
The Middleware Muddle1

Application servers and TP monitors are finding new life on the Net.

David Ritter
dhr@webmine.com

1 This article originally appeared in the May 1998 issue of DBMS. It is reprinted with the permission of the
publisher, Miller Freeman, Inc. Recently, DBMS and Database Programming and Design magazines
merged into a new publication, entitled Intelligent Enterprise (http://www.intelligententerprise.com).

A new menagerie of middleware is emerging.
These products promise great flexibility in
partitioning enterprise applications across the
diverse corporate computing landscape. What
factors should you consider when choosing a
solution, and how do current products stack up?
More important to the focus of this article, what
role should Web servers play?

What’s What

These days, “middleware” describes any
software component that sits between application
users at their PCs and the RDBMS or legacy
system that directly manages underlying data.
This term, like many others in the field, is
applied so broadly that it’s lost its meaning. To
help sort things out, I’ll propose some more
specific categories. Still, these things are rarely
clear cut — the functionality of a particular
product may cut across several layers.

I’ve ordered the categories from simple to
complex. Some middleware just provides a
mechanism for data to get from place to place.
More sophisticated offerings help manage
application logic and resources. The most robust
tools directly support significant application
functionality, such as credit card transactions for
e-commerce. This article focuses on the more
complete offerings, but I’ll also offer some
background on the basic plumbing.

Database Transparency

If you’re dealing with multiple database systems,
a common access API is almost essential. This
allows the use of standard tools and greatly
simplifies the application development process.
The most visible examples of APIs for database
transparency are Microsoft’s ODBC, OLE DB,
and ActiveX Data Object (ADO) interfaces. For
Java developers, JDBC is gaining acceptance as
a common database access interface. In the C++

world, RogueWave Software’s DBTools++ has a
wide following.

IPC and Objects

These protocols and products facilitate
interprocess communication (IPC) and object
distribution. They form the basic glue that holds
multitier applications together. Most of the
higher-level products I’ll discuss use one or
more of these underlying protocols. The key
players are:

• Remote Procedure Call (RPC) and its
Java equivalent, Remote Method
Invocation (RMI). Essentially, these
protocols allow your application to call
functions and pass parameters across
process and machine boundaries. They’re
usually synchronous, meaning that each
operation is completed before the next
operation begins. These services are
provided by the operating system or
language development environment. RPC is
usually based on the Distributed Computing
Environment (DCE) infrastructure.

• Messaging systems. In contrast, messaging
systems are typically asynchronous.
Requests for services are queued and
processed according to priority and the
resource availability, and responses are
returned to the requester to indicate the
success or failure of the operation. They’re
often used for workflow and process-control
applications, as well as for WAN
applications with slower, less reliable
connections.

• Distributed object systems. Object systems
provide facilities for locating and interacting
with objects in a distributed environment.
Objects are identified by name or by the
services and interfaces they support. The
implementation of the object and the
platform on which it runs are transparent to
the client.

War rages in this area. On the surface, it’s
Microsoft’s Distributed COM and ActiveX
technologies vs. the Object Management
Group’s combination of CORBA, the Internet
Inter-ORB Protocol (IIOP), and JavaBeans.
More deeply, this battle reflects the struggle
between the openness, maturity, and scalability
of Unix and the growing Microsoft NT
juggernaut. Interoperability between these
standards is emerging slowly, but it has yet to
gain the confidence of either camp. What’s your
religion?

Objects are the real currency of modern
multitiered applications. All higher-level
products discussed here focus on the
management of objects in ever more complete
ways. Planning your enterprise strategy in terms
of objects and components will allow you to best
leverage this rapidly emerging technology.
Judith Hurwitz provided a round-up of products
at this layer in her DBMS article, “Sorting Out
Middleware” (January 1998, page 10).

Transaction Processing
Monitors

Simply put, heavy access to shared resources
leads to bottlenecks that prevent work from
getting done. Many early forays into client/server
computing at the enterprise level fell flat as the
result of inadequate database resource
management. Early attempts to use RDBMSs to
drive dynamic content on the Web met a similar
fate for the same reasons. In many cases, it
wasn’t the actual processing of the SQL
statements that caused the problem. The
slowdowns resulted from inadequate database
connection management and ineffective
approaches to caching.

Beginning with IBM’s Customer Information
Control System (CICS, pronounced “kicks” by
war-torn veterans) in the early 1970s, systems
have been developed to provide database
resource and transaction management for
applications. The success of these products is
clearly demonstrated by the fact that of the top
20 TPC-C benchmark results (ranked by
transactions per minute as of February 2, 1998),
every single test environment included a
database middleware technology. If the same
results are ranked by price/performance, 18 of

the top 20 used a TP monitor (sources:
www.tpc.org and
tuxedo.novell.com/action/tpc.htm).

TP monitors evolved out of these needs and
others:

• Many organizations use more than one
database system, and business needs call for
transactions to be performed that span across
them.

• Many database systems require an entire
operating system process per connected
user. For applications with hundreds of
users, even the largest hosts are
overwhelmed.

• Establishing a connection to the database is
frequently slow. With many users
connecting and disconnecting frequently,
system performance degrades severely.

• TP monitors attack these problems by:
• Offering connectivity to a variety of

different database systems simultaneously.
• Providing a two-phase commit protocol,

which guarantees the completeness of
database transactions across multiple
databases.

• Processing user requests using lightweight
operating system threads, rather than full
processes. This allows TP monitors to
exploit today’s SMP systems, such as the
Sun Enterprise, Digital Alpha, and Compaq
Proliant.

• Maintaining a persistent pool of database
connections and sharing them across users.
In most applications, each user is actually
accessing the database for only a fraction of
their total time online. Often, hundreds of
“simultaneous” users can be efficiently
served by one-third or even one-tenth the
number of database connections required for
direct access.

• Keeping shared database connections open
over long periods, dramatically reducing the
amount of connection traffic.

• Load balancing, which involves measuring
the usage of shared resources and directing
requests to the least-used servers. Monitors
can also detect and act on situations where a
server or other resource has failed and needs
to be restarted.

• Managing requests asynchronously,
distributing multiple requests over separate
database connections to the same server
(known as pipeline parallelism).

• Distributing requests over multiple database
servers. This technique is known as fan-out
parallelism.

• Communicating peer-to-peer with other
transaction processing monitors to
coordinate the operation of partitioned and
distributed applications.

The advent of TP monitors has led to some
interesting questions about how database
products are licensed. Most vendors, including
Oracle, Sybase, and Informix, license their
products on the basis of the number of
connections. The more simultaneous connections
to the database, the more you pay. But with a TP
monitor, many users may share a small number
of connections. Does this mean you can get a
bargain on your RDBMS
license? Probably not — the major vendors now
take this into account and require pricing to be
based on the number of actual users connecting,
regardless of whether they use middleware.

This discrepancy is especially painful for Web-
based applications, where there are often
millions of users. In many cases, the interaction
of these users with the database is very limited.
For example, a Web site that uses a database
only for user registration might need only 10
pooled database connections to serve the entire
population. Still, the RDBMS vendor will
typically require a license to support an
unlimited number of users. On Unix systems,
these licenses can run hundreds of thousands of
dollars. This pricing consideration is helping
drive Web applications to Windows NT, and it
will dramatically affect the margins and platform
considerations for RDBMS vendors in the
coming months and years.

In the open systems arena, BEA Systems’
Tuxedo leads the TP monitor category. Spun out
from Novell in February 1996, this robust and
mature TP monitor product was used in
approximately 80 percent of the TPC-C results
mentioned earlier. It was the 1997 DBMS
Readers’ Choice winner for best TP monitor, and
it’s also incorporated into major turnkey
application offerings such as PeopleSoft. Other
significant TP monitor products include:

• Transarc Encina (1996 DBMS Readers’
Choice winner)

• IBM Transaction Server products (includes
CICS and Encina)

• Digital ACMSxp

• NCR (distributed by Entersoft)
• Microsoft Transaction Server (MTS)

Object Integration

Some TP monitors deal effectively with objects.
Microsoft Transaction Server is notable in this
respect. It has strong integration with DCOM;
essentially, any ActiveX object can be managed
and cached by MTS. This makes application
partitioning much more straightforward because
existing components built with Visual Basic,
C++, or J++ can be easily relocated to the server.
MTS keeps the object “alive” for reuse,
eliminating the need to re-create instances
continually to service new requests. MTS is (for
obvious reasons) bound tightly to Windows NT,
but its robustness and low cost make it very
attractive. Microsoft has done an excellent job of
integrating Java and ActiveX — all Java objects
are automatically exposed. This eases the
integration of MTS into a multiplatform
environment.

On the Unix side, the Object Transaction Server
(OTS) specification from the OMG is intended
to unify TP monitor functionality with object
request brokers. This extension of the CORBA
protocol is reflected in JavaSoft’s Java
Transaction Service specification, which made
its commercial debut in February with the
Sybase Jaguar Component Transaction Server.

Another emerging standard to be aware of when
evaluating TP monitors and application servers is
the Transaction Architecture (XA), a
specification developed by The Open Group
(www.opengroup.org). XA defines the interface
between a transaction manager and the resources
it uses, such as database systems and
communication channels. Most major Unix TP
monitors and database systems support this
standard. Windows NT support lags but is
reported to be on the way for MTS.

You also should consider the underlying
communication protocol used by the application
server. Servers that are strictly tied to RPC (or
DCOM in the case of MTS) may be limited by
the synchronous nature of the plumbing.
Products that allow the use of queued messages
may offer more flexibility, especially over a
WAN. For example, Encina can use IBM’s
MQSeries middleware. Microsoft has indicated
that integration of MTS and its Message
Queuing Server will happen in later versions.

Application Servers

If TP monitors do all that, what’s left?

While TP monitors are effective tools for large-
scale OLTP, they generally don’t have facilities
for:

• Hosting and managing application logic
• Locating and instantiating objects (name

services)
• Caching objects and controlling object

lifetimes.

Developing multitiered applications is all about
partitioning, which is the division of labor
between the client and one or more specialized
servers. Application servers facilitate partitioning
by allowing the components of the application to
be moved to the architectural level and physical
platform where they can work most efficiently.
Need to run a forecast against a 10GB database
without having sales operations grind to a halt?
Implement a component that runs in the middle
tier on a system with lots of CPU and memory
but not much disk. Need to turn the results into
nice graphs? Let your hundreds of PCs do that
work in a really distributed fashion, on each
user’s desktop.

An application server supports the definition of
application logic. Some servers provide their
own development tools and languages for this
purpose. Others rely on object standards such as
CORBA, COM, or JavaBeans. In almost all
cases, the application logic needs to be
encapsulated as one or more objects. These
objects expose their capabilities through methods
that can be invoked by the application code
directly or by other objects.

Given the flexibility of modern RDBMSs, it’s
tempting to put significant amounts of
application logic directly into the database in the
form of stored procedures. Except for basic
referential and data integrity constraints, this is
generally a bad idea. For most applications, the
database server throughput is the most precious
resource. If the server is performing an
application-specific task for one resource-hungry
user, it’s unavailable to serve the needs of all
other users. It’s better to partition this work so
hardware resources can focus more accurately on
the neediest activities.

Until recently, most application servers were
tightly bundled into enterprise application
development platforms. Fort Software provides
a leading example. The Fort product line
includes complete GUI development tools,
database connectivity components, and
deployment facilities. All of these are built
around a robust application server. (See Figure 1,
page 48.) The designer creates the application as
though it were to run all on one machine, and
then it uses Fort ’s partitioning tools to divide
the work between the client and application
servers. Unify Corp.’s Vision also follows this
model.

Until the end of 1995, this class of high-end
enterprise tools was a fairly well-understood and
mature category. Then the Web happened.

Plain Old Web Servers Aren’t So
Plain Anymore

Web servers are for Web sites, right? Yes, but
increasingly, they also serve a more general role
in the enterprise. The new generation of
application server products is heavily biased
toward the Web. They leverage Web protocols
such as HTML and HTTP, and they use the Web
browser as the primary client environment.

The definition of the Web server platform has
changed dramatically in the last 18 months. This
is being driven by the fierce growth of the Web
as an information and commerce platform. While
good numbers are still hard to come by,
anecdotal return on investment analysis of
intranets shows costs savings of many millions
of dollars, especially in areas such as sales and
customer support. Many businesses expect Web
commerce to make up an increasing percentage
of their overall sales. For example, John
Chambers, CEO of Cisco Systems, said that his
company’s Internet commerce and intranet
systems are saving the company more than $250
million each year. Their Web site handles
approximately 40 percent of their sales, for a
projected total of $3 billion in Web sales in
1998. (Source: John Chambers at Comdex
keynote speech in November 1997.) SAP
responded to this trend by joining Intel in a
venture (named Pandesic) to bring their
enterprise applications to the Web.

On the technical side, this growth is facilitated
by a critical mass of standards, such as HTTP,
SSL, and Java. These standards are embodied in
the Web server, which acts as a focal point for
the integration of new tools and technologies.
Table 1, shows this remarkable progression of
functionality.

These products are only examples. The range of
vendors and tools that enable the Web as an
application platform increases daily, and the
existing products continue to improve. Along
with this explosion on the server, the capabilities
of the Web client have improved in parallel.
With the growing maturity of client-side
JavaScript, Java run times, Dynamic HTML, and
ActiveX, Web applications need no longer suffer
from the primitive, limited user interface
presented by older HTML offerings.

The key players in this new space come at the
market from different angles. From the RDBMS
vendors, we have database-centric application
servers such as Oracle Web Application Server
and Sybase Jaguar CTS. From the Internet and e-
commerce fields come servers focused on
integration with Web servers, EDI, and
electronic payment systems. Leading products in
this field include Kiva (recently acquired by
Netscape), InterWorld Commerce Exchange,
Dynamo from Art Technology Group, and
Novera EPIC.

Some of the new offerings draw heavily on the
Fort xample, although none offers the same
level of seamless partitioning support. They do
incorporate their own development tools and
proprietary technologies in an effort to present a
complete, fully integrated solution. Progress
Software’s WebSpeed (reviewed in the
November 1997 issue of DBMS, page 33) offers
transaction services, tight integration with the
Progress database, wizards and templates, and a
proprietary scripting language. It opens the door
for the use of Java for application components
and access to any ODBC-compliant database.

SilverStream (reviewed in the March 1998 issue
of DBMS, page 29) was developed by many of
the same people who brought us PowerBuilder,
but it is targeted squarely at Web applications. It
offers a slick set of user interface, object, and
database design tools. The heart and soul of
PowerBuilder, the DataWindow, has been
translated very well into the new environment.

The scripting language is Java, so the learning
curve should be short for most developers. The
application server manages the execution of
agents, which can run in response to database
updates, at scheduled times, or at the request of
application code. Agents can process data sets
retrieved from the database on a row-by-row
basis to provide procedural filtering.

Because it tries to do so much, the initial release
of SilverStream comes up short in some areas.
All its application components are stored in the
database in an opaque format, reducing the
flexibility and openness of the environment.
External Java class libraries aren’t easily
incorporated. The user interface class libraries
don’t conform to any of the AWT, AFC, or JFC
standards. The application server lacks fault-
tolerance features, and the absence of a script
debugger is very problematic. Given
SilverStream’s depth of experience and
momentum, it’s reasonable to expect that the
product will improve rapidly.

Upsides and Downsides

With all of these products, Java emerges as a
clear winner. All products offer Java
compatibility at some level. Many, such as
Dynamo and Novera EPIC, are based on Java
from the ground up. As noted earlier, even
Microsoft has good Java support. If you’re
searching for the development language that will
go the farthest to span multiple platforms,
promote reuse, and operate effectively on both
the client and server tiers of your architecture,
Java is by far the best bet. Implementations are
maturing rapidly, and early performance
problems are quickly yielding to better run times
and faster CPUs.

Beans are to Java what ActiveX is to COM.
They provide a model for components, including
event handling. Until recently, the JavaBeans
model has been most commonly used to package
visual controls for client applications. But the
next major step in Java’s drive to become an
enterprise standard comes with JavaSoft’s
introduction of Enterprise JavaBeans (EJB). This
extension focuses on specialized, nonvisual
Beans for the server. The Enterprise JavaBean
execution environment provides thread pooling
and implicit transaction management. (See
Figure 2.) An impressive list of TP monitor and

application server vendors have indicated
support for this component model. Some will
have products ready to ship when the EJB
specification is finalized. Unfortunately,
Microsoft is currently absent from the list. Still,
the wide adoption of EJBs promises to enable the
broad reuse of application components.

What’s the downside to using a Web server as a
tier in an enterprise application architecture?
There are several issues:

• HTTP isn’t ideally suited for client/server
applications. It’s stateless, meaning that
there’s no persistent connection to the
server. This means that state information has
to be included in every request, generally at
a significant performance penalty.

• The frantic pace of development has led to
some shaky product releases with
questionable quality.

• The reliability and performance of
JavaScript and Java executing within the
Web browser are still poor. This has led
Web application server vendors such as
SilverStream to offer dedicated client run
times for executing applications. This
solution is reasonable, but it defeats one
major promise of the Web platform, namely,
not needing to install custom software on the
client.

• Dynamic HTML (DHTML) and the user-
interface class libraries for Java
development aren’t standard yet. If your
application requires any advanced user
interface features, you’ll probably need to
restrict your users to a specific browser
vendor and version.

• Within the Web browser, Java is
“sandboxed.” Without permission from the
user, downloaded Java can’t write to the
PC’s disk or perform other potentially
destructive actions.

Choose Your Weapons

For today’s enterprise applications, flexible
resource use is a key to success. Building
component-based applications will let you use
the latest application server technology to meet
these challenges. These products have finally
matured to the point that it’s no longer necessary
to build your own glue, transport mechanisms,
communication protocols, or database

connectivity, even for very demanding
applications.

For the most resource-intensive applications,
dedicated TP monitors offer the highest
performance. For applications involving more
complex rules and logic, more general
application servers provide an excellent
framework. In any case, the bulk of the new
technology is converging around Web standards.
Developing in Java will open a wide range of
choices for partitioning and deploying your
applications. In the Unix world, there is a rich set
of products based around CORBA and Java. For
Windows NT, expect Microsoft’s MTS and its
supporting cast to dominate. Selecting a vendor
with a strong commitment to standards and open
architecture is the best insurance in this time of
rapid change.

David Ritter is the principal of WebMine, a
Boston-based consulting practice focused on
information and technology solutions for Internet
business. He was previously the vice president of
engineering at Firefly Network and managed the
development of OLAP client products for Oracle
Corp. He has spoken widely on topics ranging
from data warehousing to Internet privacy. You
can email David at dhr@webmine.com.

Web Platform Features Capabilities
Common Gateway Interface (CGI) Handles full requests with separate server processes;

slow and difficult to program; no built-in database
support.

Server APIs: Netscape NSAPI; Microsoft ISAPI Handles full requests with in-process libraries;
much faster, but even more difficult to program; no
built-in database support.

First-generation scripting environments:
Netscape LiveWire; Microsoft Active Server Pages
(ASP); Apache with Java Servlets; ColdFusion;
WebObjects

Integrated with HTML, allowing incremental
extensions to pages; high-level scripting in
JavaScript, VB Script, or Java speeds development;
some performance problems due to script execution;
some object and database support; very limited
security.

Second-generation application environments:
LiveWire plus LiveConnect and Borland/Visigenic
ORB; ASP plus ADO and MTS; Apache with
CORBA and JavaBeans; SilverStream 1.0; Progress
Software WebSpeed

More generalized object support; Java and CORBA
integration; database connection pooling; better
caching and precompilation improves performance;
better security with 40-bit SSL.

Third-generation enterprise and commerce
environments: Netscape with Kiva Application
Server and Actra commerce servers; Microsoft Site
Server 3.0 with Active User Object, MTS 2.0, and
Merchant Server; Open Market LiveCommerce and
Transact

Sophisticated database resource pooling and object
caching; integration with knowledge and content
servers; extends into more vertical application areas,
such as user registration and profiling; high-end
user-to-business and business-to-business
commerce functionality; integration with back-end
payment systems; more extensive security with 128-
bit SSL and digital certificates.

Table 1. The progression of Web platform functionality.

Figure 1. The Fort WebEnterprise architecture. Courtesy of Fort Software Inc.

Figure 2. The Enterprise JavaBean execution
environment. Courtesy of JavaSoft division of

Sun Microsystems Inc.

