
Understanding Deep Web Search Interfaces: A Survey
Ritu Khare Yuan An Il-Yeol Song

The iSchool at Drexel, Drexel University, Philadelphia, USA
{ritu, yan, isong}@ischool.drexel.edu

ABSTRACT
This paper presents a survey on the major approaches
to search interface understanding. The Deep Web
consists of data that exist on the Web but are
inaccessible via text search engines. The traditional
way to access these data, i.e., by manually filling-up
HTML forms on search interfaces, is not scalable
given the growing size of Deep Web. Automatic access
to these data requires an automatic understanding of
search interfaces. While it is easy for a human to
perceive an interface, machine processing of an
interface is challenging. During the last decade,
several works addressed the automatic interface
understanding problem while employing a variety of
understanding strategies. This paper presents a survey
conducted on the key works. This is the first survey in
the field of search interface understanding. Through an
exhaustive analysis, we organize the works on a 2-D
graph based on the underlying database information
extracted and based on the technique employed.

1. INTERFACE UNDERSTANDING
The Deep Web consists of data that exist on the Web
but are inaccessible by text search engines through
traditional crawling and indexing [17]. The most
popular way to access these data is to manually fill-up
HTML forms on search interfaces. This approach is
not scalable given the overwhelming size of Deep Web
[3]. Automatic access to these data has gathered much
attention lately. This requires automatic understanding
of search interfaces. This paper presents a survey on
the major approaches to search interface
understanding (SIU) and is the first work to present an
assessment of this field.

The Deep Web is characterized by its growing scale,
domain diversity, and numerous structured databases
[9]. It is growing at such a fast pace that effectively
estimating its size is a difficult problem [9, 19, 27, 18].
In the past, researchers have proposed many solutions
to make the Deep Web data more useful to users. Ru
and Horowitz [25] classify these solutions into 2
classes: dynamic content repository, and real-time
search applications. We extend this classification
scheme by defining 3 goal-based classes: (i) solutions
to increase the content visibility on text search engines,
such as collecting/indexing dynamic pages [21, 16]
and creating repository of dynamic page contents [24,
29, 26]; (ii) solutions to increase the intra-domain
searchability, such as meta-search engines [32, 8, 23,

5, 30, 11]; (iii) solutions to accomplish knowledge
organization, such as ontology derivation [2].

Automatic understanding of Deep Web search
interfaces is the pre-requisite to attain any of the
aforementioned solutions. Deep Web contains at least
10 million high quality interfaces [20] and automatic
retrieval of such interfaces has also received special
attention [1]. Search interface understanding is the
process of extracting semantic information from an
interface. A search interface contains a sequence of
interface components, i.e., text-labels and form
elements (textbox, selection list, etc.). An interface is
primarily designed for human understanding and
querying. It does not have a standard layout of
components (see Figure 1) and there is infinite number
of possible layout patterns [7]. Thus, while human
users easily perceive an interface based on past
experiences and visual cues, machine processing of an
interface is challenging.

a. An interface segment from Education domain

b. An interface segment from Healthcare domain

Figure 1. Diversity in Interface Design

A search interface represents a subset of queries that
could be performed on the underlying Deep Web
database. In data-driven Web applications, a user-
specified query is translated to a structured format,
such as SQL, and is executed against the online
database. The placement patterns of components
provide information on implied queries. For instance,
the text-label ‘Street:’ and the adjoining textbox in
Figure 1b imply the WHERE clause of an SQL query,
i.e., “WHERE Street=‘XYZ’.” Additionally, the
textual contents on an interface provide information on
the underlying database schema [2]. For instance, the
data entering instructions such as ‘(eg. …’ and
‘(optional)’ in Figure 1, provide insights on data and
integrity constraints, respectively.

Motivated by the opportunities provided by search
interfaces, several researchers address the SIU
problem. This paper presents the results of a survey
conducted on the key SIU approaches. While different
approaches employ different understanding strategies,

SIGMOD Record, March 2010 (Vol. 39, No. 1) 33

a sequence of activities is common to all. Figure 2
shows the four stages of the SIU process.

Figure 2. Search Interface Understanding Process

Input: A Search Interface
Output: Semantic Information
Stages:
(A) Modeling: First, human modelers formalize a
model for the interface. Most of the works model an
interface as a sequence of implied queries against the
underlying database. Each query is a group of
logically related components, hereafter known as a
segment. Different approaches assign different segment
labels to segments. For instance, Zhang et al. [33] use
“conditional pattern” as the segment label and would
represent Figure 3’s interface as a sequence of two
conditional patterns. Components in a segment might
also be assigned query roles, known as semantic
labels. Zhang et al. [33] use 3 semantic labels:
“attribute-name,” “operator,” and “value.”
Furthermore, an interface might be modeled to contain
constraints information about the underlying database
schema. The work in [26] models information such as
domain, invisible and visible values of form elements.
(B) Parsing: Then, an interface is parsed into a
workable physical structure. He et al. [10] parse an
interface into a string, “interface expression,” with 3
constructs: ‘t’, corresponding to any text; ‘e’,
corresponding to any form element; and ‘|’,
corresponding to a row-delimiter. The interface in
Figure 1a would be parsed as “teet|et.”
 (C) Segmentation: The query information, modeled
in the modeling stage, is extracted in this stage. The
interface is divided into segments where each segment
corresponds to a query implied by the underlying
database. Zhang et al. [33] use a rule-based method to
group components into segments and assign semantic
labels to components. The lower segment in Figure 3 is
created by grouping 3 components: “Gene Name,”
radio button group, and textbox.
(D) Segment-Processing: This stage focuses on
extracting data and integrity constraints of the
underlying database. For each component, He et al.
[10] extract meta-information, such as domain type
and unit, using machine learning classifiers.

The semantic information identified in stages C and D
is the output of the SIU process. The next section
describes the settings adopted for conducting the
survey.

Figure 3. Segmentation by Zhang et al. [33]

2. SURVEY SETTINGS
We surveyed 10 major SIU approaches based on
certain manually derived dimensions. A dimension is a
feature of the SIU process that helps in understanding a
work, and in distinguishing it with its counterparts.
The survey was conducted in two phases: reductionist
analysis, and holistic analysis. In the reductionist
analysis phase, each work was decomposed in two
ways, in terms of the four SIU stages, and in terms of
the stage-specific dimensions. In the holistic analysis
phase, each work was studied in its entirety using
composite dimensions, created using the stage-specific
dimensions. Section 3 presents the results of
reductionist analysis. Section 4 presents the results of
holistic analysis.

3. REDUCTIONIST ANALYSIS
We initiated the survey with the reductionist analysis
phase. Each work was studied in terms of the stages of
the SIU process; and in terms of the stage-specific
dimensions. Each of the Sections 3.1 through 3.4
focuses on a specific stage of the process. Section 3.5
discusses the evaluation schemes employed by the
surveyed approaches.

3.1 Modeling
In this stage, an interface is modeled into a formal
structure suitable for machine processing. This stage
was studied under the following two dimensions.

Information on Implied Queries: This dimension
denotes the information related to queries implied by
an interface. An interface contains multiple segments,
each corresponding to an implied query. The surveyed
works use a variety of segment labels to refer to a
segment. The segment label adopted by LITE [24] and
LEX [10] is “logical attribute.” These works model an
interface as a list of queries, each specific to an
underlying database table attribute. Segment contents
for LITE include a form element and a text-label. LEX
models a segment to have a text-label, multiple form
elements, and an optional text-label associated with

34 SIGMOD Record, March 2010 (Vol. 39, No. 1)

each form element. It assigns the semantic labels
“attribute-label,” “domain/constraint element,” and
“element label,” respectively, to these components.

The work on Hidden Syntax Parser (HSP) in [33]
adopts “conditional pattern” as the segment label. Each
conditional pattern represents a query capability of the
underlying database. A conditional pattern consists of
a text with a semantic label “attribute name,” a form
element with label “operator,” and a form element with
label “value.” The model adopted in [13] is also
similar in that it represents an interface as a sequence
of segments and uses “attribute-name,” “operator,” and
“operand,” as the semantic labels. Along with
modeling segments corresponding to a query,
Benslimane et al. [2] creates groups of segments,
“structural units,” each corresponding to a logical
entity in the database schema.

Certain works do not explicitly assign any labels to
segment or segment components, but do mention the
segment contents. Kaljuvee et al. [12], LabelEx [22],
and DEQUE [26] model a segment to consist of a text-
label and one or more form elements. Dragut et al. [6]
and ExQ[31] present a novel way of modeling an
interface as a tree structure having arbitrary number of
levels. Both these works create groups and sub-groups
of related form elements and text-labels and
hypothesize a hierarchical structure. Each internal node
of the tree represents a text-label and has a group of
related form elements as its descendants.

Hereafter, the works by Kaljuvee et al. [12],
Benslimane et al. [2], Khare and An [13], and Dragut
et al. [6], are referred to as CombMatch, FormModel,
HMM, and SchemaTree, respectively.

Information on Constraints: This dimension denotes
the information related to data and integrity constraints
of the underlying database. HSP and LabelEx model a
form element to have a domain of values. DEQUE
models a form element to have domain, invisible and
visible values. LEX models a segment to have a
domain type and a default value. It models a form
element to have domain type (finite, infinite, Boolean),
and a unit ($, grams, days, seconds). FormModel
includes the relationship among structural units,
constraints, and the underlying source information.
HMM models miscellaneous texts which might include
information on constraints.

3.2 Parsing
Parsing marks the beginning of automatic processing
and brings the interface into workable physical
structure. While representation provides a logical
image to an interface, parsing physically reads the

interface components. Parsing strategies were studied
under the following 3 dimensions.

Input Mode: The input to the parsing stage can be in
two modes: HTML source code of an interface, and its
visual counterpart, i.e., an interface as viewed on a
Web browser. CombMatch, LEX, FormModel, and
HMM use HTML code as the primary input. Along
with HTML code, LabelEx, LITE, HSP, DEQUE, ExQ,
and SchemaTree use layout engines to extract the
visual features such as pixel distances between
components.

Description: This dimension refers to the tasks
performed while parsing an interface. LITE parses an
interface in the “Pruning” stage wherein the
components that directly affect the layout and labels of
form elements are isolated from the rest. CombMatch,
in its “Chunk Partitioning” stage, segments an
interface into chunks delimited by HTML and TABLE
cell tags. LEX develops an “interface expression” that
looks like ‘t|eee|te|ee|ttee|eet|’. HSP parses a page into
a set of tokens using its module, “Tokenizer,” and
stores information such as name, layout position, etc.
HMM creates a DOM tree of interface components and
traverses the tree in depth-first order. SchemaTree, in
its “Token Extraction” module, creates lists of text
tokens, field tokens, and image tokens, and also stores
the information about their bounding boxes.

Purgation: This dimension enlists the components that
are removed while parsing to avoid information
overload on subsequent stages. LITE discards images
and text styling information. FormModel and
CombMatch remove stop words and text formatting
tags. DEQUE ignores the components that correspond
to font size, typefaces and styling information. HMM
ignores all the components except the form elements
and the text-labels.

Figure 4. Segmented Search Interface

3.3 Segmentation
After a suitable logical representation and a physical
structure are accomplished, the interface is segmented,
i.e., the information regarding the implied queries is
extracted from the interface. Figure 4 shows a
segmented interface having 2 queries. This stage was
studied under the following dimensions.

SIGMOD Record, March 2010 (Vol. 39, No. 1) 35

Segmentation Tasks: Segmentation can be visualized
as a 3-task process. The first task, text-label
assignment, involves associating a form element with a
surrounding text-label, e.g., associating “cM Position:”
with the form elements, selection list, and textbox, in
the bottom segment of Figure 4. The second task is
grouping where the related interface components are
grouped together to form a segment. In Figure 4, the 4
components (‘cM Position:,’ selection list, textbox, and
‘e.g., “10.0-40.0”’) belong to the same atomic query
and are hence grouped together. In the third task,
semantic labeling, labels or query roles are assigned to
individual components of a query. Automatic text-label
assignment and grouping are difficult due to diversity
in Web design. Automatic semantic labeling is difficult
as Web designers usually do not assign explicit labels
in the HTML source code.

A majority of the works (LITE, CombMatch, DEQUE,
LabelEx) only address the text-label assignment
problem. LEX groups related text-labels and form
elements together into “logical attributes”. HSP finds
groups of “conditional patterns.” LEX, HSP, and
HMM, perform grouping as well as semantic labeling.
LEX also identifies the “exclusive attributes” on an
interface based on a domain-specific vocabulary.
SchemaTree performs text-label assignment and
creates segments and sub-segments resulting into a tree
of interface tokens. ExQ extracts the grouping
information of an interface into an unlabeled tree
structure and then performs text-label assignment to
generate a labeled tree.

Segmentation Technique: Segmentation techniques,
i.e., the mechanisms to segment an interface, belong to
3 categories: heuristics, rules, and machine learning.

Heuristic-properties are of 3 kinds: textual, styling and
layout. Textual properties include text length, no. of
words, string similarity, element’s HTML name, etc.
Styling properties include font size, font type, form
element format, etc. Layout properties include position
of a component, distance between two components,
etc. To perform text-label assignment LITE exploits
all 3 kinds of heuristics. CombMatch uses a
combination of 8 different algorithms leveraging the 3
kinds of heuristics to assign text-label to a form
element. DEQUE and LEX perform text-label
assignment based on the textual and layout properties
of components. In LEX, all the form elements
associated with same text and the text itself are
assigned to one segment. Based on heuristics, it also
assigns the semantic labels, “attribute label,”
“constraint element,” “domain element,” and “element
label” to the components.

A rule is a formalized heuristic. Rule-based techniques
employ techniques such as regular expressions,
grammar, finite state methods, and create rules for
associating a form element with a surrounding text.
HSP assumes that a hidden syntax guides the
presentation of interface components on a query
interface. The identification of segments and semantic
labels is performed using a grammar. The grammar
rules are based on layout properties and are derived
using pre-studied examples.

SchemaTree uses both rules and heuristics. A tree of
fields is built based on the layout properties of form
elements, and a tree of text tokens is built based on the
layout and styling properties of the text-labels. Then,
the two trees are integrated based on some common-
sense rules, to generate a complete schema tree
corresponding to the interface.

Recent years have seen an advent of machine learning
techniques in the field of interface understanding.
LabelEx employs supervised machine learning to
assign labels to form elements. It designs a “Classifier
Ensemble” using Naïve Bayes and Decision Trees
classifiers and employs both textual and layout
properties to perform text-label assignment. HMM
explores another machine learning technique, Hidden
Markov Models. It creates a 2-layered artificial
designer having the ability to understand an interface
based on the layout and textual properties of
components. The first layer tags the components with
semantic labels, and the second layer identifies the
boundaries of segments. ExQ creates the interface
structure tree using hierarchical agglomerative spatial
clustering. Each form element is considered to be a
visual attribute block. To generate the tree, spatially
closer and similarly styled blocks are clustered under
the same internal node. ExQ performs node label
assignment using annotation rules and hence falls
under a hybrid category.

3.4 Segment Processing
After an interface is segmented, more semantics
related to segments and segment components are
extracted. This includes information on data and
integrity constraints of the underlying database. While
several approaches enlist this information in the
modeling stage, very few extract it. These approaches
were studied under the following dimensions.

Technique: LEX uses machine learning classifiers to
identify more semantics from a segment, such as type,
domain type, value type, unit of form elements,
relationship and semantics of domain elements, and
logic relationship of attributes. FormModel uses
another machine learning technique, learning by

36 SIGMOD Record, March 2010 (Vol. 39, No. 1)

example, to extract relationship between two
“structural units,” and constraints of a form instance.

Post-processing: LITE and LEX post-process the text-
labels by removing stop words such as “the,” “any,”
etc. LITE also performs standard IR-style stemming on
the text-labels. HSP’s “Merger” module reports
conflicting tokens that occur in more than one query

conditions, and missing tokens that they do not occur
in any query condition. LabelEx devises heuristics for
reconciliation of multiple labels assigned to an element
and for handling form elements with unassigned labels.

Table 1 gives a summarized view of reductionist
analysis showing the outputs generated by each work
as a result of understanding the interface in Figure 4.

Table 1. Summary of Reductionist Analysis

Modeling Parsing Segmentation & Processing Semantic

Information
CombMatch,

LITE
LabelEx
DEQUE

Logical Attribute =
<text-label, form
element(s)>

Chunk Partitioning
(CombMatch), Pruning
(LITE).

tb1 => between, tb2 => and, select list => cM
Position: , tb3 => cM Position:

4 label
assignment
s

HSP Pattern= <attr-name,
operator, value>

Token positions. <between, tb1>, <and, tb2>, <cM Position, sel list,
tb3>

3 query
conditions

LEX Logical Attribute =
<attr-label, element
label, domain/
constraint element,
domain type, default
value>

Interface expression:
tt|tete|t|t|ee|t

{Attr-label = Marker Range, Ele-label = between,
Domain element = tb1, Ele-label = and, Domain
element = tb2}
{Attr-label = cM Position, Const. element =
selection list, Domain element = tb3}

2 logical
attributes

HMM Segment=
<attr-name (s),
operator(s),
operantor(s), misc-
text(s)>

Pre-order DOM traversal:
Marker…, use…,
between, tb1, and, tb2,
e.g. between, cM
Position, sel list, tb3, e.g.
“10.0-40.0”

{Attr-name = Marker Range, operator = between,
operand = tb1, operator = and, operand = tb2,
Misc-texts = use current …, e.g., bet …}
{Attr-name = cM Position, operator = selection
list, Misc-texts = e.g., “10.0 – 40.0”}

2 segments

SchemaTree
ExQ

Tree Node = text-label
or form element.

Text tokens: Marker
Range:, use current,
between, …
Field tokens: tb1, tb2,…
& bound. boxes for all
tokens)
(SchemaTree only)

1 tree

3.5 Evaluation
Although evaluation is not a part of the core SIU
process, it acts as a significant after-stage in all
surveyed approaches. Here, the extracted semantic
information is evaluated by comparing with either the
manually extracted information or a gold standard as in
the cases of SchemaTree, LabelEx, and ExQ.

Test Domain: The surveyed approaches are tested on
several domains. The most popular choices of
researchers are automobile, airfare, books, movies and
real estate, followed by car rental, hotel, music, and
jobs. Some of the least tested domains include biology,
database technology, electronics, games, health,
medical, references and education, scientific
publication, semiconductors, shopping, toys, and
watches. We compiled a list of various datasets at
http://cluster.ischool.drexel.edu:8080/ibiosearch/datase
ts.html.

Metrics: LITE, HMM, and LEX report the extraction
accuracy, i.e., the number of correctly identified
components (segments) over the total number of
manually identified components (segments). DEQUE
reports the label extraction accuracy and the domain
value extraction accuracy. CombMatch reports the
success percentage, i.e., the number of correctly
identified text-labels over the total number of
elements, and the failure percentage, i.e., the number
of incorrectly identified text-labels over the total
number of elements. HSP reports precision and recall.
Precision is the number of correctly identified
segments over the total number of identified segments.
Recall is the number of correctly identified segments
over the total number of manually identified segments.
LabelEx also reports recall, precision, and F-measure.
SchemaTree measures text-label assignment accuracy,
and the overall precision, recall and F-score. ExQ

SIGMOD Record, March 2010 (Vol. 39, No. 1) 37

measures precision and recall for grouping, ordering,
and node labeling.

Comparison of performance: Most of the surveyed
works evaluate the performance by comparing their
results with those of one or more of the contemporary
works. HSP and LEX are the most widely used
benchmarks for evaluation of performance. HSP was
chosen by LEX, LabelEx, and SchemaTree, to compare
the performances of respective works; and LEX was
chosen by LabelEx, SchemaTree, and HMM. Another
benchmark work is CombMatch, chosen by LITE.

4. HOLISTIC ANALYSIS
Section 3 viewed each work in the light of the stage-
specific dimensions. It was found that certain
dimensions, such as query and constraint information,
segmentation task, and segmentation and segment
processing technique, hold more potential for making
significant changes in the overall process. These
dimensions were used to create two composite
dimensions for holistic analysis: database description
and extraction technique. Based on this, the surveyed
approaches can be plotted on a 2-D graph (See Figure
5) with the two axes corresponding to the two
composite dimensions.

Figure 5. Holistic Analysis

Database Description: This dimension is described
along the Y-axis and denotes the underlying database
information extracted by a given approach. The
surveyed approaches can be organized into 4 levels.
The first level consists of LITE, CombMatch, and
LabelEx. These works extract simple queries by
performing text-label assignment. Figure 6a shows an
example of a simple query extractible by associating
“Gene ID:” with the adjoining textbox. This
corresponds to the clause, “WHERE GeneID =
‘PF11_0344.’” However, text-label assignment at

times results in extraction of partial query capabilities
when it faces sophisticated designs like the one shown
in Figure 6b. Such works might assign both textboxes
to the text-label “Enter the length …,” but would fail to
extract the complete implied query that corresponds to
the clause, “WHERE length>=0 AND length <=12.”
At the next level lies the work DEQUE. This approach
extracts simple query capabilities along with data and
integrity constraints of the underlying database.

The next level includes the works that extract
sophisticated queries, like the one in Figure 6b, from
an interface. HSP, LEX, and HMM identify such
queries by grouping all related components into
segments corresponding to logical attributes.
FormModel forms a different type of segment that
refers to an entity, “structural unit,” instead of an
attribute. SchemaTree and ExQ are different too in that
they perform hierarchical grouping and the queries
extracted might be associated with both attributes and
entities. Both LEX and FormModel employ strategies
for extracting data and integrity constraints too, and
thus, occur at the highest level.

Extraction Technique: This dimension refers to the
techniques employed during the stages, segmentation
and segment processing. These techniques fall under
two categories: rules and models. We blend rules and
heuristics into the rule-based category, and supervised
and unsupervised machine learning into the model-
based category. HSP, LITE, CombMatch, DEQUE and
SchemaTree represent the rule-based approaches.
LabelEx and HMM are both model-based. LEX and
FormModel lie in between the two categories because
they extract implied queries using rules, and extract
constraint information using models. ExQ too lies in
between as it performs grouping using a clustering
model and performs text-label assignment using rules.

 a. Simple Query

b. Sophisticated Query

Figure 6. Types of Queries

Holistic analysis reveals two striking points regarding
the journey of interface understanding in the past
decade. First, a considerable progress has been made in
terms of the underlying database information extracted.
This is depicted by the transition from simple to
sophisticated query capabilities across the Y-axis of
the graph. However, the extracted information on data
and integrity constraints does not appear to follow a
regular timeline. Secondly, an improvement in the

38 SIGMOD Record, March 2010 (Vol. 39, No. 1)

sophistication level of segmentation and segment-
processing techniques, from rule-based to model-based
techniques, is clearly visible along the X-axis.

5. OPEN QUESTIONS
The survey on the key search interface understanding
approaches helped in identifying several unaddressed
issues in this field. In terms of database description, we
are very far from extracting the complete schema of
the database that lies underneath an interface. In terms
of the employed technique, previous studies [14, 15]
have favored model-based over rule-based approaches
for handling design heterogeneity. This is followed by
a logical transition from rules to models. However, this
transition did not have much effect on the degree of
human intervention. While rule-based approaches,
such as HSP and LITE, require manual specification of
rules and human observations of heuristics, the model-
based approaches, such as LabelEx and HMM, require
manual annotation of the training data. ExQ made the
first step toward unmediated understanding by
employing a clustering technique to derive the initial
tree structure for an interface. Such unsupervised
learning techniques are much needed for developing
scalable SIU solutions.

It should be noted that this survey focused on those
approaches that attempt to understand an interface
solely based on the information available on the
interface itself. Interestingly, there is another
alternative of deriving interface semantics, which is, by
filling up the HTML forms using instances and
analyzing the result pages. For example, [30] performs
text-label assignment by “query probing,” and [24]
derives the domain of form element values using form
submissions. Also, in the quest of surfacing, the work
in [21] determines whether a form element is a
“binding” or a “free” input, by generating the result
pages. Another work [28] determines a list of possible
“atomic queries” for an interface using form
submissions. An “atomic query” is a minimal set of
attributes that result in a valid result page. A
combination of both interface-based and instance-
based approaches of form understanding has not yet
been explored. It should also be noted that certain
works [23, 32] that perform SIU were not included in
this survey. These works manually extract semantic
information from interfaces and thus could not
contribute much to the discussion of holistic and
reductionist analysis.

Based on our findings in Section 3.5, a majority of the
tested domains fall under the commercial Yahoo
subject categories [9]. The other half of the Deep Web,
containing databases from non-commercial domains
[9] such as education, arts, science, reference, etc., has

hardly been explored. Previous studies [13, 22, 33]
have investigated the question of whether an SIU
approach should be domain-specific or generic.
Considering that a significant number of domains have
remained unexplored and that the interface designs
differ across subject domains, this question needs to be
re-investigated on a balanced dataset of commercial
and non-commercial domains.

Lastly, most of the SIU approaches have been designed
for a specific application. While HSP, LEX, LabelEx,
and SchemaTree target to increase the intra-domain
usability of Deep Web contents, DEQUE, LITE,
LabelEx, and ExQ target to increase content visibility
on text search engines. Out of all, SchemaTree shines
out as it has been cautiously designed to suit specific
applications like interface matching and unification.
This suggests the importance of aligning
methodologies with intended applications. In future, a
formal study of the correlation between the extraction
methodologies and the potential application will be
greatly beneficial.

6. REFERENCES
[1] Barbosa, L., Tandon, S., and Freire, J. 2007.

Automatically constructing a directory of molecular
biology databases. In Proc. of the International
Workshop on Data Integration in the Life Sciences
(Philadelphia, PA, Jun. 27-29, 2007) DILS’ 07. Springer
Berlin, Heidelberg. 6-16.

[2] Benslimane, S. M., Malki, M., Rahmouni, M. K., and
Benslimane, D. 2007. Extracting personalised ontology
from data-intensive web application: An HTML forms-
based reverse engineering approach. Informatica, 18, 4
(Dec. 2007), 511-534.

[3] Bergman, M., K. 2001. The deep web: Surfacing hidden
value. White Paper. University of Michigan.

[4] Cawsey, A. 1998. The essence of artificial intelligence
Prentice Hall, Upper Saddle River, NJ.

[5] Chang, K. C., He, B., and Zhang, Z. 2005. Toward large
scale integration: Building a MetaQuerier over
databases on the web. In Proc. of the 2nd Conference on
Innovative Data Systems Research (Asilomar, CA, Jan.
4-7, 2005) CIDR’05. ACM Press, New York, NY. 44-
55.

[6] Dragut, E., C., Kabisch, T., Yu, C., and Leser, U., 2009.
A Hierarchical Approach to Model Web Query
Interfaces for Web Source Integration. In Proc. of the
35th International Conference on Very Large Data Bases
(Lyon, France, August 24-28, 2009). VLDB’09. IEEE
Computing Society, Washington, DC, 325 - 335.

[7] Halevy, A. Y. 2005. Why your data won't mix:
Semantic heterogeneity. Queue, 3, 8(Oct. 2005), 50-58.

[8] He, B., and Chang, K. C. 2003. Statistical schema
matching across web query interfaces. In Proc. of the
ACM International Conference on Management of Data
(San Diego, CA, June 9-12, 2003). SIGMOD’03. ACM
Press, New York, NY. 217-228.

SIGMOD Record, March 2010 (Vol. 39, No. 1) 39

[9] He, B., Patel, M., Zhang, Z., and Chang, K. C. 2007.
Accessing the deep web. Communications of the ACM,
50, 5 (Oct. 2008), 94-101.

[10] He, H., Meng, W., Lu, Y., Yu, C., and Wu, Z. 2007.
Towards deeper understanding of the search interfaces
of the deep web. World Wide Web, 10,2 (Jun. 2007),
133 - 155.

[11] He, H., Meng, W., Yu, C., and Wu, Z. 2004. Automatic
integration of web search interfaces with WISE-
integrator. The VLDB Journal the International Journal
on very Large Data Bases, 13, 3(Sep. 2004), 256-273.

[12] Kaljuvee, O., Buyukkokten, O., Garcia-Molina, H., and
Paepcke, A. 2001. Efficient web form entry on PDAs.
In Proc. of the 10th International Conference on World
Wide Web (Hong Kong, China, May 1-5, 2001).
WWW’01. ACM Press, New York, NY, 663 - 672.

[13] Khare, R., and An, Y. 2009. An Empirical Study On
Using Hidden Markov Model for Search Interface
Segmentation. In Proc. of the 18th International
Conference on Information and Knowledge
Management (Hong Kong, China, Nov 2-6, 2009).
CIKM’09. ACM Press, New York, NY, 17 -26.

[14] Kushmerick, N. 2002. Finite-state approaches to web
information extraction. 3rd Summer Convention on
Information Extraction (Frascati, Italy, July 15-19,
2002) SCIE’02, Springer, Berlin, Heidelberg, 77-91.

[15] Kushmerick, N. 2003. Learning to invoke web forms. In
On the move to meaningful internet systems. Springer
Berlin, Heidelberg, 997-1013.

[16] Lage, J. P., da Silva, A. S., Golgher, P. B., and Laender,
A. H. F. 2004. Automatic generation of agents for
collecting hidden web pages for data extraction. Data
and Knowledge Engineering, 49, 2(May 2004), 177 -
196.

[17] Lawrence, S., and Giles, C. L. 1998. Searching the
World Wide Web. Science, 280, 5360(Apr. 1998), 98-
100.

[18] Ling, Y., Meng, X., and Liu, W. 2008. An attributes
correlation based approach for estimating size of web
databases. Journal of Software, 19, 2(Mar/Apr. 2007),
224-236.

[19] Lu, J. (2008). Efficient estimation of the size of text
deep web data source. In Proc. of the 17th ACM
Conference on Information and Knowledge
Management (Napa Valley, CA, Oct. 26-30, 2008)
CIKM ’08. ACM Press, New York, NY.

[20] Madhavan, J., Jeffery, S., R., Cohen, S. I., Dong, X.,
Ko, D., and Yu, C. 2007. Web-scale data integration:
You can only afford to pay as you go. In Proceedings of
Conference on Innovative Data Systems Research
(Pacific Grove, CA, Jan. 7-10, 2007) CIDR’07. ACM
Press, New York, NY. 40-48.

[21] Madhavan, J., Ko, D., Kot, L., Ganapathy, V.,
Rasmussen, A., and Halevy, A. Y. 2008. Google's deep
web crawl. Proc. of the VLDB Endowment, 1, 2 (Aug.
2008), 1241-1252.

[22] Nguyen, H., Nguyen, T., and Freire, J. 2008. Learning
to extract form labels. In Proceedings of the VLDB
Endowment, Auckland, New Zealand. , 1, 1(Aug.
2008), 684-694.

[23] Pei, J., Hong, J., and Bell, D. 2006. A robust approach
to schema matching over web query interfaces. In Proc.

of the 22nd International Conference on Data
Engineering Workshops (Atlanta, GA, April 3-7, 2006).
ICDEW'06. IEEE Computer Society, Washington, DC.
46-55.

[24] Raghavan, S., and Garcia-Molina, H. 2001. Crawling
the hidden web. In Proc. of the 27th International
Conference on very Large Data Bases (Rome, Italy,
September 11-14, 2001) VLDB ’01, Morgan Kaufmann
Publishers Inc, San Francisco, CA, 129-138.

[25] Ru, Y., and Horowitz, E. 2005. Indexing the invisible
web: A survey. Online Information Review, 29, 3 (Apr.
2005), 249-265.

[26] Shestakov, D., Bhowmick, S., S., and Lim, E. 2005.
DEQUE: Querying the deep web. Data and Knowledge
Engineering, 52, 3 (Mar. 2005), 273-311.

[27] Shestakov, D., and Salakoski, T. 2007. On estimating
the scale of national deep web. Database and expert
systems applications, Springer Berlin, Heidelberg, 780-
789.

[28] Shu, L., Meng, W., He, H., and Yu, C. 2007. Querying
Capability Modeling and Construction of Deep Web
Sources. In Proc. of 8th International Conference on
Web Information Systems Engineering (Nancy, France,
December 3-6, 2007) WISE ’07. Springer Berlin,
Heidelberg, 13-25.

[29] Wang, J., and Lochovsky, F. 2003. Data extraction and
label assignment for web databases. In Proc. of 12th
International Conference on World Wide Web
(Budapest, Hungary, May 20-24, 2003) WWW ‘03.
ACM Press, New York, NY, 187-196.

[30] Wang, J., Wen, J., Lochovsky, F., and Ma, W. 2004.
Instance-based schema matching for web databases by
domain-specific query probing. In Proc. of 30th
International Conference on Very Large Data Bases
(Toronto, Canada, August 29-30, 2004) VLDB ’04,
VLDB Endowment, 408 - 419.

[31] Wu, W., Doan, A., Yu, C., and Meng, W. 2009.
Modeling and Extracting Deep-Web Query Interfaces.
In Advances in Information and Intelligent Systems.
Springer Berlin, Heidelberg, 65-90.

[32] Wu, W., Yu, C., Doan, A., and Meng, W. 2004. An
interactive clustering-based approach to integrating
source query interfaces on the deep web. In Proc. of the
ACM International Conference on Management of Data
(Paris, France, June 13-18, 2004) SIGMOD ’04.ACM,
New York, NY, 95 - 106.

[33] Zhang, Z., He, B., and Chang, K. C. 2004.
Understanding web query interfaces: Best-effort parsing
with hidden syntax. In Proc. of the ACM International
Conference on Management of Data (Paris, France,
June 13-18, 2004) SIGMOD ’04.ACM, New York, NY,
107 – 118.

40 SIGMOD Record, March 2010 (Vol. 39, No. 1)

