
VSkyline: Vectorization for Efficient Skyline
Computation

Sung-Ryoung Cho† Jongwuk Lee‡ Seung-Won Hwang‡

Hwansoo Han† Sang-Won Lee†

†School of Information & Communications
Engineering

Sungkyunkwan University
Suwon, 440-746, Korea

{applys,hhan,swlee}@skku.edu

‡Department of Computer Science and
Engineering

Pohang University of Science and Technology
Pohang, 790-784, Korea

{julee,swhwang}@postech.edu

ABSTRACT
A dominance test, which decides the dominance re-

lationship between tuples, is a core operation in skyline
computation. Optimizing dominance tests can thus im-
prove the performance of all existing skyline algorithms.
Towards this goal, this paper proposes a vectorization
of dominance tests in SIMD architectures. Specifi-
cally, our vectorization can perform the dominance test
of multiple consecutive dimensions in parallel, thereby
achieving a speedup of SIMD parallelism degree in
theory. However, achieving such performance gain is
non-trivial due to complex control dependencies within
the dominance test. To address this problem, we de-
vise an efficient vectorization, called VSkyline, which
performs the dominance test with SIMD instructions by
determining incomparability in a block of four dimen-
sional values. Experimental results using a performance
monitor show that VSkyline considerably reduces the
numbers of both executed instructions and branch mis-
predictions.

1. INTRODUCTION
For the past decade, skyline queries [2, 3, 4, 5, 6,

7, 11] have gained considerable attention for helping
multi-criteria decision-making processes in a large-
scale data set of tuples. Because skyline computa-
tion depends heavily on tuple-wise comparisons to
check the dominance relationship between tuples,
called dominance tests, existing skyline algorithms
tend to focus on avoiding unnecessary dominance
tests either by pruning non-skyline candidates early
or by partitioning an entire data set into multiple
subsets.

Despite such optimizations, a huge number of
dominance tests is still inevitable in skyline compu-
tation. In particular, as dimensionality increases,
the number of dominance tests increases exponen-

tially. Since the dominance test is a core opera-
tion in skyline computation, we aim to optimize the
dominance test itself. Specifically, when the val-
ues of tuples are scanned sequentially for the dom-
inance test, there exists an opportunity to take ad-
vantage of data-level parallelism in SIMD (single
instruction, multiple data) architectures. Although
SIMD architectures are available in almost all mod-
ern CPUs, to the best of our knowledge, no sky-
line algorithm makes use of SIMD architectures to
achieve efficient dominance tests.

In this paper, we propose a vectorization of dom-
inance tests, which can determine dominance rela-
tionship efficiently, by performing comparison for
multiple consecutive dimensions in parallel. Given
a SIMD parallelism degree, e.g., currently four, we
can boost the performance by up to four folds in
theory. However, achieving such performance gain
is non-trivial for skyline computations. In general,
a dominance test on multiple dimensions should be
performed in a sequential order for each dimen-
sion, as the result of dominance test at a specific
dimension is dependent on the results of preced-
ing dimensions and the result for multiple dimen-
sions is thus decided at the last dimension. For
these dependencies, SIMD comparison of multiple
dimensions requires a series of conditional branches
to inspect the comparison result at each dimen-
sion with consideration of the preceding dominance
test results. As the performance of SIMD archi-
tectures can be greatly hindered by complex condi-
tional branches [9], a naive-vectorization thus per-
forms even worse than a non-vectorization version.

To address this problem, we devise an efficient
vectorization, called VSkyline, which performs the
dominance test with SIMD instructions by deter-
mining incomparability in a block of four dimen-

SIGMOD Record, June 2010 (Vol. 39, No. 2) 19

sional values. Our performance evaluation using a
performance monitor shows that VSkyline consider-
ably reduces the numbers of both instructions in-
cluding branches and branch mispredictions. We
also stress that this speedup is orthogonal to exist-
ing parallelization efforts, which suggests that the
existing algorithms can benefit from our finding as
well.

The rest of this paper is organized as follows.
Section 2 briefly reviews skyline computation and
SIMD technology. Section 3 proposes an efficient
vectorized skyline algorithm VSkyline, and Section 4
then validates performance evaluation of VSkyline
in extensive synthetic data sets. Finally, Section 5
concludes our paper.

2. BACKGROUND

2.1 Skyline Queries
We first introduce basic notations to address sky-

line query problem. Let D be a finite d-dimensional
space, i.e., {D1, . . ., Dd}, where each dimension
has a domain dom(Di) of non-negative real number
R+. Let S be a set of finite n tuples as a sub-
set of dom(D). A tuple p in S is represented as
p = (p1, . . . , pd), where ∀i ∈ [1, d] : pi ∈ dom(Di).

Based on these notations, we formally states some
notions commonly used in the skyline literature [2,
3, 4, 5, 6, 7, 11]. Throughout this paper, we consis-
tently use max operator for skyline queries. Specif-
ically, given two tuples p and q, p dominates q on
D if ∀ i ∈ [1, d] : pi ≥ qi and ∃ j ∈ [1, d] : pj > qj ,
denoted as p % q. Also, it is said p and q are incom-
parable if they do not dominate each other, denoted
as p ∼ q.

Given S, a skyline query on D thus returns a
subset of tuples, or skyline, that are no worse than,
or not dominated by, any other tuples in S, i.e.,
{p ∈ S|!q ∈ S : q % p}. A tuple in skyline is called
a skyline tuple.

The skyline computation depends heavily on dom-
inance tests between tuples. In the worst case, a
naive skyline algorithm exhaustively performs dom-
inance tests for all possible n(n − 1)/2 tuple pairs,
incurring quadratic cost.

To address this problem, existing skyline algo-
rithms aimed to reduce unnecessary dominance tests.
Specifically, they could be classified into two cate-
gories: (1) sorting-based algorithms such as BNL [2],
Index [11], SFS [3], and LESS [4] focused on optimiz-
ing tuple ordering to prune more dominated tuples
early on; (2) partitioning-based algorithms such as
NN [5], BBS[7], ZSearch [6], and OSPS [13] focused
on dividing an entire dataset into multiple subsets

to exploit “region-level” optimization.
On the other hand, due to the CPU-intensive

property of dominance tests [8, 12], skyline com-
putation can take advantage of parallelism as two
forms – (1) thread-level parallelism and (2) data-
level parallelism.

All existing parallel skyline algorithms fall into
the category of thread-level parallelism, distribut-
ing partitioned subsets into independent threads,
and then merging local skylines into global skyline.
Specifically, Vlachou et al. [12] developed angle-
based data partitioning to balance the computa-
tion overhead between threads in data distribution.
Recently, Park et al. [8] proposed PSkyline, which
optimizes merge processing to enhance thread uti-
lization, by computing multiple dominance tests in
parallel.

To the best of our knowledge, no existing skyline
algorithm has attempted data-level parallelism [9],
performing the same operation on multiple data si-
multaneously. We propose a vectorization of domi-
nance tests to achieve a theoretical speedup of SIMD
parallelism degree. We stress that this speedup is
orthogonal to thread-level parallelism, and skyline
algorithms using thread-level parallelism can thus
exploit data-level parallelism as well.

2.2 SIMD Technology
Almost every modern CPU supports SIMD in-

structions. For instance, the x86 microprocessor
provides hundreds of MMX (multi-media extensions)
and SSE (streaming SIMD extensions) instructions.
A SIMD instruction operates on vectors of data.
Therefore, one obvious performance benefit of using
SIMD instructions is to process multiple elements
at a time, and we can expect a speedup of SIMD
parallelism degree, denoted as V , in theory.

SIMD operations can work best when handling a
great deal of identically structured data, e.g., arrays
in for loop, for data-level parallelism. For example,
many database algorithms such as sequential scans,
scalar aggregations, index traversals, and joins per-
form repetitive operations on an array of tuples
(and each tuple in turn is an array of columns).
Zhou and Ross [14] showed how the inner loop of
those operations can benefit from using SIMD in-
structions. We call this transformation vectoriza-
tion (or SIMDization).

Along the same line, skyline computation is also
a good candidate for vectorization. It requires nu-
merous tuple-wise dominance tests in a large set of
tuples, where a dominance test sequentially accesses
two tuples in array structures.

However, it is a non-trivial task to successfully

20 SIGMOD Record, June 2010 (Vol. 39, No. 2)

vectorize dominance tests. It is well known that
SIMD is at its weakest in control statements [9], and
unfortunately complex conditional branches are in-
nate in dominance tests. Furthermore, conditional
branches are problematic in modern pipelined ar-
chitectures because of serious branch misprediction
penalty from instruction pipeline flush and other
bookkeeping overheads ensuring operational consis-
tency [1].

For this reason, if we can reduce or eliminate con-
ditional branch instructions during vectorization, it
might provide potentially larger performance gain.
For example, Zhou and Ross [14] showed that they
can obtain considerable performance enhancement
by eliminating conditional branch instructions while
vectorizing database operations, thus avoiding the
branch misprediction penalty. However, the vector-
ization techniques are relatively simple because the
result on each element is independent from other
elements.

In clear contrast, in the dominance test, the re-
sult of incomparability at a specific dimension is
also dependent on the results at previous dimen-
sions. This property of conditional dependency can
make a naive vectorization of dominance tests even
poorer than a non-vectorized version. The obvi-
ous benefit of vectorization with SIMD instructions
is the decrease of loop iterations, resulting in less
number of executed instructions. A naive vectoriza-
tion, however, can require more extra instructions
to manipulate the values in SIMD registers, which
negates the benefit of SIMD vectorization. To ad-
dress this problem, we can limit the number extra
instructions and make complex conditional control
flow more predictable. As a result, the total number
of executed instructions and mispredicted branches
are reduced, which ultimately improves the perfor-
mance. The next section discusses an efficient vec-
torization of dominance tests.

3. SKYLINE COMPUTATION
This section first overviews a non-vectorized dom-

inance test in PSkyline, and shows that a naive vec-
torization is inefficient to handle complex conditions
resulting from SIMD comparisons. We then pro-
pose an efficient vectorization for dominance tests,
called VSkyline, which optimizes the complex condi-
tion tests in the dominance test. We apply our vec-
torization technique to PSkyline. Since data-level
parallelism in VSkyline is orthogonal to thread-level
parallelism in PSkyline, we can further improve the
performance for PSkyline by using our vectorization
technique.

Algorithm 1 PSkyline dominance test
1: Dom ← Incomparable; i ← 1;
2: while i ≤ d do
3: if pi < qi then
4: if Dom = Left then
5: return Incomparable;
6: end if
7: Dom ← Right;
8: else if pi > qi then
9: if Dom = Right then

10: return Incomparable;
11: end if
12: Dom ← Left;
13: end if
14: i ← i + 1;
15: end while

16: return Dom;

3.1 PSkyline Overview
PSkyline [8] extends skyline computation lever-

aging thread-level parallelism, by dividing an en-
tire dataset into multiple subsets and merging lo-
cal skylines from each thread. Specifically, the map
process is to distribute the dataset to threads and
compute each local skyline. Then, reduce process
is to merge local skylines into a global skyline in
parallel. A key contribution of PSkyline is to opti-
mize thread utilization for both pmap (map process)
and pmerge (reduce process). Conceptually, pmap,
among the tuples assigned to each thread, prunes
out some of non-skyline tuples that cannot be con-
tained in a final skyline by using partial sorting.
Also, pmerge aggregates the local results, and re-
turns the final skyline by maximizing thread-level
parallelism. These two modules, however, rely on
the classic pair-wise dominance test.

To illustrate, Algorithm 1 describes the domi-
nance test in PSkyline as well as most of the ex-
isting skyline algorithms. Given two tuples p and
q, pi and qi represent the i-th dimensional values.
Typically, the dominance test starts with compar-
ing p1 and q1 values, iterating the loop until the
dominance relationship is decided.

Specifically, in an iteration of the loop, Dom is
set to either Left or Right. If the result of the cur-
rent iteration is different from that of the previous
iteration, Incomparable is returned. That is, even
in the best case, the result is obtained at the sec-
ond iteration. Returning Incomparable means two
tuples are incomparable. In such case, any further
comparison on the rest of the dimensions is unnec-
essary.

We could see that a single dominance test in-
cludes quite a few conditional branches, which are
particularly unpredictable. Since comparison re-
sults of dimensional values can be any, the condi-

SIGMOD Record, June 2010 (Vol. 39, No. 2) 21

31 10 27 6p

3 10 2 61

11…1 00…0 11…1 00…0

q

1 0 1 0

Mgt

GT

Step 1
SIMD_Load

Step 2
SIMD_Compare

Step 3
SIMD_Mask

3 10 2 61

31 10 27 6Ml

Mr 128 bit
SIMD registers

32 bit
Scalar register

Figure 1: SIMD operations

tional statements (lines 3-13) in Algorithm 1 can
flow any direction. This actually makes conditional
branches in the dominance test unpredictable. This
unique characteristic of the dominance test suggests
that modern CPUs with deep pipelines will suffer
from branch mispredictions, which significantly de-
grade the performances. Indeed, it is commonly
believed that even 5% branch misprediction can de-
grade performance by as much as 20∼30% in mod-
ern CPUs [14]. We also observe similar symptoms
from PSkyline. The mispredicted branches account
for about 15∼20% of the CPU cycles for PSkyline.

3.2 Vectorization and Packed Conditions
Typical dominance tests proceed sequentially one

dimension by one dimension as in Algorithm 1. To
vectorize dominance tests, we need to compare four
dimensions simultaneously with SIMD instructions,
where SIMD parallelism degree is four. Thus, the
comparison results across four dimensions are stored
in a SIMD register. Since the result of the domi-
nance test has a dependence on the comparison re-
sult of previous dimensions, interpreting the SIMD
comparison result requires extra instructions to ma-
nipulate SIMD registers.

Figure 1 illustrates the steps of the vectorized
dominance test over four dimensions. SIMD Load,
SIMD Compare, and SIMD Mask operations are per-
formed in order and four bits are computed as a
final summary of SIMD comparison. SIMD regis-
ters, Ml, Mr, and Mgt are 128 bit long each. A
general register, GT is 32 bit long. Each SIMD reg-
ister can keep four elements, each of which is 32 bit
long type (e.g. int or float). SIMD register Mgt

contains the result of greater-than comparison. If
element-wise comparison is true, all 32 bits for that
element are set to 1s. Otherwise, all 32 bits are set
to 0s. SIMD Mask summarizes the SIMD compari-
son result to four bits by taking the most significant
bit of each element. Those four bits are stored in
the lower four bits of GT register. Throughout this

1 0 1 0

0 0 0 1

GT (p)

GT (q)

L L L IDom

1 2 3 4

Figure 2: A dominance test in NaiveSIMD

paper, we call those four bits significant bits.
Interpreting the significant bits for the dominance

test can be implemented in a naive way (NaiveSIMD)
or an optimized way (VSkyline). To evaluate incom-
parability between two tuples, we need to examine
the result of each dimension comparison, and deter-
mine the dominance result with consideration of the
previous dimensions. Because comparison results of
four dimensions are packed into significant bits, the
conditions to decide the dominance result are also
packed into those significant bits. We call this situ-
ation packed conditions. In the next section, we dis-
cuss why a naive interpretation of packed conditions
causes performance loss, and propose an optimized
interpretation for packed conditions.

3.3 Vectorized Dominance Test

3.3.1 NaiveSIMD
Figure 2 illustrates a naive vectorization of the

dominance test for two tuples shown in Figure 1.
Bits in GT (p) are set when p is greater than q and
bits in GT (q) are set when q is greater than p. Dom
shows the intermediate result of the dominance test
up to the corresponding dimension. L, R, and I
represent left-dominate, right-dominate, and incom-
parable, respectively. NaiveSIMD uses two compar-
ison results and computes dominance results with
the same control logic as Algorithm 1. Examining
the comparison results one dimension by one dimen-
sion, NaiveSIMD determines the dominance result
by using the same control logic in Algorithm 1 ex-
cept that it performs a SIMD comparison over four
dimensions.

Up to third dimension, the intermediate result in
Dom is left-dominating (L). At the forth dimension,
its comparison result is inconsistent with the previ-
ous dimension. Thus, the final dominance test for
p and q becomes incomparable (I). NaiveSIMD of-
ten requires many extra instructions, such as shift,
bitwise logical operations, to manipulate the results
stored in significant bits. If we count the number of
executed instructions for the case depicted in Fig-
ure 2, NaiveSIMD executes 1.5x more instructions
than PSkyline. Moreover, PSkyline suffers from a

22 SIGMOD Record, June 2010 (Vol. 39, No. 2)

True False

True L I

False U R

1 0 1 0

1 1 1 0

GT

GE
GT
any
bit

GE all bits

Figure 3: A dominance test in VSkyline

sizable number of mispredicted branches, which ac-
counts for 15∼20% of execution cycles on various
inputs. NaiveSIMD shares the same characteristics.
Thus, NaiveSIMD performs worse than PSkyline.

To maximize the benefit from SIMD vectoriza-
tion, we need to devise a new dominance test logic,
which can examine comparison results as a whole,
not by individual dimensions. In the next section,
we introduce VSkyline, which can effectively han-
dle packed conditions with limited number of extra
instructions and far less number of branch mispre-
dictions.

3.3.2 VSkyline
Figure 3 illustrates how VSkyline performs the

dominance test by taking the comparison results of
four dimensions as a whole. Similar to NaiveSIMD,
we need two comparison results, but slightly differ-
ent comparisons, GT (greater-than) and GE (greater-
than-or-equal). Then, we decide the dominance re-
sult over four dimensions at once by using the truth
table shown in the right side of Figure 3. NaiveSIMD
examines one dimension by one dimension, even af-
ter parallelizing compares with SIMD instructions.
On the contrary, our VSkyline examines all four di-
mensions as a whole.

As shown in the truth table, we examine two con-
ditions. If any bit in GT is set to 1, the GT-any-bit
becomes true. Otherwise, false. If all bits in GE
are set to 1s, the GE-all-bits becomes true. Other-
wise, false. Depending on two conditions, we can
decide the dominance result up to four dimensions
at once. L, R, I, and U represent left-dominating,
right-dominating, incomparable and undecided, re-
spectively. Undecided means two tuples have the
same values for all dimensions so far and further
test on the rest of the dimensions are required to
decide the dominance result. Using the same ex-
ample in Figure 1, its dominance result in VSkyline
is incomparable, which is the same result shown in
Figure 2.

In general, the dominance test in VSkyline cat-
egorizes packed conditions into the following four
cases. Each case corresponds to a dominance re-
sult of four dimensions, which is shown in the truth
table of Figure 3.

Algorithm 2 VSkyline dominance test
1: Dom ← Incomparable; i ← 1;
2: while i ≤ d do
3: Ml, Mr ← SIMD Load(p[i, i+V −1], q[i, i+V −1]);
4: Mgt, Mge ← SIMD Compare(Ml, Mr);
5: GT , GE ← SIMD Mask(Mgt, Mge);
6: if GE is set in all significant bits then
7: if GT is set in any significant bit then //Case 1
8: if Dom = Right then
9: return Incomparable;

10: end if
11: Dom ← Left;
12: end if
13: //Undecided: Case 4
14: else if GT is set in any significant bit then //Case3
15: return Incomparable;
16: else //Case 2
17: if Dom = Left then
18: return Incomparable;
19: end if
20: Dom ← Right;
21: end if
22: i ← i + V ;
23: end while

24: return Dom;

Case 1 [Left dominating] if ∀i ∈ [1, V]: pi ≥ qi

∧ ∃j ∈ [1, V]: pj > qj , then p % q holds.

Case 2 [Right dominating] if ∀i ∈ [1, V]: pi ≤ qi

∧ ∃j ∈ [1, V]: pj < qj , then q % p holds.

Case 3 [Incomparable] if ∃i ∈ [1, V]: pi > qi ∧
∃j ∈ [1, V]: pj < qj , then p ∼ q holds.

Case 4 [Undecided] if ∀i ∈ [1, V]: pi = qi, then
the dominance relationship is not decided yet.

VSkyline executes far less instructions. As we
need not to iterate each dimension to interpret the
packed conditions, lots of extra instructions to han-
dle loops and SIMD register values are actually elim-
inated. If NaiveSIMD can determine dominance re-
sult early for all data, it probably performs well
enough to compete with VSkyline. However, sky-
line algorithms frequently handle large datasets and
the average number of dimensions to examine is
more than just one or two. In such cases, VSkyline
can outperform NaiveSIMD for most of cases. Even
compared to PSkyline, we execute less number of
instructions, as we handle four dimensions in one
iteration. According to our experiments, executed
instructions are reduced by 28∼45% for various in-
puts, which is translated to the CPU cycle reduc-
tions by 30∼60%.

In addition, handling packed conditions from SIMD
comparisons produces more predictable control struc-
tures. Since we executes less number of branches
and dominance results are decided at once for mul-
tiple dimensions, hardware branch predictors can

SIGMOD Record, June 2010 (Vol. 39, No. 2) 23

work more favorably in our algorithm. Meanwhile,
both PSkyline and NaiveSIMD process each dimen-
sion one by one, which results in more diverse out-
comes for the same branch instructions, thus mak-
ing hardware branch predictors difficult to predict
their branch directions. Performance gap between
the two and VSkyline is largely due to far less mis-
predicted branches. According to our experiments,
the number of mispredicted branches are reduced
by 53∼97% for various inputs, which is translated
to the CPU cycle reductions by 10∼20%.

Algorithm 2 shows the vectorized version of the
dominance test used in VSkyline. Three main op-
erations such as SIMD Load, SIMD Compare, and
SIMD Mask is illustrated in Figure 1 with slight
modifications. Specifically, SIMD Load read four
dimensions from each tuple to compare, which is the
same. Modifications are applied to SIMD Compare
and SIMD Mask. SIMD Compare generates two re-
sults in Mgt and Mge with greater-than and greater-
than-or-equal comparisons, respectively. Similarly,
SIMD Mask summarizes two comparison results of
Mgt and Mge into GT and GE, respectively. Condi-
tional control flows which test two conditions, GE-
all-bits and GT -any-bit, lead to four cases – left-
dominating, right-dominating, incomparable and un-
decided as specified in the algorithm.

In summary, two performance boosters of VSkyline
are as follows: 1) reduction in number of executed
instructions due to SIMD vectorization of dimen-
sion value load and compare, and 2) reduction in
number of mispredicted branches due to simplified
control. In the next section, we show experimental
results for those performance boosters.

4. EXPERIMENTAL EVALUATION
This section reports our evaluations results by

comparing our proposed algorithm VSkyline with
PSkyline. All algorithms were implemented in C
language, and all experiments were conducted on a
Linux server with a 2.6.18 kernel. The server was
also equipped with an Intel i7-860 quad core pro-
cessor running at 2.80GHz and 6GB main memory.
To analyze the performance, we used Intel VTune
performance analyzer [10].

We used synthetic datasets with the same experi-
mental settings in PSkyline [8]. Specifically, we gen-
erated two different data sets according to uniform
and anti-correlated distributions. To measure scal-
ability, we varied the dimensionality from 4 to 24
with an increment of two and the cardinality from
50K to 400K with a double increment in numbers.
Similarly, we varied the number of threads from 1,
4, then 8. As SIMD parallelism degree is four, we

executed the maximum multiple of four dimensions
with SIMD instructions and the remaining dimen-
sions with non-SIMD instructions. Again, we clarify
that our key contribution is not to reduce the num-
ber of tuple-to-tuple tests, but the cost of each test
by using SIMD vectorization. As a result, we ob-
served that VSkyline, performing the same number
of tests at a lesser cost, outperforms PSkyline in all
cardinality from 50K to 400K. To present multiple
aspects of the performance, we used the results for
two cardinalities of 100K and 200K.

4.1 Effects of Vectorization
Figure 4 depicts the effects of vectorization in

synthetic datasets. VSkyline outperforms PSkyline
by up to three folds. Observe that, in Figure 4,
NaiveSIMD consistently underperforms PSkyline over
varying number of threads. The same observation
holds for different cardinality and dimensionality. A
possible explanation to such performance degrada-
tion is the naive approach in handling packed con-
ditions, which cancels out the advantages of SIMD
vectorized loads and compares.

Specifically, Table 1 compares three skyline al-
gorithms, PSkyline, NaiveSIMD, and VSkyline, with
two datasets on different number of threads. Uni-
form and anti-correlated datasets, each of which
has 12 dimensions and 200K data points, are used
for our detailed performance analysis. The num-
bers for 4, 8 threads display the measured numbers
on one thread, as numbers on other threads are
very similar. Compared to PSkyline, the numbers
of executed instructions (NUM INST) and branches
(NUM BR) are reduced by 30∼35% and 52∼63%,
respectively. Due to the reduced number of itera-
tions in dominance tests, VSkyline executes less in-
structions including branches than PSkyline. Mean-
while, NaiveSIMD examines packed conditions one
dimension by one dimension, which makes it exe-
cute more instructions even than PSkyline. Since
extra instructions to manipulate SIMD results such
as shift and bit mask instructions are required in
NaiveSIMD, it needs to execute more instructions.

One of good characteristics in VSkyline is the re-
duced number of mispredicted branches. As it pro-
cesses packed conditions as a whole with two SIMD
comparisons, control flow becomes more predictable
than others. Thus, its mispredicted branch ratios
(BR MISP) become far smaller than the other algo-
rithms, implying the performance gain of VSkyline.
Specifically, compared to PSkyline, the execution cy-
cle (CPU CLK) of VSkyline is reduced by 55∼65%.
We also measured detailed performance counts with
various dimensionality and cardinality and observed

24 SIGMOD Record, June 2010 (Vol. 39, No. 2)

Table 1: Performance comparison of skyline algorithms (12d, 200K)
Uniform Anti-correlated

CPU CLK NUM INST NUM BR BR MISP CPU CLK NUM INST NUM BR BR MISP
threads algorithms

(cycle) (million) (million) (%) (cycle) (million) (million) (%)

1
PSkyline 137,104 M 121,850 44,803 6.66 559,313 M 497,099 181,660 6.51
NaiveSIMD 171,539 M 224,117 47,410 6.52 711,399 M 928,903 195,775 6.40
VSkyline 49,469 M 79,296 16,919 2.91 199,643 M 330,107 68,105 2.21

4
PSkyline 54,127 M 43,613 16,139 7.74 151,849 M 130,304 47,843 6.55
NaiveSIMD 62,898 M 78,650 17,951 7.04 180,548 M 240,708 55,013 6.04
VSkyline 21,614 M 29,520 6,977 5.30 50,862 M 90,170 20,371 2.38

8
PSkyline 40,955 M 26,170 7,890 9.71 108,988 M 74,628 22,247 7.90
NaiveSIMD 49,073 M 46,246 9,029 8.81 128,822 M 132,013 25,625 7.14
VSkyline 18,350 M 17,710 3,752 6.86 39,456 M 49,159 10,087 2.60

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

 1 4 8

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Threads

PSkyline
NaiveSIMD

VSkyline

(a) Uniform

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 1 4 8

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Threads

PSkyline
NaiveSIMD

VSkyline

(b) Anti-correlated

Figure 4: Performance of algorithms (12d,
200K)

similar trends to the case in Table 1. The number of
mispredicted branches, not only the number of in-
structions are reduced, improving the performance
of VSkyline.

4.2 Effects of Dimensionality
Theoretical maximal speedup that can be obtained

from vectorization is V -fold, where V indicates the
degree of data-level parallelism. In our experiment,
V is four as our SIMD instructions handle four data
values. SIMD vectorization, however, requires ex-
tra instructions to manipulate the result stored in
SIMD registers. Thus, actual speedup cannot reach
the theoretical optimum, as VSkyline incurs the same
overheads. In addition, it has additional computa-
tional overheads of deciding how to branch, after
comparisons, which further hinders from achieving
the optimal speedup. Figure 5 reports evaluation
results of PSkyline and VSkyline in uniform and anti-
correlated datasets over varying cardinality (100K
and 200K). We can observe that, VSkyline con-
sistently outperforms PSkyline, though the speedup
varies over different parameter settings.

Figure 6 extends these evaluations, varying the
number of threads. The solid markers indicate the
results of VSkyline, denoted by V x, when x indi-

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300
 325
 350

 4 6 8 10 12 14 16 18 20 22 24
E

xe
cu

tio
n

T
im

e
(s

ec
s)

Dimensions

PSky(100k)
PSky(200k)
VSky(100k)
VSky(200k)

(a) Uniform

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250

 4 6 8 10 12 14 16 18 20 22 24

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Dimensions

PSky(100k)
PSky(200k)
VSky(100k)
VSky(200k)

(b) Anti-correlated

Figure 5: Scalability on single-core (100K,
200K)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 6 8 10 12 14 16 18 20 22 24

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Dimensions

P1
P4
P8
V1
V4
V8

(a) Uniform

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 4 6 8 10 12 14 16 18 20 22 24

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Dimensions

P1
P4
P8
V1
V4
V8

(b) Anti-correlated

Figure 6: Scalability on multi-core (100K)

cates the number of threads. The hollow markers
indicate those of PSkyline, denoted by Px for using
x threads. Note that, comparing when number of
threads is four, both algorithms achieve up to 3-
times speedup from those when number of threads
is one. Though such speedup decreases, when com-
paring numbers of threads are four and eight, the
overall performances monotonically improves as the
number of threads increases and VSkyline consis-
tently outperforms PSkyline, which indicate that our
proposed method for dominance tests in VSkyline
are improving performances, without hindering the
inherent effectiveness of PSkyline.

SIGMOD Record, June 2010 (Vol. 39, No. 2) 25

5. CONCLUSIONS
In this paper, we proposed an efficient vectoriza-

tion for skyline computation, exploiting data-level
parallelism of dominance tests by using SIMD ar-
chitectures. We first showed that a naive vectoriza-
tion of dominance tests performs even worse than a
non-vectorized version. The naive vectorization se-
quentially handled packed conditions for one dimen-
sion as in the non-vectorized version, incurring the
increase of extra instructions to manipulate domi-
nance tests. To address this problem, VSkyline deals
with packed conditions as a whole, which is able to
reduce the number of both branch instructions and
branch mispredictions. VSkyline could thus boost
the performance by up to three folds. In addition,
VSkyline can be more efficient as the parallelism
degree in future CPUs increases, and the idea of
handling packed conditions can shed light on other
similar applications.

ACKNOWLEDGMENTS
We are grateful to Dr. Sungwoo Park for provid-

ing PSkyline source code. This work was supported
in part by MKE, Korea under ITRC NIPA-2010-
(C1090-1021-0008)and MEST, Korea under NRF
Grant (NRF-2009-0084870). This research was sup-
ported by National IT Industry Promotion Agency
(NIPA) under the program of Software Engineering
Technologies Development.

6. REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
D. A. Wood. DBMSs on a modern processor:
Where does time go? In VLDB, pages
266–277, 1999.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker.
The skyline operator. In ICDE, pages
421–430, 2001.

[3] J. Chomicki, P. Godfery, J. Gryz, and
D. Liang. Skyline with presorting. In ICDE,
pages 717–719, 2003.

[4] P. Godfrey, R. Shipley, and J. Gryz. Maximal
vector computation in large data sets. In
VLDB, pages 229–240, 2005.

[5] D. Kossmann, F. Ramsak, and S. Rost.
Shooting stars in the sky: An online
algorithm for skyline queries. In VLDB, pages
275–286, 2002.

[6] K. C. Lee, B. Zheng, H. Li, and W.-C. Lee.
Approaching the skyline in Z order. In VLDB,
pages 279–290, 2007.

[7] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
An optimal and progessive algorithm for
skyline queries. In SIGMOD, pages 467–478,
2003.

[8] S. Park, T. Kim, J. Park, J. Kim, and H. Im.
Parallel skyline computation on multicore
architectures. In ICDE, pages 760–771, 2009.

[9] D. A. Patterson and J. L. Hennessy.
Computer Organization and Design: The
Hardware/Software Interface(4th edition).
Morgan Kaufmann Publishers Inc., 2008.

[10] J. Reinders. VTune Performance Analyzer
Essentials. Intel Press, 2005.

[11] K. Tan, P. Eng, and B. C. Ooi. Efficient
progressive skyline computation. In VLDB,
pages 301–310, 2001.

[12] A. Vlachou, C. Doulkeridis, and Y. Kotidis.
Angle-based space partitioning for efficient
parallel skyline computation. In SIGMOD,
pages 227–238, 2008.

[13] S. Zhang, N. Mamoulis, and D. W. Cheung.
Scalable skyline computation using
object-based space partitioning. In SIGMOD,
pages 483–494, 2009.

[14] J. Zhou and K. A. Ross. Implementing
database operations using SIMD instructions.
In SIGMOD, pages 145–156, 2002.

26 SIGMOD Record, June 2010 (Vol. 39, No. 2)

