SmartCIS: Integrating Digital and Physical
Environments:

Mengmeng Liu
Zachary G. lves

Svilen R. Mihaylov
Boon Thau Loo

Zhuowei Bao Marie Jacob
Sudipto Guha

Computer & Informatjon Science Dgpartment, Ur)iversity of Pennsylvgnia, Phila}delphia, PA, USA
{mengmeng,svilen,zhuowei,majacob,zives,boonloo,sudipto}@cis.upenn.edu

ABSTRACT

With the increasing adoption of networked sensors, a
new class of applications is emerging that combines data
from the “digital world” with real-time sensor readings,
in order to intelligently manage physical environments
and systems (e.g., “smart” buildings, power grids, data
centers). This leads to new challenges in providing pro-

grammability, performance, extensibility, and multi-purpose

heterogeneous data acquisition. The ASPEN project ad-
dresses these challenges by extending data integration
techniques to the distributed stream world, and adding
new abstractions for physical phenomena. We describe
the architecture and implementation of our ASPEN sys-
tem and its showcase intelligent building application,
SmartCIS, which was demonstrated at SIGMOD 2009.
We summarize the new query processing algorithms we
have developed for integrating highly distributed stream
data sources, both in low-power sensor devices and tra-
ditional PCs and servers; describe query optimization
techniques for federations of stream processors; and de-
tail new capabilities such as incremental maintenance of
recursive views. Our algorithms and techniques gener-
alize across a wide range of data from RFID and light
measurements to real-time machine usage monitoring,
energy consumption and recursive query computation.

1. INTRODUCTION

Low-cost networked sensors are resulting in a new
class of applications that combine data from the “digital
world” with sensor readings, to create environments that
intelligently manage resources and assist humans. Ex-
amples include intelligent power grids [19], smart hos-
pitals [18], home health monitors, energy-efficient data
centers, and building visitor guides. In such applica-
tions, there is a need to bring together disparate data
from databases (e.g., site information, patient treatments,
maps) with data from the Web (e.g., weather forecasts,
calendars), from streaming data sources (e.g., resource
consumption within a server), and from sensors embed-

*This work was funded by NSF III I1S-0713267, NOSS CNS-
0721541, and a grant from Lockheed Martin.

48

ded within an environment (e.g., generator temperature,
RFID readings, energy levels) — in order to support de-
cision making by high-level application logic. Today
this sort of data integration, if done at all, is performed
by a proprietary software stack over fixed devices.

In order for intelligent environments to reach their po-
tential, what is necessary is an extensible, multi-purpose
data acquisition and integration substrate through which
the application can acquire data — without having to
be coded with special support for new device or net-
work types Over the past 30 years, the database com-
munity has developed a wealth of techniques for per-
forming data integration through views and related for-
malisms [11]. Likewise, declarative queries have been
shown to be useful beyond databases, with extensions
for distributed data stream management [2, 3, 4, 9] and
sensor networks [5, 6, 14]. The key question is how to
develop a unified declarative query and integration sub-
strate, which supports a multitude of stream and static
data sources on heterogeneous, possibly unreliable net-
works. Computation should be expressed in a single
query language and “pushed” to where it is most appro-
priate, taking into account capabilities, battery life, rates
of change, and network bandwidth.

The ASPEN (Abstraction-based Sensor Programming
ENvironment) project tackles these issues, extending the
formalisms of data integration (schema mappings, views,
queries) to the distributed stream world. We are devel-
oping (1) new query processing algorithms suitable for
integrating highly distributed stream data sources, both
in low-power sensor devices [15, 16] and more tradi-
tional PCs and servers [13], (2) query optimization tech-
niques for federations of stream processors specialized
for sensor, wide area, and LAN settings, and (3) new
datatypes, query extensions, and data description lan-
guage abstractions for environmental monitoring and for
routing information to users. In support of smart en-
vironments, we seek a single data access layer for in-
tegrating sensor, stream, and database data, regardless
of origins. This single programming interface over het-
erogeneous sensors and stream sources distinguishes us

SIGMOD Record, March 2010 (Vol. 39, No. 1)

|| SmartCIS Building Interface

File Help

JE—

Levine
Hall

HE-

@ User

@ RFD

& Free PC

J vou are here
Skirkanich Hall

Q Busy PC

Logically position display:

Position: Skirkanich -

1008 Locate a machine with:

22¢

|
Moore Hall >

Capability: Latex
CPU utilization under:
Path to: ® Nearest © All

dbpcl
CPU Core 2 E8300 % Used |y 18
Top task taskhost.¢

Temp (C) 26 - Power (W) 140 -
Machine is occupied

Figure 1: Display indicating a path to, and information about, the nearest machine with LaTeX.

from other sensor systems [7, 10, 14].

The showcase application for the ASPEN architec-
ture, which we term SmartCIS, involves instrumenting
Penn’s Computer and Information Science (CIS) De-
partment buildings, labs, and data centers to help im-
prove energy efficiency, guide visitors to their desired
destinations, and locate resources. Our live demonstra-
tion of SmartCIS [12] at SIGMOD 2009 received Hon-
orable Mention for Best Demo. SmartCIS consists of
GUI and query logic built over the ASPEN data inte-
gration substrate. It combines information from on-site
sensors (e.g., pressure-sensitive seat cushions, RFID tags,
energy meters) with data from the Web (calendars) and
from our Distributed Systems Laboratory at Penn (ma-
chine and desk-occupied status; machine configurations).

We describe the SmartCIS prototype in Section 2. Then
we present the underlying ASPEN system: its architec-
ture (Section 3), federated query optimizer (Section 4),
distributed stream query processor (Section 5), and sen-
sor network subsystem (Section 6). We summarize re-
lated work in Section 7 and conclude in Section 8.

2. SMARTCIS BUILDING APPLICATION

One of the most compelling emerging applications
of sensors are intelligent building environments: they
promise to make the experience of visiting a large build-
ing or a hospital less disorienting, to make buildings or
large data centers more energy-efficient, to help occu-
pants remember to take their medications or make it to
a next meeting. A distinguishing feature of such envi-
ronments, versus other sensor network applications, is a
need to bring together database data with streaming data
from the Web or Internet and streaming data from sensor
devices. The task of designing a smart building can be
separated into three tiers: data acquisition and integra-
tion, query and control logic, and a user-interface view
(analogous to model-view-controller architectures).

The initial version of SmartCIS focuses on monitor-

SIGMOD Record, March 2010 (Vol. 39, No. 1)

ing and querying the data of interest to CIS students
and faculties, as well as system administrators: lab sta-
tus, machine activity, resource consumption, and ma-
chine physical state. We target two main tasks: giving a
real-time update of the building state, and guiding stu-
dents to the resources they need. Through the SmartCIS
GUI, visitors can see occupied and unoccupied desks in
the laboratories and on-site (detected through the seat
sensors); their positions in the building (obtained via
RFID); temperature, light, and energy usage levels for
every machine and lab; room reservation status from
Google Calendar; and the resources available at each
machine (e.g., software, special equipment). Visitors
can see status information or issue a query for directions
(a physical path) to a machine with a particular resource.

2.1 User Experience

SmartCIS interacts with users through a touch inter-
face on a kiosk or (for the demo) a tablet PC. Figure 1
shows a screen shot of our graphical interface, which
centers around a building schematic. In the full appli-
cation, the user will see the individual information on
a kiosk located somewhere in the building. Our screen
shot shows the demo application, which has a selector
in the upper right-hand corner enabling a SIGMOD at-
tendee to choose a simulated kiosk location.

Buildings, entrances and exits, rooms, and machines
are illustrated schematically. Their status is refreshed
in real-time based on data streams from the environ-
ment and the Web, combined with database information
about locations and configurations. Rooms are grayed
out when marked as reserved in a standard Google cal-
endar, or when their lights are out (as detected by sen-
sors). Machines are grayed out when they are currently
in use (as detected by high CPU utilization or a pressure-
sensitive seat cushion connected to a Crossbow iMote).
The presence of a user is detected through active RFID
tags (IRIS motes that broadcast a low-power signal that

49

is tracked by stationary motes located throughout the
building hallways) and is indicated in the schematic.
The user can also trigger new continuous queries over
the streaming data in the system. Clicking on a machine
icon switches the right-hand pane to show details about
that device: its host name (from a database table map-
ping coordinates to machine identities), CPU type (also
from the database), CPU utilization and the most CPU-
intensive task (from a “soft sensor” application), tem-
perature (from an iMote), and energy (from a USB en-
ergy meter or an IP-based Power Distribution Unit or
PDU). A double-click opens up a secondary window
showing energy consumption on a per-task basis (scal-
ing overall energy consumption by the amount of re-
sources consumed by each process). Finally, a visitor
can also request to be directed to an available machine
with specific resources (e.g., software packages like Mi-
crosoft Office or a video editor). A shortest-path query
is initiated between the user’s current location and the
nearest available room with the specified resource.

2.2 Sensors and Data Sources

The data sources underpinning SmartCIS are hetero-
geneous, requiring a variety of wrappers (interface mod-
ules), and can be divided into four broad categories.

Sensor devices. We use Crossbow IRIS and iMote2
sensors to monitor the rooms’ and workstations’ tem-
peratures, as well as light levels (useful for determining
if a lab is open). A pressure-sensitive seat cushion at-
tached to a wireless mote monitors whether someone is
seated at each desk in the lab. A “wrapper” periodically
extracts this value and sends it along a data stream. En-
ergy meters are physically plugged into machines and
feed raw readings into the system. To track users’ lo-
cations, “mote” sensors are embedded in the hallways
at major intersection points, at approximately every 50
feet. These sensors listen for a “beacon” transmission
from an active RFID device (also a mote) carried by an
occupant and based on the strength of the signal deter-
mine where that person is positioned in the building.

“Soft” sensors. Servers and workstations run daemon
software to monitor machine activity: jobs executing,
users logged in, CPU utilization, number of requests be-
ing handled in a Web server application, etc. In addi-
tion, the status of ASPEN, our back-end data acquisition
and integration substrate itself, is also monitored: the
queries and plans being executed, the counts of tuples
received and sent for every operator, etc. This helps de-
velopers diagnose problems at the query execution level
and also helps determine per-query energy usage.

Web and streaming data sources. A wrapper peri-
odically polls a Google Calendar for room reservations.
Another wrapper polls energy usage from a Web inter-
face to our lab’s power distribution units (PDUs).

50

Databases. A conventional DBMS stores the coordi-
nates of each RFID detector (the motes have no built-in
absolute positioning capability), a list of machine con-
figurations and locations, and a table of “routing points”
describing possible path segments and distances in the
building in order to suggest routes to resources.

The data from these inputs is “hooked” to the Smart-
CIS GUI through a series of Stream SQL queries and
view definitions, plus callbacks to Java functions that
update the graphical widgets. It is trivial to extend the
GUI to support visual or auditory alarms if machines
exceed a temperature or load factor, or to aggregate the
sensor data across users, applications, or machines. Even
the path routing in the GUI is done declaratively, using
recursive extensions to Stream SQL. We next describe
how SmartCIS maps onto the ASPEN substrate that pro-
vides distributed Stream SQL services.

3. SYSTEM ARCHITECTURE

The SmartCIS system consists of three major com-
ponents: the graphical interface described previously,
which can be deployed on kiosks; the ASPEN data in-
tegration and acquisition substrate, which includes two
query runtime systems (one that enables certain com-
putations to be “pushed” to sensor devices, and one that
does distributed stream processing over PC-style servers)
plus a federated query optimizer; and wrappers and in-
terfaces over the actual sensors, databases, and machines.
(See Figure 2.) Components of the ASPEN substrate ap-
pear in boldface. (Ultimately ASPEN will also include
support for schema mappings and query reformulation,
but SmartCIS does not require these components.)

Most of the research innovations are in the ASPEN
modules. ASPEN takes a query (Stream SQL with ex-
tensions for devices and for routing query output to dis-
plays) and invokes a federated query optimizer that par-
titions it into two portions (see Figure 2): a subquery
that is “pushed” out to the sensor network and sensor
devices, and the remaining computations that get exe-
cuted on our distributed stream engine for servers.

The distributed sensor engine, whose core features
were described in [15], is novel in supporting not only
aggregation and selection queries over sensor devices,
but also in-network joins between devices. This is useful
in SmartCIS, for instance, when we return machine tem-
perature data for workstations that are in use. We detect
that a workstation is being used by checking the status of
the seat cushion as well as the light level at an adjacent
chair. The most efficient query strategy is to perform a
proximity-based join between status of seat cushion and
light level sensors (with a threshold applied on the light
level), and route the temperature information across the
sensor network only if the light level threshold is not
met. A query optimizer decides where to perform the
join computation on a sensor-by-sensor basis.

SIGMOD Record, March 2010 (Vol. 39, No. 1)

GUI Stream

Federated Buery sent to the stream subsystem
System ’ SQL [— P . . - ;
Int);rface ParQser Optimizer — ~| |(Find a free machine with Word in an open lab)
- SELECT m.mid, so.rid

»
7 —
_ 5‘
N
P /é

FROM Machines m, MachineSoftware ms, SensorOut so
WHERE ms.software = “MS Word” AND ms.mid = m.mid AND
so.mid = m.mid;

e Source & Stream
s Device Engine
e Catalo Optimizer

Sensor
Engine | ™
Optimizer

Query sent to the sensor subsystem

(Find a free machine in an open lab):

A4

*
Base station

Query over the federated query system Stream
(Find a free machine with MS in an open lab): \ Engine

(on PCs)
’

SELECT m.mid, ss.rid

Sensor
4@ Engine

FROM Machines m, MachineSoftware ms, SeatSensor ss,
RoomSensor sr

WHERE ms.software = “MS Word” AND ms.mid = m.mid AND
ss.mid = m.mid AND ss.weightLevel < threshold AND

state & data >

Wrappers: Machine

streams and tables

sr.rid = ss.rid AND sr.status = “open”;

CREATE STREAM SensorOut AS {

SELECT ss.mid AS mid, sr.rid AS rid

FROM SeatSensor ss, RoomSensor sr

WHERE ss.weightLevel < threshold AND sr.status = “open”
(on AND ss.rid = sr.rid

devices) }

1

Figure 2: Architecture of SmartCIS, including ASPEN components in bold.

Our distributed stream engine, described in [13, 20],
supports not only Stream SQL queries over windowed
data, but also transitive closure queries to compute neigh-
borhoods and paths. The stream engine brings together
streaming data, database data, and the data returned by
the subqueries sent to the sensor engine. It is also re-
sponsible for computing suggested routes for building
occupants to get to their destination: this can be done in
real-time based on the occupant’s current position and
information about the topology of the buildings (con-
nected by routing points described previously).

4. FEDERATED OPTIMIZER

ASPEN’s federated query optimizer assigns an incom-
ing query across multiple subsystems, each of which has
its own custom optimizer and cost metric, customized to
the target device and network capabilities (e.g., energy,
latency, bandwidth). We give an example of the feder-
ated optimizer’s optimization in SmartCIS.

Suppose we have two types of sensors deployed in the
lab, seat sensors and room sensors. Each seat sensor is
pre-initialized with information about its position rela-
tive to a machine and the room; it reports the occupied-
status of the seat cushion to which it is attached. Each
room sensor is pre-initialized with its room, and de-
tects the current light level to tell whether the room is
occupied or not. Suppose we also have a static table
M achines storing machine information for the lab, and
a dynamic stream MachineSo ftware containing in-
formation about installed software and versions from a
web page. The user may pose a query to find all the free
machines in an open lab which have “Word.”

SELECT m.mid, sr.rid
FROM Machines m, MachineSoftware ms,

SeatSensor ss, RoomSensor sr
WHERE software = "Word" AND ms.mid =

m.mid AND ss.mid = m.mid AND ss.weightLevel

< threshold AND sr.rid = ss.rid AND
sr.status = "open";

There are multiple plausible ways of splitting the query.
One method pushes the Seat Sensor-RoomSensor

SIGMOD Record, March 2010 (Vol. 39, No. 1)

join and all relevant selection conditions to the sensor
subsystem, then sends the output to the stream engine.
(Example SQL for this scenario is shown in Figure 2.)
Alternatively, we can issue two subqueries to the sensor
subsystem: one to fetch Seat Sensor readings above
threshold, and the other to fetch RoomSensor readings
with open status. Intuitively, the first query partitioning
is likely to return fewer results to the stream system only
if the predicates are selective.

The federated optimizer must choose among these and
other plans by minimizing an over-arching cost metric
(e.g., query latency). This metric may be different from
the metrics of the “local” optimizers for the underlying
stream and sensor engines (e.g., bandwidth, energy con-
sumption). The federated optimizer must find a query
partitioning that, when each subquery is optimized ac-
cording to its target platform’s specific metric, results in
the best plan with respect to the federated optimizer’s
over-arching metric. Its plan enumeration strategy re-
sembles that of [8], which predicts the query plan pro-
duced by an external optimizer, in order to produce the
minimum-cost plan according to its own metric.

S. STREAM ENGINE

Our stream engine is derived from the distributed SQL
processor from ORCHESTRA [20]. This engine supports
horizontal partitioning of data across nodes within a clus-
ter or peer-to-peer network, and is based on a push-style
query processing model. We enhance the engine with
support for continuous queries (where the query is active
unless deliberately stopped) over windows, where the
size of the sliding window tells the system when to evict
expired tuples. The engine can seamlessly combine data
from streaming sources, tables partitioned throughout
the cluster, ODBC/JDBC sources, and the sensor query
engine. The query optimizer uses a Volcano-style top-
down dynamic programming algorithm, and takes into
account the network latency as well as data transmission
rate when estimating the cost of a certain query plan.

A novel aspect of our engine is its support for re-

51

cursive queries (such as shortest paths) computed (and
incrementally maintained) over streaming data. Such
queries commonly appear in sensor settings. We have
developed techniques, documented in [13], based on (1)
the use of a particular kind of data provenance that en-
ables us to detect when a tuple in the output stream
should be expired, (2) early pruning of intermediate re-
sults that do not contribute to the output, and (3) care-
ful use of buffering to reduce traffic. SmartCIS exploits
these features to compute path queries, when a user re-
quests to be directed to a resource within the building.

6. SENSOR ENGINE

The sensor engine collects environmental data, poten-
tially from several independent sensor networks. Each
sensor network deployment consists of wireless devices
situated within the observed environment, and a gate-
way node to the core of the ASPEN system. One of
the sensor devices is connected via USB to the gateway
node, serving as a base station for the rest of the wire-
less network. We do not assume that all wireless nodes
remain in the radio range of the base station; we focus
on effectively utilizing multi-hop wireless networks.

Sensor query capabilities. Our sensor subsystem sup-
ports windowed Stream SQL queries (subqueries sent
by the federated optimizer) with arbitrary selection con-
ditions, and optionally a single in-network join. Selec-
tion and join predicates can include not only standard
comparisons and Boolean operations, but also arithmetic
operators and several utility functions (e.g., hash, ran-
dom value). We model each mote sensor network de-
ployment as a single relation with attributes including
sensor values (e.g., temperature, light, humidity, battery
level, RFID being detected, ADC values) and soft-state
readings (e.g., memory available, local time). Not all
attributes need to be defined for every node, as our sys-
tem allows for different device capabilities. We also al-
low for additional data values to be stored at each device
from external tables. The update rate for physical sen-
sors is specified as part of the query, as are other param-
eters such as query start times, join window size, etc.

Basic operation and coordination. The gateway ma-
chine not only bridges between TCP and ZigBee (mote)
networks, but also plays a supervisory role in the sen-
sor engine. It supervises the construction and initializa-
tion of the wireless network after all wireless devices are
turned on (described in the next sub-section). It also col-
lects statistical information for the federated optimizer,
such as the number of wireless nodes present, network
diameter and distribution of values in the different re-
gions of the network. The gateway also serves as a coor-
dinator for partitioning and storing certain tables within
the sensor network: often it is useful to take certain
database tables (e.g., a mapping between node identity

52

and position or role) and to partition them such that one
tuple is stored at each wireless node. Then we can push
selection conditions relating to these tables directly into
the network, optimizing communication efficiency. Fi-
nally, it takes sensor network subqueries from the feder-
ated optimizer, and performs a “local” network-specific
optimization of those queries for the sensor network.

We now briefly describe initialization, optimization,
and query execution; [15, 16] provide more details.

Sensor network initialization. Right after the wire-
less network is started, the first step is to create a sen-
sor network topology that approximates the connectiv-
ity graph among sensors. A set of spanning trees is
created, one rooted at the base station node, and oth-
ers rooted at nodes located at opposite extremities of the
network. Each internal node in the trees maintains a
summary (Bloom filter, histogram, R-tree) of the values
for a particular attribute that appear in each subtree. The
summaries are used for content-based routing [15].

Query pre-optimization. When a subquery is sent to
the gateway machine, a query pre-processor first sep-
arates the predicates in the query into selections and
joins. Then, predicates from each group are separated
into static and dynamic subgroups, depending of their
attributes being exclusively static or not. Each static join
predicate is further fed into a pattern matcher, which,
given a collection of summaries built on various static
attributes, decides whether the predicate is suitable for
content routing using our substrate. In essence, the pat-
tern matcher identifies those join predicates usable for
routing, versus runtime evaluation. Finally, the gateway
node considers different ways of distributing the evalu-
ation of expressions. Consider the following query with
user-defined functions F' and G:
SELECT S.u+S.v, F(2xS.u+S.v),
FROM SENSORS S [windowsize=1

sampleinterval=100]
WHERE S.u > 0 AND S.id = 0;

G(S.u),

This query asks for four evaluations on attributes for ev-
ery node in the network satisfying S.u > 0 A S.id = 0.
If at a given node, the selection condition is satisfied, a
trivial execution strategy will compute the four evalua-
tions and send them to the base station node. A more
efficient strategy will send only S.u and S.v, which the
base station can in turn use to compute the four origi-
nal evaluations. In general the intermediate evaluations
can themselves be expressions. The problem is expo-
nential in the number of evaluations, and our imple-
mentation uses a combination of dynamic programming
and heuristics, which performs optimally for queries we
used in our testing and experimentation.

Once the pre-optimization is finished, the query is en-
coded and flooded to every node in the wireless network.

Distributed optimization and execution. For single-

SIGMOD Record, March 2010 (Vol. 39, No. 1)

G(s.

relation queries there is no optimization phase, so query
execution proceeds immediately. Otherwise, query op-
timization is invoked at each node, which checks if its
attributes satisfy the static selection conditions. If so it
initiates a directed flood routing request, searching for
nodes that mutually satisfy the static join selection con-
ditions. The directed flooding algorithm uses the sum-
maries constructed during initialization [15]. If such

nodes are discovered, their selection conditions are checked,

and a join pair is established. Consider the query:
SELECT S.id, T.id, S.time
FROM SENSORS S, SENSORS T
[windowsize=3 sampleinterval=100]

WHERE S.id < 25 AND hash(S.u) % 2 = 0

AND T.id > 50 AND hash(T.u) % 2 = 0

AND T.y = S.x + 5 AND S.u = T.u
First, all nodes (playing the role of S) check if their id
is less than 25. If so, they issue a routing request to find
nodes for which T.y = S.x 4+ 5 and T.id > 50. Follow-
ing the evaluation of the static predicates and establish-
ment of paths between joining nodes, a join node is as-
signed for each join pair. Candidate join nodes are those
on the path connecting the source nodes, as well as the
base station. The join node is chosen using a cost model,
based on the estimated relative selectivities of each rela-
tion, and the relative network distances (see [16]).

Query execution samples attributes (humidity, tem-
perature, light levels, ADC voltages) at regular intervals,
and evaluates the dynamic selection conditions. If the
conditions are satisfied, a tuple containing intermediate
evaluations is sent to either the join node (if applicable)
or the base station. Each join node collects tuples from
both relations and computes the join result by evaluating
the dynamic join predicate. The join node also tracks
any changes to the relative selectivity of the relations
it handles, and may trigger adaptation of the join node
placement, as described in [16]. Finally, results are sent
to the base station and then to the gateway machine.

7. RELATED WORK

In the past decade several influential distributed stream
systems [3, 9, 17] have been proposed. These have es-
tablished the basic semantics and query languages for
stream processing. In parallel, stream SQL techniques
have been shown to be highly advantageous in a sensor
setting [5, 6, 14]. Work such as REED [1] has shown
that there is promise in coupling the two classes of sys-
tems. We seek to take this idea further, with a federated
model supporting distributed optimization across mul-
tiple cooperating stream sub-systems, each tailored to
particular device classes; support for data integration ca-
pabilities; recursion for path and region queries.

8. CONCLUSIONS

This paper provided a technical overview of the Smart-
CIS “smart building” application and its underlying AS-
PEN substrate. We introduced new query processing

SIGMOD Record, March 2010 (Vol. 39, No. 1)

schemes for integrating highly distributed stream data
sources, both for low-power sensor devices and servers,
as well as query optimization techniques for federations
of stream processors. Future work includes designing
a more flexible federated optimizer, adaptive query pro-
cessing techniques for our highly distributed setting, and
support for user-defined functions.

9[‘1] Dl.{JEA]gz%g{ v@ Hugale% . Madden, and J. Schuler. An
integration framework for sensor networks and data stream
management systems. In VLDB, pages 1361-1364, 2004.

[2] A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: semantic foundations and query execution. VLDB J.,
15(2), 2006.

[3] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the Borealis distributed
stream processing system. ACM Trans. Database Syst., 33(1),
2008.

[4] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden,

V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR, 2003.

[5] A.J. Demers, J. Gehrke, R. Rajaraman, A. Trigoni, and Y. Yao.
The Cougar project: a work-in-progress report. SIGMOD
Record, 32(3), 2003.

[6] A.Deshpande and S. Madden. MauveDB: Supporting
model-based user views in database systems. In SIGMOD,
2006.

[71 M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss,

S. Rizvi, E. Wu, O. Cooper, A. Edakkunni, and W. Hong.
Design considerations for high fan-in systems: The HiFi
approach. In CIDR, 2005.

[8] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang.
Optimizing queries across diverse data sources. In VLDB, 1997.

[9] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,

S. Shenker, and I. Stoica. Quering the Internet with PIER. In
VLDB, 2003.

[10] N. Khoussainova, E. Welbourne, M. Balazinska, G. Borriello,
G. Cole, J. Letchner, Y. Li, C. Ré, D. Suciu, and J. Walke. A
demonstration of cascadia through a digital diary application. In
SIGMOD, New York, NY, USA, 2008.

[11] M. Lenzerini. Tutorial - data integration: A theoretical
perspective. In PODS, 2002.

[12] M. Liu, S. Mihaylov, Z. Bao, M. Jacob, Z. G. Ives, and B. T.
Loo. SmartCIS: Integrating digital and physical environments.
In SIGMOD, 20009.

[13] M. Liu, N. E. Taylor, W. Zhou, Z. G. Ives, and B. T. Loo.
Maintaining recursive views of regions and connectivity in
networks. TKDE, 2010. Special issue on best papers of ICDE
2009.

[14] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Design of an acquisitional query processor for sensor networks.
In SIGMOD, 2003.

[15] S.R. Mihaylov, M. Jacob, Z. G. Ives, and S. Guha. A substrate
for in-network sensor data integration. In DMSN, August 2008.

[16] S.R. Mihaylov, M. Jacob, Z. G. Ives, and S. Guha. Dynamic
join optimization in multihop wireless sensor networks. In Proc
VLDB, 2010. To appear.

[17] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, resource management, and approximation in
a data stream management system. In CIDR, 2003.

[18] J. V. Sutherland, W.-J. van den Heuvel, T. Ganous, M. M.
Burton, and A. Kumar. Future of Intelligent and Extelligent
Health Environment, volume 118/2005, pages 278-312. 10S
Press, 2005.

[19] J. Taft. The intelligent power grid. Innovating for
Transformation: The Energy and Utilities Project, 6:74-76,
2006. Available from www.utilitiesproject.com.

[20] N.E. Taylor and Z. G. Ives. Reliable storage and querying for
collaborative data sharing systems. In /CDE, 2010.

53

