
Understanding Deep Web Search Interfaces: A Survey 
Ritu Khare Yuan An Il-Yeol Song 

The iSchool at Drexel, Drexel University, Philadelphia, USA 
{ritu, yan, isong}@ischool.drexel.edu 

 
ABSTRACT 
This paper presents a survey on the major approaches 
to search interface understanding.  The Deep Web 
consists of data that exist on the Web but are 
inaccessible via text search engines. The traditional 
way to access these data, i.e., by manually filling-up 
HTML forms on search interfaces, is not scalable 
given the growing size of Deep Web. Automatic access 
to these data requires an automatic understanding of 
search interfaces. While it is easy for a human to 
perceive an interface, machine processing of an 
interface is challenging.  During the last decade, 
several works addressed the automatic interface 
understanding problem while employing a variety of 
understanding strategies. This paper presents a survey 
conducted on the key works. This is the first survey in 
the field of search interface understanding. Through an 
exhaustive analysis, we organize the works on a 2-D 
graph based on the underlying database information 
extracted and based on the technique employed.  

1. INTERFACE UNDERSTANDING 
The Deep Web consists of data that exist on the Web 
but are inaccessible by text search engines through 
traditional crawling and indexing [17]. The most 
popular way to access these data is to manually fill-up 
HTML forms on search interfaces. This approach is 
not scalable given the overwhelming size of Deep Web 
[3]. Automatic access to these data has gathered much 
attention lately. This requires automatic understanding 
of search interfaces. This paper presents a survey on 
the major approaches to search interface 
understanding (SIU) and is the first work to present an 
assessment of this field.  
 
The Deep Web is characterized by its growing scale, 
domain diversity, and numerous structured databases 
[9]. It is growing at such a fast pace that effectively 
estimating its size is a difficult problem [9, 19, 27, 18]. 
In the past, researchers have proposed many solutions 
to make the Deep Web data more useful to users. Ru 
and Horowitz [25] classify these solutions into 2 
classes: dynamic content repository, and real-time 
search applications. We extend this classification 
scheme by defining 3 goal-based classes: (i) solutions 
to increase the content visibility on text search engines, 
such as collecting/indexing dynamic pages [21, 16] 
and creating repository of dynamic page contents [24, 
29, 26]; (ii) solutions to increase the intra-domain 
searchability, such as meta-search engines [32, 8, 23, 

5, 30, 11]; (iii) solutions to accomplish knowledge 
organization, such as ontology derivation [2]. 
 
Automatic understanding of Deep Web search 
interfaces is the pre-requisite to attain any of the 
aforementioned solutions. Deep Web contains at least 
10 million high quality interfaces [20] and automatic 
retrieval of such interfaces has also received special 
attention [1].  Search interface understanding is the 
process of extracting semantic information from an 
interface. A search interface contains a sequence of 
interface components, i.e., text-labels and form 
elements (textbox, selection list, etc.). An interface is 
primarily designed for human understanding and 
querying. It does not have a standard layout of 
components (see Figure 1) and there is infinite number 
of possible layout patterns [7].  Thus, while human 
users easily perceive an interface based on past 
experiences and visual cues, machine processing of an 
interface is challenging.   

 
a. An interface segment from Education domain 

 
b. An interface segment from Healthcare domain 

Figure 1. Diversity in Interface Design 

A search interface represents a subset of queries that 
could be performed on the underlying Deep Web 
database. In data-driven Web applications, a user- 
specified query is translated to a structured format, 
such as SQL, and is executed against the online 
database. The placement patterns of components 
provide information on implied queries. For instance, 
the text-label ‘Street:’ and the adjoining textbox in 
Figure 1b imply the WHERE clause of an SQL query, 
i.e., “WHERE Street=‘XYZ’.” Additionally, the 
textual contents on an interface provide information on 
the underlying database schema [2]. For instance, the 
data entering instructions such as ‘(eg. …’ and 
‘(optional)’ in Figure 1,  provide insights on data and 
integrity constraints, respectively. 

Motivated by the opportunities provided by search 
interfaces, several researchers address the SIU 
problem. This paper presents the results of a survey 
conducted on the key SIU approaches. While different 
approaches employ different understanding strategies, 
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a sequence of activities is common to all. Figure 2 
shows the four stages of the SIU process.  

 
Figure 2. Search Interface Understanding Process 

Input: A Search Interface  
Output: Semantic Information  
Stages: 
(A) Modeling: First, human modelers formalize a 
model for the interface. Most of the works model an 
interface as a sequence of implied queries against the 
underlying database.  Each query is a group of 
logically related components, hereafter known as a 
segment. Different approaches assign different segment 
labels to segments. For instance, Zhang et al. [33] use 
“conditional pattern” as the segment label and would 
represent Figure 3’s interface as a sequence of two 
conditional patterns. Components in a segment might 
also be assigned query roles, known as semantic 
labels. Zhang et al. [33] use 3 semantic labels: 
“attribute-name,” “operator,” and “value.” 
Furthermore, an interface might be modeled to contain 
constraints information about the underlying database 
schema. The work in [26] models information such as 
domain, invisible and visible values of form elements. 
(B) Parsing: Then, an interface is parsed into a 
workable physical structure. He et al. [10] parse an 
interface into a string, “interface expression,” with 3 
constructs: ‘t’, corresponding to any text; ‘e’, 
corresponding to any form element; and ‘|’, 
corresponding to a row-delimiter. The interface in 
Figure 1a would be parsed as “teet|et.” 
 (C) Segmentation: The query information, modeled 
in the modeling stage, is extracted in this stage. The 
interface is divided into segments where each segment 
corresponds to a query implied by the underlying 
database. Zhang et al. [33] use a rule-based method to 
group components into segments and assign semantic 
labels to components. The lower segment in Figure 3 is 
created by grouping 3 components: “Gene Name,” 
radio button group, and textbox.   
(D) Segment-Processing: This stage focuses on 
extracting data and integrity constraints of the 
underlying database. For each component, He et al. 
[10] extract meta-information, such as domain type 
and unit, using machine learning classifiers.   

The semantic information identified in stages C and D 
is the output of the SIU process. The next section 
describes the settings adopted for conducting the 
survey.  

 
Figure 3. Segmentation by Zhang et al. [33] 

2. SURVEY SETTINGS 
We surveyed 10 major SIU approaches based on 
certain manually derived dimensions. A dimension is a 
feature of the SIU process that helps in understanding a 
work, and in distinguishing it with its counterparts. 
The survey was conducted in two phases: reductionist 
analysis, and holistic analysis. In the reductionist 
analysis phase, each work was decomposed in two 
ways, in terms of the four SIU stages, and in terms of 
the stage-specific dimensions. In the holistic analysis 
phase, each work was studied in its entirety using 
composite dimensions, created using the stage-specific 
dimensions. Section 3 presents the results of 
reductionist analysis. Section 4 presents the results of 
holistic analysis. 

3. REDUCTIONIST ANALYSIS 
We initiated the survey with the reductionist analysis 
phase. Each work was studied in terms of the stages of 
the SIU process; and in terms of the stage-specific 
dimensions. Each of the Sections 3.1 through 3.4 
focuses on a specific stage of the process. Section 3.5 
discusses the evaluation schemes employed by the 
surveyed approaches.   
 
3.1 Modeling  
In this stage, an interface is modeled into a formal 
structure suitable for machine processing. This stage 
was studied under the following two dimensions.  
 
Information on Implied Queries: This dimension 
denotes the information related to queries implied by 
an interface. An interface contains multiple segments, 
each corresponding to an implied query. The surveyed 
works use a variety of segment labels to refer to a 
segment. The segment label adopted by LITE [24] and 
LEX [10] is “logical attribute.” These works model an 
interface as a list of queries, each specific to an 
underlying database table attribute. Segment contents 
for LITE include a form element and a text-label. LEX 
models a segment to have a text-label, multiple form 
elements, and an optional text-label associated with 
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each form element. It assigns the semantic labels 
“attribute-label,” “domain/constraint element,” and 
“element label,” respectively, to these components.  

The work on Hidden Syntax Parser (HSP) in [33] 
adopts “conditional pattern” as the segment label. Each 
conditional pattern represents a query capability of the 
underlying database. A conditional pattern consists of 
a text with a semantic label “attribute name,” a form 
element with label “operator,” and a form element with 
label “value.” The model adopted in [13] is also 
similar in that it represents an interface as a sequence 
of segments and uses “attribute-name,” “operator,” and 
“operand,” as the semantic labels. Along with 
modeling segments corresponding to a query, 
Benslimane et al. [2] creates groups of segments, 
“structural units,” each corresponding to a logical 
entity in the database schema.  

Certain works do not explicitly assign any labels to 
segment or segment components, but do mention the 
segment contents. Kaljuvee et al. [12], LabelEx [22], 
and DEQUE [26] model a segment to consist of a text-
label and one or more form elements.  Dragut et al. [6] 
and ExQ[31] present a novel way of modeling an 
interface as a tree structure having arbitrary number of 
levels. Both these works create groups and sub-groups 
of related form elements and text-labels and 
hypothesize a hierarchical structure. Each internal node 
of the tree represents a text-label and has a group of 
related form elements as its descendants.    

Hereafter, the works by Kaljuvee et al. [12], 
Benslimane et al. [2],  Khare and An [13], and Dragut 
et al. [6],  are referred to as CombMatch, FormModel, 
HMM, and SchemaTree, respectively. 

Information on Constraints: This dimension denotes 
the information related to data and integrity constraints 
of the underlying database. HSP and LabelEx model a 
form element to have a domain of values.  DEQUE 
models a form element to have domain, invisible and 
visible values. LEX models a segment to have a 
domain type and a default value. It models a form 
element to have domain type (finite, infinite, Boolean), 
and a unit ($, grams, days, seconds). FormModel 
includes the relationship among structural units, 
constraints, and the underlying source information.  
HMM models miscellaneous texts which might include 
information on constraints.  

3.2 Parsing  
Parsing marks the beginning of automatic processing 
and brings the interface into workable physical 
structure. While representation provides a logical 
image to an interface, parsing physically reads the 

interface components. Parsing strategies were studied 
under the following 3 dimensions. 

Input Mode: The input to the parsing stage can be in 
two modes: HTML source code of an interface, and its 
visual counterpart, i.e., an interface as viewed on a 
Web browser.  CombMatch, LEX, FormModel, and 
HMM use HTML code as the primary input. Along 
with HTML code, LabelEx, LITE, HSP, DEQUE, ExQ, 
and SchemaTree use layout engines to extract the 
visual features such as pixel distances between 
components.  

Description: This dimension refers to the tasks 
performed while parsing an interface. LITE parses an 
interface in the “Pruning” stage wherein the 
components that directly affect the layout and labels of 
form elements are isolated from the rest. CombMatch, 
in its “Chunk Partitioning” stage, segments an 
interface into chunks delimited by HTML and TABLE 
cell tags. LEX develops an “interface expression” that 
looks like ‘t|eee|te|ee|ttee|eet|’.  HSP parses a page into 
a set of tokens using its module, “Tokenizer,” and 
stores information such as name, layout position, etc.  
HMM creates a DOM tree of interface components and 
traverses the tree in depth-first order. SchemaTree, in 
its “Token Extraction” module, creates lists of text 
tokens, field tokens, and image tokens, and also stores 
the information about their bounding boxes.  

Purgation: This dimension enlists the components that 
are removed while parsing to avoid information 
overload on subsequent stages. LITE discards images 
and text styling information. FormModel and 
CombMatch remove stop words and text formatting 
tags. DEQUE ignores the components that correspond 
to font size, typefaces and styling information. HMM 
ignores all the components except the form elements 
and the text-labels.  

 
Figure 4. Segmented Search Interface  

3.3 Segmentation 
After a suitable logical representation and a physical 
structure are accomplished, the interface is segmented, 
i.e., the information regarding the implied queries is 
extracted from the interface. Figure 4 shows a 
segmented interface having 2 queries. This stage was 
studied under the following dimensions.  
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Segmentation Tasks: Segmentation can be visualized 
as a 3-task process. The first task, text-label 
assignment, involves associating a form element with a 
surrounding text-label, e.g., associating “cM Position:” 
with the form elements, selection list, and textbox, in 
the bottom segment of Figure 4. The second task is 
grouping where the related interface components are 
grouped together to form a segment.  In Figure 4, the 4 
components (‘cM Position:,’ selection list, textbox, and 
‘e.g., “10.0-40.0”’) belong to the same atomic query 
and are hence grouped together. In the third task, 
semantic labeling, labels or query roles are assigned to 
individual components of a query. Automatic text-label 
assignment and grouping are difficult due to diversity 
in Web design. Automatic semantic labeling is difficult 
as Web designers usually do not assign explicit labels 
in the HTML source code.  
 
A majority of the works (LITE, CombMatch, DEQUE, 
LabelEx) only address the text-label assignment 
problem. LEX groups related text-labels and form 
elements together into “logical attributes”. HSP finds 
groups of “conditional patterns.” LEX, HSP, and 
HMM, perform grouping as well as semantic labeling. 
LEX also identifies the “exclusive attributes” on an 
interface based on a domain-specific vocabulary.  
SchemaTree performs text-label assignment and 
creates segments and sub-segments resulting into a tree 
of interface tokens. ExQ extracts the grouping 
information of an interface into an unlabeled tree 
structure and then performs text-label assignment to 
generate a labeled tree.  
 
Segmentation Technique: Segmentation techniques, 
i.e., the mechanisms to segment an interface, belong to 
3 categories: heuristics, rules, and machine learning.  

Heuristic-properties are of 3 kinds: textual, styling and 
layout. Textual properties include text length, no. of 
words, string similarity, element’s HTML name, etc. 
Styling properties include font size, font type, form 
element format, etc. Layout properties include position 
of a component, distance between two components, 
etc.  To perform text-label assignment LITE exploits 
all 3 kinds of heuristics.  CombMatch uses a 
combination of 8 different algorithms leveraging the 3 
kinds of heuristics to assign text-label to a form 
element. DEQUE and LEX perform text-label 
assignment based on the textual and layout properties 
of components.  In LEX, all the form elements 
associated with same text and the text itself are 
assigned to one segment. Based on heuristics, it also 
assigns the semantic labels, “attribute label,” 
“constraint element,” “domain element,” and “element 
label” to the components. 

A rule is a formalized heuristic. Rule-based techniques 
employ techniques such as regular expressions, 
grammar, finite state methods, and create rules for 
associating a form element with a surrounding text. 
HSP assumes that a hidden syntax guides the 
presentation of interface components on a query 
interface. The identification of segments and semantic 
labels is performed using a grammar. The grammar 
rules are based on layout properties and are derived 
using pre-studied examples.   

SchemaTree uses both rules and heuristics. A tree of 
fields is built based on the layout properties of form 
elements, and a tree of text tokens is built based on the 
layout and styling properties of the text-labels. Then, 
the two trees are integrated based on some common-
sense rules, to generate a complete schema tree 
corresponding to the interface.  

Recent years have seen an advent of machine learning 
techniques in the field of interface understanding. 
LabelEx employs supervised machine learning to 
assign labels to form elements. It designs a “Classifier 
Ensemble” using Naïve Bayes and Decision Trees 
classifiers and employs both textual and layout 
properties to perform text-label assignment.  HMM 
explores another machine learning technique, Hidden 
Markov Models. It creates a 2-layered artificial 
designer having the ability to understand an interface 
based on the layout and textual properties of 
components. The first layer tags the components with 
semantic labels, and the second layer identifies the 
boundaries of segments. ExQ creates the interface 
structure tree using hierarchical agglomerative spatial 
clustering. Each form element is considered to be a 
visual attribute block. To generate the tree, spatially 
closer and similarly styled blocks are clustered under 
the same internal node.  ExQ performs node label 
assignment using annotation rules and hence falls 
under a hybrid category.  

3.4 Segment Processing 
After an interface is segmented, more semantics 
related to segments and segment components are 
extracted. This includes information on data and 
integrity constraints of the underlying database. While 
several approaches enlist this information in the 
modeling stage, very few extract it. These approaches 
were studied under the following dimensions.  

Technique: LEX uses machine learning classifiers to 
identify more semantics from a segment, such as type, 
domain type, value type, unit of form elements, 
relationship and semantics of domain elements, and 
logic relationship of attributes. FormModel uses 
another machine learning technique, learning by 
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example, to extract relationship between two 
“structural units,” and constraints of a form instance.  

Post-processing: LITE and LEX post-process the text-
labels by removing stop words such as “the,” “any,” 
etc. LITE also performs standard IR-style stemming on 
the text-labels. HSP’s “Merger” module reports 
conflicting tokens that occur in more than one query 

conditions, and missing tokens that they do not occur 
in any query condition. LabelEx devises heuristics for 
reconciliation of multiple labels assigned to an element 
and for handling form elements with unassigned labels.  

Table 1 gives a summarized view of reductionist 
analysis showing the outputs generated by each work 
as a result of understanding the interface in Figure 4. 

Table 1. Summary of Reductionist Analysis 

 
Modeling Parsing Segmentation & Processing Semantic 

Information 
CombMatch, 

LITE 
LabelEx 
DEQUE 

Logical Attribute = 
<text-label, form 
element(s)> 

Chunk Partitioning 
(CombMatch), Pruning 
(LITE).  

tb1 => between, tb2 => and, select list => cM 
Position: , tb3 => cM Position: 

4 label 
assignment
s 

HSP Pattern= <attr-name, 
operator, value> 

Token positions.  <between, tb1>, <and, tb2>, <cM Position, sel list, 
tb3> 

3 query 
conditions 

LEX Logical Attribute = 
<attr-label, element 
label, domain/ 
constraint element, 
domain type, default 
value> 

Interface expression:  
tt|tete|t|t|ee|t 
 

{Attr-label = Marker Range, Ele-label = between, 
Domain element = tb1, Ele-label = and, Domain 
element = tb2} 
{Attr-label = cM Position, Const. element = 
selection list, Domain element = tb3} 

2 logical 
attributes 

HMM Segment=  
<attr-name (s), 
operator(s), 
operantor(s), misc-
text(s)> 

Pre-order DOM traversal: 
Marker…, use…, 
between, tb1, and, tb2, 
e.g. between, cM 
Position, sel list, tb3, e.g. 
“10.0-40.0” 

{Attr-name = Marker Range, operator = between, 
operand = tb1, operator = and, operand = tb2, 
Misc-texts = use current …, e.g., bet …} 
{Attr-name = cM Position, operator = selection 
list, Misc-texts = e.g., “10.0 – 40.0”} 

2 segments 

SchemaTree 
ExQ 

Tree Node = text-label 
or form element.   

Text tokens:  Marker 
Range:, use current, 
between, … 
Field tokens: tb1, tb2,… 
& bound. boxes for all 
tokens) 
(SchemaTree only) 

 

1 tree 

 
3.5 Evaluation  
Although evaluation is not a part of the core SIU 
process, it acts as a significant after-stage in all 
surveyed approaches. Here, the extracted semantic 
information is evaluated by comparing with either the 
manually extracted information or a gold standard as in 
the cases of SchemaTree, LabelEx, and ExQ.    

Test Domain: The surveyed approaches are tested on 
several domains. The most popular choices of 
researchers are automobile, airfare, books, movies and 
real estate, followed by car rental, hotel, music, and 
jobs. Some of the least tested domains include biology, 
database technology, electronics, games, health, 
medical, references and education, scientific 
publication, semiconductors, shopping, toys, and 
watches. We compiled a list of various datasets at 
http://cluster.ischool.drexel.edu:8080/ibiosearch/datase
ts.html.  

Metrics: LITE, HMM, and LEX report the extraction 
accuracy, i.e., the number of correctly identified 
components (segments) over the total number of 
manually identified components (segments). DEQUE 
reports the label extraction accuracy and the domain 
value extraction accuracy. CombMatch reports the 
success percentage, i.e., the number of correctly 
identified text-labels over the total number of 
elements, and the failure percentage, i.e., the number 
of incorrectly identified text-labels over the total 
number of elements. HSP reports precision and recall. 
Precision is the number of correctly identified 
segments over the total number of identified segments. 
Recall is the number of correctly identified segments 
over the total number of manually identified segments. 
LabelEx also reports recall, precision, and F-measure. 
SchemaTree measures text-label assignment accuracy, 
and the overall precision, recall and F-score.  ExQ 
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measures precision and recall for grouping, ordering, 
and node labeling.  

Comparison of performance: Most of the surveyed 
works evaluate the performance by comparing their 
results with those of one or more of the contemporary 
works.   HSP and LEX are the most widely used 
benchmarks for evaluation of performance. HSP was 
chosen by LEX, LabelEx, and SchemaTree, to compare 
the performances of respective works; and LEX was 
chosen by LabelEx, SchemaTree, and HMM. Another 
benchmark work is CombMatch, chosen by LITE. 

4. HOLISTIC ANALYSIS  
Section 3 viewed each work in the light of the stage-
specific dimensions. It was found that certain 
dimensions, such as query and constraint information, 
segmentation task, and segmentation and segment 
processing technique, hold more potential for making 
significant changes in the overall process. These 
dimensions were used to create two composite 
dimensions for holistic analysis: database description 
and extraction technique. Based on this, the surveyed 
approaches can be plotted on a 2-D graph (See Figure 
5) with the two axes corresponding to the two 
composite dimensions.  

 
Figure 5. Holistic Analysis   

Database Description: This dimension is described 
along the Y-axis and denotes the underlying database 
information extracted by a given approach. The 
surveyed approaches can be organized into 4 levels. 
The first level consists of LITE, CombMatch, and 
LabelEx. These works extract simple queries by 
performing text-label assignment. Figure 6a shows an 
example of a simple query extractible by associating 
“Gene ID:” with the adjoining textbox. This 
corresponds to the clause, “WHERE GeneID = 
‘PF11_0344.’” However, text-label assignment at 

times results in extraction of partial query capabilities 
when it faces sophisticated designs like the one shown 
in Figure 6b. Such works might assign both textboxes 
to the text-label “Enter the length …,” but would fail to 
extract the complete implied query that corresponds to 
the clause, “WHERE length>=0 AND length <=12.” 
At the next level lies the work DEQUE. This approach 
extracts simple query capabilities along with data and 
integrity constraints of the underlying database. 
 
The next level includes the works that extract 
sophisticated queries, like the one in Figure 6b, from 
an interface. HSP, LEX, and HMM identify such 
queries by grouping all related components into 
segments corresponding to logical attributes.  
FormModel forms a different type of segment that 
refers to an entity, “structural unit,” instead of an 
attribute. SchemaTree and ExQ are different too in that 
they perform hierarchical grouping and the queries 
extracted might be associated with both attributes and 
entities. Both LEX and FormModel employ strategies 
for extracting data and integrity constraints too, and 
thus, occur at the highest level. 

Extraction Technique: This dimension refers to the 
techniques employed during the stages, segmentation 
and segment processing. These techniques fall under 
two categories: rules and models. We blend rules and 
heuristics into the rule-based category, and supervised 
and unsupervised machine learning into the model-
based category.  HSP, LITE, CombMatch, DEQUE and 
SchemaTree represent the rule-based approaches. 
LabelEx and HMM are both model-based. LEX and 
FormModel lie in between the two categories because 
they extract implied queries using rules, and extract 
constraint information using models. ExQ too lies in 
between as it performs grouping using a clustering 
model and performs text-label assignment using rules.  

 
                  a. Simple Query 

 

 
b. Sophisticated Query  

Figure 6.  Types of Queries 
 

Holistic analysis reveals two striking points regarding 
the journey of interface understanding in the past 
decade. First, a considerable progress has been made in 
terms of the underlying database information extracted. 
This is depicted by the transition from simple to 
sophisticated query capabilities across the Y-axis of 
the graph. However, the extracted information on data 
and integrity constraints does not appear to follow a 
regular timeline. Secondly, an improvement in the 
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sophistication level of segmentation and segment-
processing techniques, from rule-based to model-based 
techniques, is clearly visible along the X-axis.  

5. OPEN QUESTIONS 
The survey on the key search interface understanding 
approaches helped in identifying several unaddressed 
issues in this field. In terms of database description, we 
are very far from extracting the complete schema of 
the database that lies underneath an interface. In terms 
of the employed technique, previous studies [14, 15] 
have favored model-based over rule-based approaches 
for handling design heterogeneity. This is followed by 
a logical transition from rules to models. However, this 
transition did not have much effect on the degree of 
human intervention. While rule-based approaches, 
such as HSP and LITE, require manual specification of 
rules and human observations of heuristics, the model-
based approaches, such as LabelEx and HMM, require 
manual annotation of the training data. ExQ made the 
first step toward unmediated understanding by 
employing a clustering technique to derive the initial 
tree structure for an interface.  Such unsupervised 
learning techniques are much needed for developing 
scalable SIU solutions.  

It should be noted that this survey focused on those 
approaches that attempt to understand an interface 
solely based on the information available on the 
interface itself. Interestingly, there is another 
alternative of deriving interface semantics, which is, by 
filling up the HTML forms using instances and 
analyzing the result pages. For example, [30] performs 
text-label assignment by “query probing,” and [24] 
derives the domain of form element values using form 
submissions. Also, in the quest of surfacing, the work 
in [21] determines whether a form element is a 
“binding” or a “free” input, by generating the result 
pages. Another work [28] determines a list of possible 
“atomic queries” for an interface using form 
submissions. An “atomic query” is a minimal set of 
attributes that result in a valid result page. A 
combination of both interface-based and instance-
based approaches of form understanding has not yet 
been explored. It should also be noted that certain 
works [23, 32] that perform SIU were not included in 
this survey.  These works manually extract semantic 
information from interfaces and thus could not 
contribute much to the discussion of holistic and 
reductionist analysis. 

Based on our findings in Section 3.5, a majority of the 
tested domains fall under the commercial Yahoo 
subject categories [9]. The other half of the Deep Web, 
containing databases from non-commercial domains 
[9] such as education, arts, science, reference, etc., has 

hardly been explored.  Previous studies [13, 22, 33] 
have investigated the question of whether an SIU 
approach should be domain-specific or generic. 
Considering that a significant number of domains have 
remained unexplored and that the interface designs 
differ across subject domains, this question needs to be 
re-investigated on a balanced dataset of commercial 
and non-commercial domains. 

Lastly, most of the SIU approaches have been designed 
for a specific application. While HSP, LEX, LabelEx, 
and SchemaTree target to increase the intra-domain 
usability of Deep Web contents, DEQUE, LITE, 
LabelEx, and ExQ target to increase content visibility 
on text search engines.  Out of all, SchemaTree shines 
out as it has been cautiously designed to suit specific 
applications like interface matching and unification. 
This suggests the importance of aligning 
methodologies with intended applications. In future, a 
formal study of the correlation between the extraction 
methodologies and the potential application will be 
greatly beneficial.   
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