
Purple SOX Extraction Management System

Philip Bohannon[, Srujana Merugu[, Cong Yu[, Vipul Agarwal[,
Pedro DeRose\, Arun Iyer[, Ankur Jain[, Vinay Kakade[,

Mridul Muralidharan[, Raghu Ramakrishnan[, Warren Shen\

[Yahoo! Research \University of Wisconsin Madison
plb@yahoo-inc.com

ABSTRACT
We describe the Purple SOX (PSOX) EMS, a prototype
Extraction Management System currently being built at
Yahoo!. The goal of the PSOX EMS is to manage a large
number of sophisticated extraction pipelines across dif-
ferent application domains, at the web scale and with
minimum human involvement. Three key value propo-
sitions are described: extensibility, the ability to swap in
and out extraction operators; explainability, the ability
to track the provenance of extraction results; and social
feedback support, the facility for gathering and recon-
ciling multiple, potentially conflicting sources.

1. INTRODUCTION
Most documents, including electronic documents such

as web pages or emails, are created for human consump-
tion. Nevertheless, significant value may be added by
processing these documents computationally to extract
entities and/or structured data. For example, it may be
useful to a financial services firm to analyze news sto-
ries for rumors of corporate takeovers, or to a consumer
to determine the price at which an item of interest is be-
ing offered for sale on a particular vendor’s web page.
These tasks (and many others) are examples of Informa-
tion Extraction (IE) (see, e.g. [11]). While techniques
for IE have steadily improved, the dramatic growth of
the Web strongly motivates continued innovation in this
area. For example, a variety of popular Internet por-
tals are based on structured information, some or all of
which is automatically extracted from other web pages.
Examples include ZoomInfo, OpenClinical, and Cite-
seer, which deal with professional, medical and biblio-
graphic information respectively.

Purple SOX (Socially Oriented eXtraction) is an in-
formation extraction project at Yahoo! Research with
two key goals. First, PSOX should develop extraction
operators capable of working well on a semantic do-
main even across sites that format that information dif-
ferently. Second, PSOX should develop an Extraction

.

Management System, “PSOX EMS”, that supports rapid
development and large-scale deployment of on informa-
tion extraction operators and pipelines, and the ability
to accept and effectively manage intermittent and noisy
“social” feedback on the quality of extracted data. The
current prototype of the PSOX EMS is described in this
paper.

The need to effectively manage information extrac-
tion has been recently discussed [7, 5]. The job of any
information Extraction Management System (EMS) is
to support the execution of the many component extrac-
tion operators—classifiers, sectioners, language analyz-
ers, wrapper generators, etc.—as they operate on a vari-
ety of documents. In the examples mentioned above,
these documents are snapshots of web pages crawled
from the web.

PSOX EMS provides three key benefits: extensibility,
explainability and support for social feedback. Extensi-
bility means that it should be easy to add a new operator
by adapting the input and output signature of an exist-
ing operator, and to quickly prototype the use of this
operator in an information extraction pipeline with easy
perusal of the results. The key enabler of extensibility
is a declarative infrastructure for information extraction
“operators.” As new operators are added by humans,
or trained from minimum-supervision transfer-learning
techniques, a new facility becomes important: the abil-
ity to explain extraction results. Explanation allows the
user to ask questions about extracted results, much as
the questions asked by users of scientific data manage-
ment systems (e.g. [4]). For example, a user looking
at an extracted bibliographic record might ask how the
information was produced and what other information
was produced in the same way. A key application of
such questions is operator debugging: by tracing back
the chain of inferences that led to an extracted datum,
the extraction designer can more easily and quickly lo-
calize problems to the operators or data sources at fault.
Finally, PSOX EMS supports the light-weight gathering
of social feedback on the quality of extracted results,
and combining this feedback with the explanation ca-
pabilities to develop quality profiles of different opera-

SIGMOD Record, December 2008 (Vol. 37, No. 4) 21

NER1
4

NERTrainer
2

 NERabc Impl

NER1
1

Tidy + Split
0

Corpus A

Corpus A+B - abc.edu

PersonExtract
5

Corpus B

Part B

NERabc
3

X "ZZZ
name

X "ZZZ
name

Figure 1: Academic Homepage Extraction

tors and of the feedback itself. This final capability is
critical for large scale information extraction, as only
low-supervision techniques can scale, and feedback af-
ter extraction will naturally be required as supervision
before is decreased.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce our running example. Section 3
describes the operator model, which supports the exten-
sibility. The provenance model for explainability is dis-
cussed in Section 4, while the scoring model for social
feedback is described in Section 5. Finally, we discuss
related work and conclude in Sections 6 and 7.

2. MOTIVATING EXAMPLE
In this section, we introduce a motivating example of

an information extraction pipeline.

EXAMPLE 1. In Figure 1, an example execution of a
hypothetical pipeline for extraction from academic home
pages on a site abc.edu is shown. First, a set of down-
loaded web pages, “Corpus A+B” from a fictional aca-
demic website, abc.edu, is crawled and tidied (to cre-
ate well-formed HTML). The corpus is then split into
two sets: a small set “A” for training and set “B” for
prediction. Next a “named entity recognition” opera-
tor, NER1 is used to label parts of the corpus as enti-
ties like “Person Name” or “School Name”. Designed
to work across different sites, NER1 is tuned for high
precision but perhaps low recall. NERtrainer uses the
output of NER1 “Mark A” to create the operator NER-
abc. The idea of NERtrainer is to adapt to features
of site abc.edu and thus potentially allow NERabc to
do better than NER1. However, since it is trained by

NER1’s output rather than human annotated examples,
it may end up amplifying some errors in NER1 and in
fact do worse - a situation typical of low-supervision
techniques for information extraction. Both operators,
NER1 and NERabc are then applied to the rest of the
corpus (set B). Finally, a PersonExtractor operator ac-
cumulates evidence from the predictions of NER1 and
NERabc to identify person entities, educational institu-
tions, and the relevant relationships.

Figure 2 illustrates part of a data instance in the PSOX
data model that might result from the plan execution
shown in Figure 1. This data instance is a graph with
score annotations on the edges. The model is similar
to RDF [9], but we use a slightly different terminology
- “entity” rather than “resource” and “relationship” in-
stead of “statement”. Other features of our system that
further distinguish it from most triple stores, such as
support for provenance and uncertain information, are
discussed below.

EXAMPLE 2. There are four major entities (E1-E4,
circles) in our example. E1 and E2 represent system en-
tities: E1 represents a snapshot of a web page, as indi-
cated by its type relationship, which targets the atomic
entity “WebPageSnapshot”. (We use round rectangles to
represent atomic entities.) E2 represents the web page
itself, and has a url that may change over time. Intu-
itively, E1 and E2 participate in the snapshot-of rela-
tionship. These entities and relationships would result
from the Tidy operator in Figure 1.

On the right of the figure, E3 and E4 represent se-
mantic entities: E3 is a school while E4 is a person
with position “Professor” at that school. While all rela-
tionships (arrows) can be mapped into entities and thus
be the source or target of other relationships, only two
such situations are shown in Figure 2, the name rela-
tionship (E5) between E4 and the atomic “Lisa S. Mar-
tasyou" and the position relationship (E6) between E4
and the atomic “Professor”. The mentions relation-
ships, which connect E1 and E5/E6, illustrate the cases
where a relationship itself is involved in another rela-
tionship (similar to a reified statement in RDF). Finally,
every relationship has a score associated with it, but
only two scores are shown: 0.8 on the name of the per-
son and 0.95 on the name of the school). The topic of
how scores are arrived at and what they mean is dis-
cussed in detail in Section 5.

One important point is that the “type” relationship in
Figure 2 is treated as a normal relationship in terms of
having a score, but also represents the type of the object.
Having such a “soft type” is critical in information ex-
traction as types in practice are associated with objects
by some form of classifier, and thus may be subject to
error just like any other attribute.

22 SIGMOD Record, December 2008 (Vol. 37, No. 4)

1

"WebPageSnapshot"

date

snapshot
-of2

"5/12/2008 4:20pm"

u
rl

"http://abc.edu/faculty.html"

4

type

"WebPage"

type "Faculty Member"

type

"Lisa S. Martasyou"

mentions

position

"Professor"

3

worksAt

5

"State Univ"

typename

"Pixel Polytechnic"

.8

.95

c
o
n
te
n
ts

"file://abcedu_fac.html" "Person"

ty
pe

"School"

type

name

6

men
tions

Figure 2: PSOX Data Model Example

3. OPERATORS AND EXTENSIBILITY
The extensibility of PSOX derives from a policy of

declaratively specifying operators. In this section, we
introduce the modeling of extraction operators at logical
and physical levels. It is worth noting that operators are
themselves represented within the PSOX data model.

Operators correspond to basic units of functionalities
(e.g., page classification) and are defined at both a logi-
cal and physical level. At the logical level, an operator
specifies the information it needs from the data instance
and the information it produces for populating the data
instance. As such, it is defined by an operator specifi-
cation, consisting of the input it consumes and the out-
put it produces, where the input is a collection of re-
trieval queries and the output is a collection of assertion
queries. At the physical level, an operator is further de-
fined by the executables, the associated arguments, the
actual input and output files locations, and the necessary
environment variables comprising the operator imple-
mentation.

A key assumption of PSOX, the black box assump-
tion, is that the system should not need much visibility
into how an operator works. At the logical level, this
implies that scores from operators may not be compara-
ble. At the physical level, this implies that we offer a
language-neutral model of operators as independent ex-
ecutables. Compared to other extraction pipelines, this
emphasizes flexibility, similar to Cimple [6] more than
performance on single documents, as in UIMA [8].

Given the separation between the logical and physical
levels, specific operator implementations can be easily
swapped into and out of the extraction pipeline without
affecting the rest of the system, as long as the logical
specification is fixed. Consequently, operators written
by third parties can be seamlessly leveraged inside the
PSOX system.

3.1 Operator Specification
EXAMPLE 3. We illustrate in Figure 3 a simple oper-

ator specification. Intuitively, it takes input from PSOX
as specified by the input relation (i.e. retrieval query)
WebPages, generates output in the format as specified
by the output relation Faculty, and asserts information

back into PSOX according to the output assertion (i.e.,
assertion query) FacultyAssertion.

Input Specifications : The first component of an op-
erator specification is the input specification, comprised
of a set of named retrieval queries. While the results
of a retrieval query are the output from the PSOX data
instance, they serve as the input to the operator. Seman-
tically, before the operator executes, a set of files are
materialized, each containing the results of one retrieval
query in the operator’s input spec. Note that for per-
formance, the input query may not always be executed:
for example, if an output file of a previous operator is
known to be semantically equivalent to the input relation
of the next operator. We now describe retrieval queries.

A PSOX retrieval query rq is a relatively straightfor-
ward language for querying data graphs. More formally,
each query a 4-tuple (name,V, ICols,CE), where name
is the name of the query, V is the set of entity or score
variables, ICols is the set of variables (ICols ∈ V) whose
values are to be retrieved from the PSOX data instance,
and CE is a constraint expression, which is recursively
defined as CE = c|(CE′ and CE′′)|(CE′ or CE′′)| (not
CE′), where c ∈ C and CE′ and CE′′ are themselves
constraint expressions. The satisfaction of a constraint
expression follows the typical logic rules. For example,
a constraint expression (ce1 and ce2) is satisfied if both
ce1 and ce2 are satisfied. The answer to the query is the
set of tuples T . Each t ∈ T is a set of value assignments
to ICol, and there exists a set of value assignments o to
variables (V′ = V− ICol) such that CE is satisfied given
t and o.

In our example operator spec, we have the retrieval
query, “WebPages”, whose SELECT clause contains the
three variables in ICols, and whose WHERE clause de-
scribes the CE. Intuitively, this operator asks for snap-
shots of web pages with URLs matching the pattern “fac-
ulty”.

Output Specifications : The goal of the output spec-
ification is similar to the goal of an “ETL” script—it
specifies the relationship between an operator’s output
(and it’s input) and new data that should be added to the
PSOX data instance as a set of assertions. Note that the
“new data” can include new assertions on existing rela-

SIGMOD Record, December 2008 (Vol. 37, No. 4) 23

OPERATOR ExtractFaculty

INPUT RELATION WebPages AS
SELECT X, X.url, Y.contentPointer
WHERE X.type = “WebPage” and Y.type = “WebPageSnapshot”

and IsSnapShotOf(X, Y, s2) and X.url like “faculty”

OUTPUT RELATION Faculty
(conf, name, nameConf, pos, posConf, page)

OUTPUT ASSERTION FacultyAssertion AS
FROM Faculty(c, n, nc, p, pc, g)

WHERE p = “professor”
ON ENTITIES X = f(n,g)
ASSERT type(X, “Faculty Member”, c)

and name(X, n, nc) and position(X, p, pc)

Figure 3: Example Operator Spec

tionships, so it may be that no new entities or attribute
values are added.

An output specification contains two parts, a set of
output relation specifications and a set of assertion queries.
The output relation specifications simply describes the
schema of a particular output file produced by the oper-
ator. Our example operator produces the relation “Fac-
ulty”, which contains a list of flat tuples for extracted
faculty members with attributes corresponding to: over-
all confidence about the tuple (conf), name of the faculty
and confidence about the name (n, nc), position of the
faculty and confidence about the position (p, pc), and
where the information is extracted from (page).

Assertion queries describe how to assert the extracted
information from the operator back into the PSOX data
instance. They are defined in a similar way to retrieval
queries, with the addition of assertion constraints, which
are 4-tuples corresponding to new relationships being
added to the data instance. In our example, the assertion
query “FacultyAssertion” asserts type, name, position
relationships for each extracted faculty member with a
position “professor”.

Basic de-duplication: The variables in the ON EN-
TITIES clause (e.g., X) guide the creation of new enti-
ties, and the optional function following allows “single-
operator” deduping. The problem is that pages may
include many mentions of the same entity (e.g. bibli-
ography pages), and it may be prohibitively expensive
to create dozens or hundreds of entities only to subse-
quently combine them in a deduping step. In this exam-
ple, we use “f(n,g)” to indicate that only one new entity
X should be created for each unique (name,webpage)
pair. A second mechanism allows “key functions” as-
sociated with each type. Unlike relational keys that pre-
vent inserts, these functions ensure dedupping across ex-
traction events. (Note that this does not replace entity
resolution, and is only used when equality of entities is
certain.)

3.2 Operator Implementations

IMPLEMENTATION SVMExtractor
IMPLEMENTS ExtractFaculty

RUNNING Python PROGRAM
EXTERNAL AT “/usr/bin//extractors/svm-faculty.py”
WORKING IN “/data/faculty”

INPUT FILE “pages.txt” AS WebPages
OUTPUT FILE “faculty.txt” AS Faculties

Figure 4: Example Operator Spec

Figure 4 illustrates an example operator implementa-
tion of our ExtractFaculty operator. As mentioned be-
fore, operator implementation describes the details of
how the operator should be invoked. Here, it is a python
program that should be executed within the directory
“/data/faculty”, and that it takes input file “pages.txt”
(which corresponds to the input relation WebPages) and
produces output file “faculty.txt” (which corresponds to
the output relation Faculties).

Operator training: As mentioned before, PSOX main-
tains operators (both specification and implementations)
as part of the data instance. As a result, an operator can
assert a new operator into the data instance just like it
can assert a new regular relationship. This feature al-
lows the modeling of training operators, which can be
considered as higher order operators that produce other
operators (e.g., a classifier trainer operator can take train-
ing data and produce a classifier operator, which can
then classify web pages). Often, this simply involves
inserting a new operator implementation satisfying an
existing operator specification.

4. PROVENANCE MODEL AND
EXPLAINABILITY

In this section, we describe the way execution traces
are represented in the data model.

4.1 Execution Model
Plan: Composing multiple operators together gives

us a PSOX plan. Similar to the operators, plans are
defined at both the logical level - as a DAG of opera-
tor specifications - and at the physical level - as a DAG
of operator implementations. Currently the choice of
physical operators for each spec is up to the user, but the
architecture is designed to support both plan generation
(i.e., how to produce a plan with a simple task specifi-
cation like “find persons and institutions on abc.edu”)
and plan optimization (i.e., how to select the right op-
erator for each step to maximize extraction quality and
minimize extraction cost – see, e.g., [10]).

Execution : Extraction results are produced through
the execution of an extraction plan, which in turn con-
sists of executions of each individual operators in the
plan. Formally, a unique execution x of an operator im-
plementation, o, represents a (successful) run of phys-
ical plan step sP where opImpl (sP) = o. For each

24 SIGMOD Record, December 2008 (Vol. 37, No. 4)

execution, PSOX keeps track of the operator responsi-
ble for the execution, time of the execution, environment
of the execution. For each execution result (i.e., an en-
tity or relationship being asserted into the data instance),
PSOX maintains the entities and relationships that lead
to its generation. There are also many open research
challenges. For example, optimizing plan re-execution
(i.e., re-executing a plan that has been executed before)
and asynchronous plan execution (i.e., separating the as-
sertion of execution results from the plan execution to
maximize throughput).

Assertion : In a data model instance I that conforms
to an extraction schema, every relationship is either an
axiomatic relation generated by the system or is the re-
sult of an assertion from at least one execution event. We
define an assertion as a special type of relationship that
has as its source an execution event and as target a rela-
tionship that is itself not an assertion. In Figure 5, the
three blue arrows each indicate an assertion relationship
from the operators NER1, NERabc and user Joe to the
target relationship 5 (name).

The supporting evidence used by the operator in mak-
ing the assertion is captured via basis relationships, which
are defined as relationships with the evidence assertion
(generated by the system or other operators) as the source
and the inferred assertion as the target. For example, in
Figure 5, each of the three red arrows from the system
assertion associated with relationship 7 (contents) to
the assertions (blue arrows) made by the different oper-
ators are examples of a basis relationship, i.e., the page
contents support the operators’ assertions. The notion
of basis relationships captures the dependence between
the output and input of an operator execution. However,
we do not explicitly model the dependence between the
output assertions of a single operator execution. The
underlying assumption is that the output assertions are
conditionally independent of each other given their re-
spective basis assertions. This assumption is critical for
tractable storage and computation, but could result in
loss of information when the assumption is violated, for
example in the case of collective prediction tasks.

Mention : The mentions relationship is another spe-
cial type of relationship for supporting provenance and
captures the fact that the contents of a text artifact sup-
port a relationship. Specifically, a virtual mentions rela-
tionship m from e to r2 is supported by the PSOX query
executor whenever there is an assertion a and the basis
b of a, such that src(b) = e, label(b) =′ contents′′ and
tgt(a) = r2. Figure 2 shows example of a mentions
relationship between 1 and relationship 5 (name).

4.2 Lineage
The existence of basis relationships enables us to read-

ily obtain forward or backward lineage for any assertion
in the data instance. Let Asrt denote the set of all as-
sertions in the data instance I and P(Asrt) its power

set. We define the functions Basis : Asrt 7→ P(Rel)
and Cons : Asrt 7→ P(Rel) (Consequence) as map-
pings from an assertion to all the supporting assertions
and all the assertions that depend on it respectively, i.e.,
∀r ∈ Asrt,

Basis(r) = {r′|∃(r′, r, ”basis”) ∈ Rel}

Cons(r) = {r′|∃(r, r′, ”basis”) ∈ Rel} ∀r ∈ Asrt.

Given the causal nature of the assertions, the data in-
stance restricted to only "basis" relationships turns out
be an directed acyclic graph. Let Basis∗(r) and Cons∗(r)
be the transitive closure of Basis and Cons respec-
tively.

In Figure 5, the subgraph restricted to red edges clearly
shows the backward lineage of the operator relOp’s as-
sertion on the worksAt relationship between 4 and 3,
i.e., it depends on the fact that the names of person 4 and
organization 3, which in turn were extracted by other
NER operators are mentioned in close proximity in web
page 1. Similarly, one can also identify all the assertions
inferred from the contents of web page 1 by consider-
ing the forward lineage of relationship 7 (contents).
Maintaining this lineage is essential for credit assign-
ment along the pipeline, identifying erroneous opera-
tors and data, and timely reruns of operators to ensure
high quality extraction. For example, if a new asser-
tion substantially lowers the score of a relationship r
as discussed in the next section, then relationships in
Cons∗(r) might need their scores re-evaluated, and op-
erators that input these relationships might need to be
re-run.

5. SCORING AND SOCIAL FEEDBACK
In this section, we discuss how scores on assertions

and relationships are computed and updated, and out-
line the process of belief revision in the face of changing
scores.

5.1 Assertion and Relationship Scores
Each assertion in the data instance is associated with a

score, which can be interpreted as a function of the oper-
ator’s estimated probability that the target relationship is
true given the basis assertions. In case of axiomatic tar-
get relationships, there is no uncertainty and the asser-
tion either supports or does not support the relationship.
We choose to interpret the score as a function of proba-
bility rather than the probability value itself in order to
accommodate a wide variety of execution scenarios that
are common in a realistic extraction pipeline. A prime
example is one where the operator implicitly assumes
extra conditions (e.g., training and test data have identi-
cal distributions or restriction to a subset of all possible
outcomes) so that the scores do not exactly correspond
to conditional probability given the basis assertions. An-
other important scenario involves operators that output

SIGMOD Record, December 2008 (Vol. 37, No. 4) 25

3

"Pixel Polytechnic"

.8

name type

"School"

4

"Lisa S. Martasyou"

.8

name
worksAt

relOp0

ass
erts

: .9

type

"Org"

.7

.5

.8

NER19

NERabc8

Joe

1

c
o
n
te
n
ts

"file://abcedu_fac.html"

5

asserts: 4.5

asserts: .
9

ass
erts

: .9
6

7

Figure 5: Provenance and Chained Inference Example
scores that cannot be readily interpreted as conditional
probabilities over outcomes, e.g., SVM classifiers and
margin-based predictors. Thus, the interpretation of the
assertion score could vary depending on the operators
as well as the nature of the target relation and the asso-
ciated tasks (e.g., collection of text artifacts, classifica-
tion and segmentation of text, record assembly, dedup-
ing, etc.)

Assertions by the system (or system reconciler to be
exact) constitute an important subset of all assertions.
In fact, each non-assertion relationship is the target of
at least one system generated assertion. Furthermore,
the score of a non-assertion relationship r is defined as
the score of the most recent system assertion associated
with r. For this special class of assertions, the scores
can be interpreted as the probability that a relationship
is true given the schema constraints and various system-
specific assumptions.

Figure 5 shows this distinction between the three as-
sertion scores on the blue arrows and the relationship
(system) assertion score (0.8) on the green arrow cor-
responding to the relationship (names,4,“Lisa S. Marta-
syou”) . Operator NER1 might return margins and the
assertion score (4.5) cannot be viewed as a probability
value, but the system adjusts for abthese variations to
assign a probability of 0.8 to the target relationship.

5.2 Scoring and Social Feedback
Scoring each relationship in the data instance is a criti-

cal component of an extraction management system and
requires taking into account the following key issues:

Varied Operator Behavior. In the real-world, ex-
traction pipelines frequently involve operators with vary-
ing bias, scale and confidence levels, and often provide
conflicting assertions. For instance, in figure 5, we have
two automated operators (NER1, NERabc) and a user
Joe providing different scores for the same target re-
lationship (names,4,”Lisa S. Martasyou”). Hence, it is
imperative to adjust for these variations in operator as-
sertion scores by monitoring how these correlate with
the "true" probability scores.

Social Feedback. Incorporating feedback from non-
editorial human users enables one to rapidly obtain large
amounts of training data as well as naturally scale up
extraction process across various application domains.
In PSOX, these human users (e.g. Joe in Figure 5) are
modeled as operators with fairly general I/O spec based
on their data access and editorial privileges. Compared
to automated operators, human users have expertise in a
large number of heterogeneous domains (e.g., text clas-
sification, segmentation, entity deduping, etc.). Further,
the feedback is often incomplete and corresponds to a
biased sample. Anonymity on the Internet also creates
additional challenges by allowing malicious behavior and
collusion among users.

Schema Constraints. Since the relationship scores
are conditioned on the specified extraction schema, it
is also critical to ensure that there are no violations of
the schema constraints pertaining to typing, inheritance,
relationship cardinality, mutual exclusion, etc. These
constraints in general translate to linear equalities and
inequalities over the relationship scores that determine
a feasible region. For instance, in figure 5, the proba-
bility of entity 3 being a school is less than that of it
being an organization, i.e., Score(type, 3,′′ school′′) <
Score(type, 3, ′′organization′′) since school is a sub-
type of organization.

Oracular Assumptions. Calibration of operator and
human assertion scores requires making certain "oracu-
lar" assumptions about how they correlate to the "true"
probabilities of the relationships. Such assumptions could
take the form of knowledge of "true" probabilities on
limited number of relationships or a functional mapping
from the assertion scores to the "true" probabilities for a
small set of operators.

Bayesian Solution. To address this problem, we
adopt a Bayesian approach that relies on modeling the
process of generating the assertion scores as a stochas-
tic transformation of the unknown "true" probabilities
of the relationships. The key idea is to use all the avail-
able operator assertions, oracular information as well as
the schema constraints to estimate the most likely para-

26 SIGMOD Record, December 2008 (Vol. 37, No. 4)

metric model for the operator (user) behavior. The in-
terpretation of the operator specific parameters depends
heavily on the nature of assertion scores and the allowed
class of transformations. For example, in Figure 5 the
parameters could correspond to a linear scaling of the
relationship probabilities, for example, (9, 1, 0.9) for
the operators NER1, NERabc and Joe respectively and
the final score 0.8 assigned to (names,4,”Lisa S.”) is ob-
tained by appropriate adjustment of the assertion scores
of these operators, i.e., 0.8 = (1/3)× (4.5/9 + 0.9/1 +
0.9/0.9). In general, the parameters need not be specific
to individual operators, but relate to observed character-
istics of the operators, such as training dataset, and of
the target relationships, for example, gender/profession
of a person.

6. RELATED WORK
Our effort is closely related to several extraction man-

agement system projects. The first notable one is the
Cimple project [6] at Wisconsin. Cimple aims to build
an EMS as part of a larger community building platform,
with a focus on developing declarative information ex-
traction language and optimization techniques [10] and
handling evolving data [3]. PSOX seeks to comple-
ment the capabilities of Cimple, adding further support
for low-supervision extraction on a wide variety of do-
mains, and with an emphasis on explainability and so-
cial feedback. Another closely related project is GATE
[5], which provides both an architecture and a frame-
work for natural language engineering. GATE employs
a document-centric model where extracted entities are
inherently associated with the documents they come from.
In contrast, PSOX employs the entity-centric model, where
documents and entities are both first class citizens in the
model and the entities can be used and reasoned inde-
pendent of the documents they are coming from. Simi-
lar to GATE, the UIMA project [8] at IBM provides an
even richer framework for information extraction and its
integration into various product platforms (e.g., Web-
Sphere). While UIMA moves one step away from the
document-centric model by allowing entities to be main-
tained independently from documents, it does not em-
phasize much on the after-extraction processing of those
entities. In contrast, support for after-extraction entity
processing like entity reconciliation is an integral part
of the PSOX platform.

Scientific Data Management [1] is an active research
area that is closely related to the PSOX effort regard-
ing the plan execution model, which consists of individ-
ual operators. Efficiently and effectively tracking prove-
nance for complex data manipulation systems (e.g., sci-
entific data management systems) has also been receiv-
ing steady attention for quite some time [4, 2]. PSOX
seeks to apply progress in this area to information ex-
traction.

7. CONCLUSION
We have presented the fundamental architectural and

modeling decisions of the Purple SOX (PSOX) Extrac-
tion Management System. We emphasized three desired
characteristics of PSOX: extensibility, which is supported
by the flexible operator model; explainability, which is
accomplished through an extensive provenance model,
and support for social feedback, which is achieved through
an effective scoring model.

Acknowledgments We thank Michael Benedikt for sev-
eral discussions on the data and scoring model. We
thank AnHai Doan, Mani Abrol, Krishna Chitrapura,
Keerthi Selvaraj, Minos Garorfalakis, Nilesh Dalvi, Ash-
win Machanavajjhala, Arup Choudhury, Prakash Ramanan
and Alok Kirpal for helpful discussions on various as-
pects of the system architecture.

8. REFERENCES
[1] Ilkay Altintas et al. Introduction to scientific

workflow management and the Kepler system. In
SC, 2006.

[2] A. Chapman, H. V. Jagadish, and P. Ramanan.
Efficient provenance storage. In SIGMOD, 2008.

[3] F. Chen, A. Doan, J. Yang, and R. Ramakrishnan.
Efficient information extraction over evolving text
data. In ICDE, 2008.

[4] S. Cohen, S. Boulakia, and S. Davidson. Towards
a model of provenance and user views in scientific
workflows. In DILS, 2006.

[5] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A framework and graphical
development environment for robust NLP tools
and applications. In ACL, 2002.

[6] P. DeRose, W. Shen, F. Chen, A. Doan, and
R. Ramakrishnan. Building structured web
community portals: A top-down, compositional,
and incremental approach. In VLDB, 2007.

[7] A. Doan, R. Ramakrishnan, and S. Vaithyanathan.
Managing information extraction: state of the art
and research directions. In SIGMOD, 2006.

[8] D. Ferrucci and A. Lally. UIMA: an architectural
approach to unstructured information processing
in the corporate research environment. Natural
Language Engineering, 10(3-4):327–348, 2004.

[9] F. Manola and E. Miller. RDF Primer W3C
Recommendation, 2004.

[10] W. Shen, A. Doan, J. Naughton, and
R. Ramakrishnan. Declarative information
extraction using datalog with embedded extraction
predicates. In VLDB, 2007.

[11] J. Turmo, A. Ageno, and N. Català. Adaptive
information extraction. ACM Comput. Surv.,
38(2):4, 2006.

SIGMOD Record, December 2008 (Vol. 37, No. 4) 27

