt, execCtxt]
 { DELETE
 FROM employee
 WHERE emp_id = 17
 };

System.out.println
 ("Deleted "
 + execCtxt.getUpdateCount()
 + " rows."
);

In this example, an explicit connection
context and execution context are associated with the
DELETE statement. The ExecutionContext object
empCtxt is used to access the number of rows that
were effected by the delete. Any warnings that were
generated by the statement can be retrieved from the
execution context using the getWarnings()
method.

Like a connection context, the use of an
execution context can be implicit or explicit. A
connection context has a default execution context
associated with it. This default execution context is
used if an explicit execution context has not been
specified. The default execution context can be
retrieved using the

ConnectionContext.getExecutionContext()
method.

Unlike a connection context, an execution
context should not be shared among threads in a
multithreaded application.

Host Variables and Expressions
Ordinary static SQL allows for the use of host
variables in expressions, in addition to literals,
column references, SQL variables, and SQL
parameters.

SQLJ Part 0 allows the use of Java host
variables and host expressions, as seen in the
following example:

int id;

#sql { SELECT emp_id
 INTO :id
 FROM employee
 WHERE emp_fname
 LIKE :(argv[0] + '%')
 };

System.out.println ("Employee id " + id);

The Java host variable, “id” in this
example, is used within an SQL statement to indicate
that a value must be placed into a Java variable. The
pattern in the LIKE clause is a host expression that
concatenates an element of a String array with a
String literal. SQLJ uses the same mapping between
Java data types and SQL data types that is defined by
JDBC.

The syntax for a host variable is as follows:

<host expression> ::=
 : [<parameter mode>] <expression>

<parameter mode> ::= IN | OUT | INOUT

<expression> ::=
 <variable>
 | (<complex expression>)

Java variables and host expressions have a
parameter mode that—if not explicitly specified—is
implicitly determined by its use. The host variable
“id” has mode OUT and host expression in the
LIKE clause has mode IN.

Side effects are a possibility when Java
expressions are evaluated—for example, if an
expression such as “count++” appears inside a
<host expression>, the value of “count” will be
incremented by one every time the host expression is
encountered. SQLJ evaluates all of the Java
expressions that appear in a SQL statement before the
statement is executed. The expressions are evaluated
in left-to-right order.

Calling Stored Routines
A stored procedure can be invoked—using the SQL
CALL statement—as follows:

int count = 0;

#sql { CALL emp_count (:in (argv[0]),
 :in (argv[1]),
 :out count) };

System.out.println
 ("The result is " + count);

A stored function can be invoked as follows:

int count = 0;

#sql count = { VALUES (emp_count2
 (:in (argv[0]),
 :in (argv[1])
)
)
 };

System.out.println
 ("The result is " + count);

Result Set Iterators
By far the most often used statement in applications
is the SELECT statement. A result set iterator is
roughly comparable to an SQL cursor; it is used to
access the rows of the result of a query. Because a
result set iterator is a Java object in SQLJ, it can be
passed as an argument in the invocation of a method.

SQLJ Part 0 provides two types of result set
iterators. These two types cannot be intermixed for a
single result set; one or the other must be chosen.

Binding to Columns by Name
The first of these types, the named iterator, is seen in
the following example:

#sql iterator Employee
 (int emp_id,
 String emp_lname,
 java.sql.Date start_date
);

Employee emp;

#sql emp = { SELECT emp_lname, emp_id,
 start_date
 FROM employee
 WHERE emp_fname LIKE 'C%'
 };

while (emp.next()) {
 System.out.println
 (emp.start_date() + ", "
 + emp.emp_id() + ", "
 + emp.emp_lname().trim()
);
}

emp.close();

The SQLJ Part 0 iterator statement “#sql
iterator ...” defines an Employee class with
accessor methods for each of the columns of the
query result. Methods like next() and close()
are also generated. The emp object is created and
bound to the result of the query. The while loop
then iterates over the rows that result from the query,
printing a line for each one. Finally, the result of the
query is closed.

It is the use of column name/data type pairs
in the iterator declaration that determines that this is a
named iterator. The column names are matched to the
iterator names in a case-insensitive way. This means
that SQLJ Part 0 requires the select list columns to be
unique when they are compared in this way (without
regard to case).

Binding to Columns by Position
The second type of result set iterator that is used to
access the result of query is the positioned iterator, as
shown in the following example:

#sql iterator Employee
 (int, String, String);

int emp_id = 0;
String emp_lname = null;
String emp_fname = null;

Employee emp;

#sql emp = { SELECT emp_id, emp_lname,
 emp_fname
 FROM employee
 WHERE emp_fname LIKE 'C%'
 };

while (true) {

 #sql {FETCH :emp INTO :emp_id,
 :emp_lname,
 :emp_fname};

 if (emp.endFetch()) break;

 System.out.println
 (emp_fname.trim() + " "
 + emp_lname.trim() + ", "
 + emp_id
);

}

emp.close();

The iterator statement in this example has
only data types, rather than column name/data type
pairs, indicating that positioned iterator has been
chosen. At the time the fetch is done, the result
columns are stored in the Java variables, in the order
that they were both specified. The Employee class
has methods like endFetch() and close()
generated for it. The application traverses the rows of
the query result with the SQL FETCH statement.

The choice between named iterator and the
positioned iterator is entirely a stylistic one. To use
the named iterator, the columns that are selected must
all have unique names, or they must be given unique
names using SQL’s ability to rename columns with
the AS clause.

Positioned Update and Delete
Statements
The use of the positioned UPDATE statement can be
seen in the following example:

#sql iterator Employee
implements sqlj.runtime.ForUpdate
(String emp_lname, String emp_fname);

Employee emp;

#sql emp = { SELECT emp_lname, emp_fname
 FROM employee
 WHERE dept_id = 200
 };

while (emp.next()) {

 System.out.println(emp.emp_fname()
 + " "
 + emp.emp_lname()
);

 #sql { UPDATE employee
 SET dept_id = 100
 WHERE CURRENT OF :emp
 };

}

The use of “implements
sqlj.runtime.ForUpdate” is required to
indicate to SQLJ Part 0 that this an updatable result
set iterator—without this clause, the iterator would be
read-only. The SQL positioned UPDATE statement
has been changed only slightly in SQLJ Part 0.
Instead of specifying a cursor name in the “WHERE
CURRENT OF” clause, the Java iterator variable is
used.

Multiple Result Sets
Several DBMSs allow a stored procedure to return
result sets during the execution of the procedure.
These are sometimes called side-channel result sets.

These result sets are dynamic in nature. Two
invocations of the same procedure could result in
different numbers of result sets being returned, or the
same number of result sets but with different
structures.

SQLJ allows an application to deal with
these result sets by escaping to JDBC. This can be
seen in the following example:

ExecutionContext ectxt
 = new ExecutionContext();

#sql [ectxt]
 { CALL emp_count3 (:in (argv[0]),
 :in (argv[1])
) };

ResultSet rs;
while ((rs = ectxt.getNextResultSet())
 != null) {
 while (rs.next()) {
 System.out.println (rs.getString(1));
 }
 System.out.println();
}

ResultSet is the JDBC interface that
allows an application to process result sets.

SQLJ/JDBC Interoperability
As we have stated more than once, JDBC was
designed to process dynamic SQL statements and
SQLJ Part 0 was designed to process static SQL
statements. Clearly there are some applications that
will need to do both types of processing. SQLJ Part 0
provides interoperability between itself and JDBC
through the use of connection contexts and result set
iterators.

A connection context may be created using a
URL, as we showed earlier, or it may be created by
specifying a JDBC connection. Going the other way,
the getConnection() method may be applied to
a connection context in order to obtain the JDBC
connection it is using.

An SQLJ iterator may be created from a
JDBC result set as follows:

ResultSet rs = ... ;
#sql iterator iter (...);

#sql iter = { CAST :rs }

Going the other way, the
getResultSet() method may be applied to an
SQLJ iterator, returning the JDBC result set
associated with the iterator.

Binary Portability
Java programs are independent of the hardware
platform on which they run. As SQLJ programs are
turned into pure Java, they can run anywhere that a
Java Virtual Machine exists.

Similarly, JDBC allows applications to be
written that are independent of the DBMS that will be
used at execution time. Because SQLJ generates
JDBC calls, a single SQLJ application could be run
against multiple DBMSs.

SQLJ provides an additional level of
independence from the DBMS. The SQL statements
that have been processed by SQLJ are accessible to a
vendor-specific customizer. This customizer might,
for example, generate code to create and to execute
stored procedures contain the application’s original
SQL statements. This generated code will become
part of the SQLJ application. At runtime if a
customization for the connected DBMS exists, then
the code generated by that customizer will be used. If
no such customization is found, then the original
JDBC code will be used.

Levels of Conformance
A SQLJ implementation is specification conformant
if it supports the syntax and semantics specified in
SQL/OLB, supports JDBC 1.2 or higher, and
supports the SQL language specified in JDBC 1.2.

A SQLJ implementation is Core SQLJ
Conformant if it meets these requirements, with the
exception of a small number of features, such as:

• calls to stored procedures and functions
• some of the ExecutionContext attributes
• getResultSet() and

getJDBCResultSet() methods
• SQL begin/end statements

Advantages of SQLJ Part 0
We began this discussion with an example of JDBC
and indicated that JDBC was designed to process
dynamic SQL statements. What then are the
advantages to using SQLJ Part 0 over JDBC for static
statements?

 SQLJ Part 0 statements are amenable to
translator-time validity checking. An off-line
checker could check some of the SQL syntax. An
on-line checker could check all of the SQL
syntax and semantic rules.

 SQLJ Part 0 statements and programs are
generally shorter and more easily read than the
JDBC equivalents.

 SQLJ Part 0 allows a DBMS vendor to offer
tools to customize the SQLJ application,
optimizing it in ways that would be impractical
for a JDBC application.

SQLJ Part 0 Reference
Implementation
Oracle, when it introduced SQLJ Part 0 to the SQLJ
group, also made available a reference
implementation of this technology. This can be found
at Oracle’s web site.

This reference implementation is itself
written in Java, so that it can be run on any platform
that supports a JVM. It is vendor neutral. The online
syntax checker uses a JDBC connection to validate
SQL statements. An offline checker can be invoked if
a JDBC connection is not available. The offline
checker is implemented by a Java class, which can be
written by the vendor of a DBMS.

SQLJ Part 1 and Part 2
SQLJ Parts 1 and 2 will soon be sent to NCITS for
adoption as formal standards (though not as parts of
the SQL standard). An SD-3 (project proposal) has
been submitted to NCITS requesting Fast-Track
processing for these specifications. It is possible that
these specifications will be formally adopted during
the 2nd half of 1999. We will very likely devote a
column to them at that time.

Recognition of Individual
Contributors
Many people have contributed to the SQLJ Part 0
specification. At the risk of missing someone, we will
try to list these contributors: Julie Basu, Brian
Becker, David Birdsall, Jos Blakely, Charles
Campbell, Gray Clossman, Curt Cotner, Paul Cotton,
Dan Coyle, Stefan Dessloch, Pierre Dufour, Cathy
Dwyer, Andrew Eisenberg, John Ellis, Chris Farrar,
Mark Hapner, Johannes Klein, Jim Melton, Chong-
Mak Park, Frank Pellow, Richard Pledereder,
Ekkehard Rohwedder, David Rosenberg, Jerry
Schwartz, Phil Shaw, Yah-Heng Sheng, Ju-Lung
Tseng, Michael Ubell, and Seth White.

References
[1] dpANS X3.135.10:1998, draft proposed

American National Standard, Information
Technology — Database Language — SQL —
Part 10: Object Language Bindings (SQL/OLB),
June 1998.

[2] SQL Routines using the Java Programming
Language, Working Draft, Oct. 14, 1998.

[3] SQL Types using the Java Programming
Language, Working Draft, Oct. 14, 1998.

The SQL/OLB specification will be available from:

American National Standards Institute
Attn: Customer Service
11 West 42nd Street
New York, NY 10036
USA

212-642-4980

Web References
American National Standards Institute

http://web.ansi.org

National Committee for Information Technology
Standards

http://www.ncits.org

SQLJ Home Page
http://www.sqlj.org

Oracle, JDBC Drivers Page
http://www.oracle.com/st/products/jdbc/sqlj/

