An X-Ray on Web-Available XML Schemas

*
Alberto H. F. Laender, Mirella M. Moro, Cristiano Nascimento and Patricia Martins
Department of Computer Science
Federal University of Minas Gerais
Belo Horizonte, Brazil
{laender, mirella, crist}@dcc.ufmg.br, patricia.martins@gmail.com

ABSTRACT

XML has conquered its place as the most used standard for
representing Web data. An XML schema may be employed
for similar purposes of those from database schemas. There
are different languages to write an XML schema, such as
DTD and XSD. In this paper, we provide a general view,
an X-Ray, on Web-available XSD files by identifying which
XSD constructs are more and less frequently used. Further-
more, we provide an evolution perspective, showing results
from XSD files collected in 2005 and 2008. Hence, we can
also draw some conclusions on what trends seem to exist
in XSD usage. The results of such study provide relevant
information for developers of XML applications, tools and
algorithms in which the schema has a distinguished role.

1. INTRODUCTION

A large volume of data is currently represented as XML
documents [8]. With such a widespread use, XML has con-
quered its place as the most employed standard for rep-
resenting Web data. Web applications frequently need to
specify a schema (or a set of schemas) to their documents in
order to fulfill their requirements. An XML schema defines
a class of documents, i.e., the constraints that all documents
must follow in order to be valid. As the complexity of the
applications grow, so does the complexity of their schemas.

There are different languages to write an XML schema [12],
such as Document Type Definition (DTD) [1] and XML
Schema [16]. An XML schema may be employed for similar
purposes of those from database schemas. For example, it
defines the data structure, extracting information about the
data organization, which in turn is essential to store the data
in a DBMS. Also, a query optimizer may use facts from the
schema for improving its performance. Without such an in-
formation, it needs to infer a schema from a dataset, which
is a different problem [14]. Finally, other research fronts,
such as information integration [5], schema evolution [13],
and web services [19], may also benefit from knowing how
exactly the schema definitions are used in the real world.

Considering all those schema-oriented applications, some
previous work has presented how real DTDs and XML

*Research partially supported by projects InfoWeb (CNPq
grant number 573871/2008-6) and Amanaje (CNPq grant
number 479541/2008-6), Brazil.

SIGMOD Record, March 2009 (Vol. 38, No. 1)

Schema Definitions (XSD) look like. One of the first ones
is [10], which provides statistics about the structure of Web-
collected DTDs. Another study compared the power ex-
pression of real DTDs and XSDs [6]. It concluded that,
considering power expression only, most of the XSDs could
be written as a similar DTD file. Then, the authors in [3]
studied how publicly available XML documents are. They
presented statistics on document distribution, schema usage,
document internal features, among others.

The goal of the present paper is to provide a general view, an
X-Ray, on Web-available XSD files. Specifically, we want to
identify which XSD constructs are more and less frequently
used. Also, we provide an evolution perspective, showing re-
sults from XSD files collected in March 2005 and in Novem-
ber 2008. We can also draw some conclusions on what trends
seem to exist in XSD usage. The results of such study pro-
vide relevant information for developers of XML applications
and tools in which the schema has a defining role.

In summary, this paper presents a snapshot of Web-available
XSDs. It works like the initial X-Ray a doctor ask for a pa-
tient, trying to grasp a general view of a problem. As the
doctor may request an MRI or a CT for enhanced inves-
tigation, so can we. For example, we could further exam-
ine XSDs by performing an application-based clustering in
which we would group XSDs related to bio-data, math-data,
and so on. Then, we could evaluate how the frequency of
XSD constructs vary from one to another cluster. We leave
this deeper study of XSDs for future work, since we are inter-
ested in a broader perspective with more general purposes.
Finally, as an X-Ray may have different interpretations, so
can our study. Hence, we do not exhaustively interpret our
results, leaving them open for further discussion as well.

This paper is organized as follows. Section 2 summarizes
some concepts about XML and XML Schema. Section 3
presents the methodology employed to perform our evalu-
ations. The results of our experiments are presented and
discussed in Section 4. Section 5 overviews some related
work while Section 6 concludes the paper.

2. BACKGROUND

XML (FEztensible Markup Language) is a meta-markup lan-
guage that provides a format to describe structured and
semi-structured data [1]. XML enables more precise content
definition and more efficient document search, working over
multiple plataforms. Moreover, it also allows the definition

37

<?xml version='1.0" encoding="ISO-8859-1" ?>
<IDOCTYPE SigmodRecord SYSTEM SigmodRecord.dtd">
<SigmodRecord>
<issue>
<volume>11</volume>
<number>1</number>
<articles>
<article>
<title>Annotated Bibliography on Data Design.</title>
<initPage>45</initPage>
<endPage>77</endPage>
<authors>
<author position="00">Anthony |. Wasserman</author>
<author position="01">Karen Botnich</author>
</authors>
</article>
<article>
<title>Architecture of Future Data Base Systems.</title>
<initPage>30</initPage>
<endPage>44</endPage>
<authors>
<author position="00">Lawrence A. Rowe</author>
<author position="01">Michael Stonebraker</author>
</authors>
</article>

</issue>
</SigmodRecord>

Figure 1: XML document for SIGMOD Record

of a new generation of applications to handle and visual-
ize Web data. While its counterpart HTML has a fixed set
of tags to define the format of characters and paragraphs,
XML provides a system to define an infinite number of tags
(markups). Specifically, an XML document is composed of
element definitions and text values. For example, the XML
document for the SIGMOD Record? issues is composed of
elements that define each issue with volume and number,
its articles, and the information of each article (title, pages,
and authors). Figure 1 shows a sample of this document.

An XML schema may be defined to guarantee that each doc-
ument of an application or domain follows the same struc-
tural constraints. The most common schema languages are
DTD [1] and XML Schema [16]. This paper focuses on
analyzing how the actual XSD files are used on the Web.
Therefore, this section briefly overviews some XML Schema
definition features.

An XSD file is an XML document that allows to define: the
elements and attributes that may appear in an XML docu-
ment, the order and the number of child elements, whether
the element is empty or has text content, the data types
for elements and attributes, default and pattern values. For
example, Figure 2 illustrates a part of an XSD file for the
SIGMOD Record document from Figure 1.

Note that this is one option for the schema definition of
the SIGMOD Record document, a very generic XSD file.
We could make it more specific by adding some constraints.
For example, SIGMOD Record has four issues per year.
We could include such restriction by specifying the element

Yhttp://www.sigmod.org/record

38

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="SigmodRecord">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="issue"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="issue">
<xs:complexType>
<xs:sequence>
<xs:element ref="volume"/>
<xs:element ref="number"/>
<xs:element ref="articles"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="author">
<xs:complexType mixed="true">
<xs:attribute name="position" use="required"
type="xs:integer"/>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 2: An XSD file for SIGMOD Record

number as a simple Type with constraints minlnclusive equal
to 1 and mazInclusive equal to 4.

Furthermore, elements may be specified as simple types
(such as string and positivelnteger) or complex types. Com-
plex types allow more richer specifications. For example, we
can use group to define a set of elements. Then, we can add
one of three restrictions: (i) sequence, those elements must
appear in the document in the sequence that they are de-
fined in the XSD; (ii) choice, only one of those elements may
appear in the document; (iii) all, either all elements appear
(in any order) or none of them appear in the document.

3. EVALUATION SETUP

This section overviews our evaluation methodology. The
process has three steps: it gets data from the Web, validates
them, and parses the validated data.

1. Get XSD files from the Web. We consider XML
schemas available on the Web for the following reasons.
First, those schemas are publicly available, making it easier
to reproduce our evaluation. Second, they represent cur-
rently in-use XSD files, providing a good snapshot of the
real world scenario. Third, those files are not specialized in
a limited set of fields (e.g., bio or math data) such as those
found in some XSD repositories.

The schemas were selected through a search engine - in our
case we have used Google?. The query considered on the
search engine was “schema filetype:zsd”. With such a query,
we expected to get links only to XSD files that instantiate
an element schema.

2http://www.google.com, last access in November 2008.

SIGMOD Record, March 2009 (Vol. 38, No. 1)

Next task is to get the actual XSD files. We have imple-
mented a crawler using Perl facilities (an HTML parser®
and a library for WWW in Perl4). The crawler gets the
URLs that are on the resulting pages of the query “schema
filetype:zsd” (on the search engine). We have considered the
URLs from the first 50 pages, where each page has 10 re-
sults. The crawler then downloads the XSD files from those
URL links. At the end of this step, we had approximately
500 XSD files, since some of URL links were broken.

2. Validate retrieved XSD files. Once we have a dataset
of XSD files, we needed to validate them. We have used a
Java Validation API for XML documents®, and validated
schemas against XML Schema’s schema®. We performed
our evaluation in March 2005 and again in November 2008.
From the 500 URL links, we got 199 valid XSD files in 2005,

and 223 valid XSD files in 2008.

3. Parse validated XSD files. In order to get our statis-
tics, we have also implemented a parser that captures the
specific information we are interested in. Specifically, we
have defined a script that uses a Perl XML DOM API” to
parse documents. Its input is a list of XSD files, and its out-
put is the frequency of each XML schema construct. Finally,
we have not considered XSD files with namespace, include or
import constructs, because we do not have control of them.

4. RESULTS

In this paper, we apply two strategies to evaluate the fre-
quencies in which the XSD constructs appear in the files.
The first one, called general usage (GEN), counts how many
documents (from the XSD files dataset) use each construct
at least once. This measure tells us which constructs are
more/less frequent within the set of documents. The second
one, called internal usage (INT), measures the frequency of
each construct over all constructs within each single doc-
ument. In other words, it evaluates how important certain
constructs are for each document.

4.1 General Overview

We start our evaluation by presenting a general overview of
the constructs considered in Table 1. The first column lists
the name of the construct being evaluated. The second and
third columns list the general usage on both datasets from
2005 and 2008. For example, the construct all appears in
10.55% of all XSD files collected in 2005, and in 19.82% of
those collected in 2008. Finally, the last two columns list
the internal usage from the same datasets. For example, the
construct all represents 0.36% of all constructs used within
one single document, considering the average of all 2005 files,
and in 0.49% of all 2008 files.

Note that GEN represents the frequency in which each con-
struct appears in the overall dataset. On the other hand,
INT reflects the internal structure of the XSD files, individ-
ually. Therefore, we analyze those results separetely.

3http://search.cpan.org/dist/HTML-Parser
“http://search.cpan.org/~gaas,/libwww-perl-5.800
Shttp://java.sun.com/j2se/1.5.0/docs/api/javax/xml/
validation/package-summary.html
Shttp://www.w3.org/2001/XMLSchema.xsd
"http://search.cpan.org/dist/XML-DOM

SIGMOD Record, March 2009 (Vol. 38, No. 1)

Table 1: Usage of XML Schema elements (%)

Construct GEN-05 GEN-08 INT-05 INT-08
all 10.55 19.82 0.36 0.49
annotation 59.80 81.98 8.79 10.37
any 15.07 31.53 0.08 0.33
anyAttribute 6.53 10.81 0.03 0.19
appinfo 5.53 9.91 0.08 0.09
attribute 79.40 81.08 7.89 9.34
attributeGroup 8.54 11.71 1.01 0.60
choice 46.23 42.34 0.94 0.84
complexContent 19.09 30.63 0.71 1.38
complexType 91.46 92.79 5.77 8.83
documentation 58.80 81.98 9.40 10.59
element 92.96 93.69 25.66 26.57
enumeration 56.78 72.97 19.35 8.68
extension 47.24 53.15 1.46 2.04
field 10.05 16.22 1.40 0.45
fractionDigits 2.51 3.60 0.16 0.04
group 8.04 12.61 0.47 0.55
key 7.54 9.91 0.29 0.12
keyref 5.53 7.21 0.27 0.13
length 4.52 8.11 0.02 0.04
list 5.53 7.21 0.04 0.06
maxFExclusive 2.51 4.50 0.04 0.01
maxInclusive 15.07 28.83 0.40 0.35
maxLength 11.56 20.72 0.52 0.42
minExclusive 2.51 6.31 0.27 0.03
minInclusive 17.59 32.43 0.41 0.35
minLength 11.56 20.72 0.14 0.41
notation 0.50 0.00 0.00 0.00
pattern 24.62 36.04 0.93 1.14
restriction 68.34 82.88 3.31 3.44
selector 10.05 16.22 0.89 0.42
sequence 87.94 89.19 3.50 5.79
simpleContent 36.18 37.84 0.76 0.72
simpleType 68.84 82.88 3.66 3.63
totalDigits 2.51 3.60 0.17 0.05
union 5.53 15.32 0.31 0.19
unique 5.53 13.51 0.32 0.17
whiteSpace 4.02 4.50 0.07 0.09

General Usage

We now discuss some of the most interesting results pre-
sented in the first three columns of Table 1. The constructs
that are most used are: complezType, element, sequence,
simple Type, and restriction. The least used ones are nota-
tion, totalDigits, fractionDigits, mazFEzclusive, and whiteS-
pace. There is an interesting difference between those two
sets: the former is more related to the document structure,
while the latter to the values inside the elements.

It is important to notice that there is a general increase
in the use of all constructs over the last three years. The
exceptions are the constructs choice and notation. Such an
increase appears in the most frequently used constructs and
in the least ones as well. Also, the most frequent ones (i.e.,
element, complezType, and attribute) have increased less in
relation to the others. This can indicate the stability on the
use of such constructs.

Considering the constructs that had a high increase from
2005 to 2008 (such as documentation, annotation, any, enu-

39

Table 2: Content model distribution in complex-
Type construct

Content Model | Internal Usage

| 2005 (%) 2008 (%)
Simple 13.11 13.45
Complex 86.89 86.55

meration, minlnclusive, and restriction), one possible expla-
nation would be that the users are more familiar with them
now. Also, as more tools for handling XML schemas become
available, the users start to acquire confidence in using more
complex structures as well. Moreover, as XML applications
become more specific, so do their requirements and data re-
strictions. For example, instead of using an element of type
zs:int, it may be necessary to employ a simple Type with re-
strictions in its minimum and maximum values. Particularly
expressive is the use of the construct documentation, which
occurred in 53.80% of the 2005 XSD files and in 81.92% of
the 2008 ones. This is a clear indication that XSDs are, in
general, very complex and need to be properly documented.

Another explanation for the general increasing trend would
be the cascade effect. In other words, the increase of us-
ing one construct may have affected the increasing of oth-
ers. Such a consequence is expected because, most of the
times, the constructs allow nesting. Therefore, if the use
of an external construct increases, the same will happen to
its internal constructs. For example, the constructs maxEz-
clusive, mazxInclusive, minEzxclusive, minExclusive, restric-
tion, pattern, enumeration, totalDigits, and fractionDigits
are usually associated to the construct simpleType. Hence,
simple Type contains the other constructs, such that increas-
ing the usage of simpleType will also increase the usage of
those constructs. According to Table 1, the usage of simple-
Type has grown around 20% and its associated constructs
have grown even more. Despite the general usage inscrease
of most constructs, surprinsingly, the use of key and keyref
still remains low (less than 10%). This might be an indica-
tion that, in most XML applications, user-defined keys are
still the usual design choice.

Finally, the construct notation specifies the format of non-
XML data. It was the least used one in 2005 and it does not
appear in any of the documents in 2008. As already pointed
out by van der Vlist [17], notations were very rare in real
world applications. Now, we have just shown, empirically,
that notations are not used at all.

Internal Usage

Here, we discuss some of the most interesting results pre-
sented on the last two columns of Table 1. Half of the con-
structs had their presence within XSD files decreased (while
the other half increased). One of the possible reasons is,
again, the users becoming more familiar with different con-
structs. One possible scenario is more people using differ-
ent constructs with low internal usage, which is common in
a learning phase. Since we calculate the average, the low
usage in new files may have caused the overall decreasing.
Another explanation, still related to learning, is that some

40

Table 3: Usage of constructs all, choice, sequence
and group in complex content model

Construct | Internal Usage

| 2005(%) 2008(%)
All 8.61 6.77
Choice 11.52 14.43
Sequence 79.35 75.77
Group 0.51 3.03

constructs were replaced by others to better attend the ap-
plications requirements. For example, the lower usage of
enumeration (which defines a list of possible values) may
have been influenced by the higher usage of pattern (which
defines regular expressions). Note that defining a list of
possible values seems to be easier than defining a pattern.
However, the latter is more powerful and requires more time
to be mastered, while the former can be quickly learned.

Other Considerations

The results for general and internal usages may change when
we analyze schemas of particular areas. For example, we can
expect more use of fractionDigits in commercial and scien-
tific applications. Hence, our explanations for the results
must not be taken as true for any type of file collection.

Moreover, general and internal usage represent different as-
pects of a schema collection and do not have any direct re-
lation. They also follow the 20/80 rule. Specifically, on the
general usage columns, we can see that only 20% of the con-
structs appear in more than 80% of the XSD files. Likewise,
on the internal usage columns, we find that 20% of the con-
structs represent 80% of all usage. It shows that usage of
XML Schema constructs has been highly concentrated.

4.2 Complex Constructs

As we can see from Table 1, complextType is the second
most used construct. It allows to create more sophisticated
structures, to expand basic types, to provide more flexibility,
and so on. Due to its importance and intricate structure,
we provide a detailed analysis of its components. A closer
view of other construct is left for future work.

Complex types are formed by either the simple or the com-
plex content model. Simple content defines element at-
tributes, whereas complex content describes the markup
structure. Table 2 presents the distribution of simple and
complex contents (internal usage). This table shows that
the distribution has almost not changed along the last three
years. This table also shows that a major part (more than
86%) of the complez Type models in the schema contain com-
plex contents. Therefore, we detail how those complex con-
tents are actually employed next.

Group, All, Choice, and Sequence
In order to create complex content, the following constructs
are available: all, choice, sequence, and group. Table 3

presents the usage of those constructs. The results on that
table show a small variation from 2005 to 2008. The con-

SIGMOD Record, March 2009 (Vol. 38, No. 1)

Table 4: Usage of compositors with only one child-
element

Internal Usage | General Usage

Construct |

| 2005 (%) 2008 (%) | 2005 (%) 2008 (%)
All 14.05 12.02 4.02 3.59
Choice 17.94 23.26 11.05 13.45
Sequence 42.75 48.08 77.39 77.58

Table 5: Nesting in composition constructors

Construct | Nesting

| 2005(%) 2008 (%)
Choice 8.86 5.46
Sequence 9.62 7.36

struct sequence (ordered elements) is still the most used,
followed by choice, all, and group. The increase in using
group may explain the decrease in using all and sequence.
It is important to notice that group is defined outside com-
plexContent, while the other three constructs can be embed-
ded within it, which then may justify those numbers. We
can also suppose that all and sequence were more used in
group than in choice, since Table 3 shows that the usage of
all those constructs has increased, but choice. Considering
only Table 3, we could infer wrongly that sequence and all
were being replaced by choice.

Table 4 presents the usage of compositors (all, choice, and
sequence) with only one child-element. Those constructs
define lists of elements. Hence, we could expect that a list
would have more than one element. However, in our dataset,
the reality is a little bit different. In 2005, it was common to
include an only child-element in those compositors. In 2008,
we confirmed such an interesting tendency. In the sequence
construct we can observe that the usage of an only child-
element is highly common (48% of internal usage). Perhaps
the proportion observed in here can be a consequence of the
usage found in Table 3. In many cases, we can use any of
those constructs to build the same structure with one child-
element. However, as we usually apply sequence, we tend to
use it even when it is not the only option.

Nesting

Another interesting information is the presence of nested
constructions within complex types. The usage of nesting
shows how complex the schema structure is. Table 5 presents
usage of nesting among compositors, except all which cannot
be used as a particle [17]. According to Table 5, nesting
is not really used in practice and its usage has decreased.
Table 6 shows the usage of nesting in XSD files (at least one
compositor using nesting). We can observe that most of the
files do not use nesting among compositors as well.

We believe that the reasons for results from Table 5 and 6
are twofold. First, real world applications do not demand
complex nestings. Second, users are not prepared enough to
make an elaborate use of those kinds of constructs.

SIGMOD Record, March 2009 (Vol. 38, No. 1)

Table 6: General Usage of nesting in composition
constructors

| General Usage

Type

| 2005 (%) 2008 (%)
Nesting 32.66 33.18
No nesting 67.34 66.82

Table 7: General Usage of extension and restriction
in simple and complex types

Simple Type Complex Type

Derivation |

2004 (%) 2008 (%) | 2004(%) 2008 (%)
extension 27.00 37.84 37.00 34.53
restriction 73.00 82.88 7.00 7.62

Derivation: Extension and Restriction

In 2004, a study presented in [6] compared the features from
DTDs and XSDs, with focus on expressive power. One im-
portant feature (from the point-of-view of language power) is
the derivation of new types. Both simple and complex types
may be derived by eztension and restriction. In summary,
there are four possibilities: (i) we can derive a complex type
from a simple type by extension, and then add attributes to
elements; (it) we can extend a complex type and then add
sequence of elements to its content model or add attributes;
(éi1) we can restrict a simple type and limit its acceptable
range of values; and (iv) we can restrict a complex type and
limit its acceptable range of subtrees.

That study considered 93 XSDs (collected in 2004) and it
counted within how many files those four types of deriva-
tion were defined. We measured those as well in 2008,
and Table 7 presents both results (from their study in 2004
and from ours in 2008). Note that there is an increase in
the derivation of simple types, while there is practically no
change in the derivation of complex types.

5. RELATED WORK

In this section, we present some related work divided in two
parts. First, we overview some research papers on XML
data management that depend on the information stored
on the schemas. Second, we discuss other publications that
evaluated actual schemas in use.

5.1 XML Data Management and Schemas
The management of XML data by a native or an XML-
enabled DBMS has been widely discussed. Two central
questions are how to store and how to query the data (for
example [2,4,7,9,11,15,18], just to cite a few). We can
divide those approaches into two categories: (i) those that
do not depend on schema definition, such as [9] and [11];
and (i) those that depend on schema definitions. The sec-
ond category can be further divided in those that employ
DTDs [4,15] and XSDs [2,7,18].

Our empirical evaluation can be of major value to research

and industry work similar to those aforementioned, as well
as to those on information integration [5], schema evolu-

41

tion [13], and web services [19]. We offered a snapshot, an
X-Ray, on what features are currently most and least used
in XSDs. Therefore, one can decide to invest more time on
optimizing the most frequently used constructs, leaving the
least used ones for a second moment. Furthermore, we also
show a trend in using more sophisticated constructs. Such a
trend can have a positive impact on design decisions of new
applications as well.

5.2 Actual Schemas in Use

An early study discussed how real DTDs were like [10]. Such
a study evaluated files from a DTD repository and presented
different statistics considering local and global properties,
such as syntactic complexity, ambiguity, determinism, reach-
ability, recursions, path sizes, among others. It is very sim-
ilar to our study in spirit, since it wanted to provide an
overview of currently in-use DTDs. However, ours deals
with a more complex, powerful schema definition language.

A later study compared the features from DTDs and
XSDs [6]. It considered DTDs and XSDs files from the
Web and focused on finding out which features from XML
Schema, that are not allowed in DTDs, are more used in
practice and how sophisticated the features employed (in
both languages) are in practice. The main conclusion is
that the expressive power from real world XSDs are mostly
equivalent to that of DTDs. However, note that its focus
is on expressive power, while ours is on the actual schema
structure. Hence, our study is complimentary to that one.

Also related to our work is [3], which presents a study
over features of XML documents (schema instances) from
the Web. It presented statistics on document distribution,
schema usage, document internal features, among others.
Specifically, the internal features are broken down on node
distribution, size, depth, element and attribute fan-out, and
recursion. That study focuses on the actual XML docu-
ments, while our focuses on the schema definition using
XSD. Nevertheless, our research work complements all those
aforementioned by providing an X-Ray on XSDs files.

6. CONCLUDING REMARKS

In this paper, we provided an X-Ray on the structural fea-
tures of XSD files available on the Web. We considered files
from the Web mainly because they are not specialized in a
limited set of areas (e.g., bio or math data) such as those files
found in some XSD repositories. Our evaluation showed the
most and the least frequently used XSD constructs. We also
presented an evolution on the usage of those constructs, by
considering XSD files available on the Web in March 2005
and in November 2008. From such an evolution, we would
like to emphasize three findings: (¢) there is a general in-
crease in the use of all constructs; (i¢) the construct nota-
tion has disappeared from XSDs files; and (i) the 20/80
rule, where 20% of the constructs represent more than 80%
of all internal usage, and 20% of the constructs appear in
more than 80% of all XSD files. Finally, we did not exhaus-
tively interpret our results, leaving them open for further
discussion as well. Nevertheless, our empirical evaluation
provides relevant information for developers of XML appli-
cations, tools, and algorithms in which the schema has a
distinguished role.

42

7. REFERENCES

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann, 1999.

[2] S. Amer-Yahia, F. Du, and J. Freire. A Comprehensive
Solution to the XML-to-Relational Mapping Problem.
In Procs. of WIDM, pages 31-38, 2004.

[3] D. Barbosa, L. Mignet, and P. Veltri. Studying the
XML Web: Gathering Statistics from an XML
Sample. World Wide Web Journal, 8(4):413-438, 2005.

[4] M. Benedikt, W. Fan, and F. Geerts. XPath
Satisfiability in the Presence of DTDs. In Procs. of
PODS, pages 25-36, 2005.

[5] P. A. Bernstein and L. M. Haas. Information
Integration in the Enterprise. Commun. ACM,
51(9):72-79, 2008.

[6] G. J. Bex, F. Neven, and J. V. den Bussche. DTDs
versus XML Schema: A Practical Study. In Procs. of
WebDB, pages 79-84, 2004.

[7] P. Bohannon et al. From XML Schema to Relations:
A Cost-Based Approach to XML Storage. In Procs. of
ICDE, pages 64-75, 2002.

[8] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and
E. M. F. Yergeau. Extensible Markup Language
(XML) 1.0. W3C, 5th edition, November 2008.
http://www.w3.org/TR/REC-xml/.

[9] D. Che, K. Aberer, and T. Ozsu. Query Optimization
in XML Structured-Document Databases. The VLDB
Journal, 15(3):263-289, 2006.

[10] B. Choi. What are real DTDs like? In Procs. of
WebDB, pages 43-48, 2002.

[11] D. Florescu and D. Kossmann. Storing and Querying
XML Data using an RDMBS. IEEE Data Eng. Bull.,
22(3):27-34, 1999.

[12] D. Lee and W. W. Chu. Comparative Analysis of Six
XML Schema Languages. SIGMOD Record,
29(3):76-87, 2000.

[13] M. M. Moro, S. Malaika, and L. Lim. Preserving XML
Queries during Schema Evolution. In Procs. of WWW,
pages 1341-1342, 2007.

[14] S. Nestorov, S. Abiteboul, and R. Motwani. Infering
Structure in Semistructured Data. SIGMOD Record,
26(4):39-43, 1997.

[15] J. Shanmugasundaram et al. Relational Databases for
Querying XML Documents: Limitations and
Opportunities. In Procs. of VLDB, pages 302-314,
1999.

[16] H. S. Thompson et al. XML Schema Part 1:
Structures. W3C, 2nd edition, October 2004.
http://www.w3.org/TR/xmlschema-1/.

[17] E. van der Vlist. XML Schema. O’Reilly and
Associates, 1st edition, June 2002.

(18] I. Varlamis and M. Vazirgiannis. Bridging
XML-schema and relational databases. A system for
generating and manipulating relational databases
using valid XML documents. In Procs. of ACM
DocEng, pages 105-114, 2001.

[19] Q. Yu et al. Deploying and Managing Web Services:
Issues, Solutions, and Directions. The VLDB Journal,
17(3):537-572, 2008.

SIGMOD Record, March 2009 (Vol. 38, No. 1)

