Jim Gray’s Tandem Contributions

John Nauman

john@johnnauman.com

ABSTRACT

This paper discusses the contributions and accomplishments of
Jim Gray while he was at Tandem Computers between 1980 and
the early 1990s.

1. INTRODUCTION

In 1980, the year that Jim joined Tandem, the world was a
different place. Ronald Reagan was elected President. John
Lennon was shot in New York. Smallpox was eradicated. The
Best Picture Academy Award went to “Ordinary People”. The
Grammy for Best song went to The Doobie Brothers for "What a
Fool Believes". The New York Times number one hardback
fiction work was Sophie's Choice. In the computer industry
Microsoft approached IBM to develop BASIC for its personal
computer product - the IBM PC. Xerox, Digital Equipment, and
Intel jointly announce the Ethernet network specification. The
U.S. led in IC production with 72% market share, Japan had 16%,
Europe had 6% and the rest of the world produced 6%. For the
first time, the total number of computers in the U.S. exceeded one
million units.

It was a long time ago, but many of the things that were industry
issues were also critical to the development of the world we know
today: the notion of independent benchmarks to allow customers
to determine the system which best fit their needs; the concept of
transactions as atomic units of work which either happen or don’t;
the need for a more robust and functional way to access data; an
understanding of why computers fail and what can be done about
it; the concept of decentralization/scalability and how it can
actually be realized. Jim was intimately involved in each of these
during his time at Tandem and his technical insights and
contributions will be explored. But Jim was also a member of the
Tandem community and as such was influenced by, and had a
significant influence on, the company’s culture and products.

2. GETTING TO TANDEM

When Jim joined Tandem, in 1980, it was about a $100M
company with an unusual (and somewhat prescient) culture which
has been adopted and adapted by many startup companies since. It
was energetic, driven, had good, often unique, ideas and
approaches and above all, from Jim’s perspective, smart people.

The Tandem product consisted of hardware and software that
worked in concert to provide the first real commercial example of
fault-tolerant computing. Called the NonStop I, it consisted of
independent, proprietary processors that communicated over a
high-speed bus - allowing a primary process running in one
processor to regularly report its status to a backup process in an
independent processor. The underlying operating system

SIGMOD Record, June 2008 (Vol. 37, No. 2)

Wendy Bartlett
Hewlett-Packard
19333 Vallco Parkway
Cupertino, CA 95014
+1 408-285-6262
wendy.bartlett@hp.com

(Guardian) was built using these capabilities to allow recovery
from errors at the system level. The I/O system included parallel,
independent I/O controllers and software processes which used
the same process-pair mechanism to ensure I/O was
accomplished. In the event of the failure of a process or processor
the backup would take over and complete the task. The product
included a basic programming language (Tandem Application
Language (TAL)), COBOL, a data management system
(ENCOMPASS) which included data access (ENSCRIBE) and
query (ENFORM) capabilities, as well as a high level
terminal/screen interface, Screen COBOL (SCOBOL).

3. JIM’S TENURE

During Jim’s time at Tandem the system and software evolved
significantly, frequently because of Jim’s influence. But anyone
who knew Jim - before, during or after Tandem - will realize that
his influence extended far beyond the area of technical
contribution. Jim worked to refine and expand Tandem as a
company as well as its products. This could be most readily seen
in his interactions with customers and with the sales force. To
ensure he made the best impression on prospective Tandem
clients, Jim kept a suit hanging on the back of his office door. If
someone needed a technical spokesperson to address a customer’s
concerns, Jim could transform himself from a dressed-down
engineer/architect to a super-product-manager in a matter of
minutes. In this role, he helped many Tandem customers and
prospects understand where Tandem was headed and why.

During Jim’s time at Tandem the product line was continuously
and impressively extended. On the hardware side the company
went through several processor and /O generations. While Jim
was not involved in the direct design of these products he played a
key role as a sounding board and also provided input on how this
evolution would impact the software products. On the software
front, Jim had much more direct involvement. He worked to
define and realize the Transaction Management Facility (TMF),
guaranteeing consistent transactions. Jim was also involved in the
production of ENABLE - a high level software product which
generated fault tolerant applications - producing everything from
the user screen interface to the application logic to the database
access. Jim was integrally involved in the development of
NonStop SQL, a version SQL which significantly enhanced ease
of database access and guaranteed fault tolerance in the
transaction environment.

Jim had an ongoing interest in tools that make (accurate) data
readily available for use. This interest benefited not only
Tandem’s customers but also Tandem’s employees — one of Jim’s
first creations was TELE, an internal program that made the
employee database accessible to everyone at Tandem. In addition

41

to displaying employee phone numbers and org charts, if you
knew the right incantation then TELE would display additional
interesting items such as employee job codes.

While Jim was an active participant in most of the software
products developed by Tandem during his tenure, his major
influence was felt in his ability to attract smart and highly-
motivated people to work on these projects. No one who worked
with Jim on any project at Tandem will forget the excitement and
innovation he brought to the work that was going on.

During his tenure at Tandem Jim changed from a superb architect
and software engineer to someone who also understood the
development process, the requirement to listen, comprehend, and
respond to customer requirements, and how to help to make a
business successful.

In addition to his development work at Tandem, Jim found
important “problem” areas of computing and published papers
that broke ground or expanded the understanding in many ways.
Jim’s Tandem legacy includes an array of technical reports on a
wide range of topics.

4. TRANSACTION PERFORMANCE

Probably the most visible area that Jim contributed to was that of
measuring the performance of the transaction processing systems
of the day. This actually began during Jim’s work at IBM (on the
Future System (FS) and DB2 projects) when performance was
discussed in terms of Sort, Batch and Interactive applications.
Standardized measures would allow manufacturers to benchmark
their system against both their own and competitive solutions and
to enable users to compare the various products. The systems of
the day were largely mainframes and mini-computers. Existing
measures (MIPS, Whetstones, MegaFLOPS) all focused on CPU
speed, not application or user observed performance. Jim felt this
had to change.

At that time the highest-performance interactive transaction
systems were operated by airlines. The system in operation was
called the Airline Control Program (ACP) and later Transaction
Processing Facility (TPF). This system ran on IBM hardware and
was ruthlessly optimized for performance. Since applications were
coded in machine language, and focused exclusively on
performance, the running joke was that you could write any
application you wanted as long as the program was not more than
200 bytes. This system had a transaction rate of around 800
transactions per second (tps), but had extremely constrained and
low level user and data interfaces. IBM’s Information
Management System (IMS) Fastpath was able to reach 180 tps
with somewhat higher level interfaces. The shortcoming of both
these systems was their very poor extensibility, fault tolerance
and, in some cases, data integrity. Each of these systems, as well
as others, would claim high transaction rates - but this was an
apples to oranges comparison. The transactions did different
things. Jim and others realized that, for there to meaningful
comparison between systems, a transaction benchmark was

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Tribute to Honor Jim Gray, May31, 2008, Berkeley, CA, USA.

42

required. The first “accepted” transaction profile developed was
based on the Debit/Credit (or Teller Cash Drawer) concept. A
customer interaction with a bank teller (or ATM) could be
reduced to a few messages (input and output), the disbursement or
acceptance of funds and the updates to the customer’s account to
reflect the activity. This transaction evolved to be called TP1 (or
ET1) and was used by Jim as he explored transaction performance
in papers, lectures and product design over the next ten to fifteen
years.

Jim began by discussing things which were important to
customers but were sometimes hard or impossible to measure at
the time (Cost of Ownership (COO), thousands of dollars in cost
per transaction per second ($K/tps), etc.). Looking forward it was
clear that, as more processing moved to interactive transactions,
the level of the interface would need to move up to allow faster
and less expensive development. Jim’s original strawman goal for
transaction processing was that 95% should have a response time
within one second. In addition, the best-of-class system would be
manageable (development and operations tools), available (5
minutes of downtime per year), granular (to allow the system to
be decomposed for reliability or manageability), “growable”
(different nodes might require different initial sizes and might
grow at different rates), changeable (things change) , and “cheap”
(at the time). His papers in 1984 (“One Thousand Transactions
per Second”) and in 1985 ("A Measure of Transaction Processing
Power") presented the first well thought out discussion of what
transaction performance was, why it was important and how to
measure it. This concept and the TPl benchmark were the
precursor to today’s Transaction Processing Performance Council
and the set of benchmarks which are universally viewed as the
standard for online transaction processing.

5. INDUSTRIAL STRENGTH SQL

During Jim’s tenure at IBM’s San Jose Research Division he was
heavily involved with the System R project and was integral in
moving the System R concepts into products, at IBM and
elsewhere. Clearly the most recognizable of these was SQL, the
interface to the relational data model. First developed by Ted
Codd, the relational model of data access was incorporated into
System R. The access method, Structured Query Language
(SEQUEL and later SQL), for the most part was viewed as
nothing more than a “toy”. From System R, Jim moved to the
IBM development group responsible for the DB2 project. When
he moved from IBM to Tandem, Jim was convinced that a
relational approach to data and SQL as the access language were
critical to allowing the database development environment to
reach a cost-effective point. Prior to the NonStop SQL
implementation most vendors viewed SQL as an information
center or productivity tool. They typically provided a non-SQL
interface for the “industrial strength” applications. Jim, on the
other hand, felt that SQL had to be the core means of database
access. He was convinced that the relational model, as expressed
in SQL, was critical to moving forward on the interactive
application front. Its ease of use characteristics and structure made
it something developers could utilize to conceive, design and
build applications quickly. It also allowed these applications to be
understood easily over time, allowing maintenance and extension.

SIGMOD Record, June 2008 (Vol. 37, No. 2)

The design tenets Jim felt critical were:

1) To be integrated with the Tandem networking and transaction
processing system.

2) To provide NonStop access to data - in case of a fault, only the
affected transactions are aborted and restarted: data is never
unavailable.

3) To support modular hardware growth, and as a consequence
support tens of processors executing hundreds of transactions per
second.

4) To allow data and execution to be distributed in both local and
long-haul networks.

This was a very ambitious project on several levels. The
application program was protected by transaction locking and
logging. In addition, all device drivers and system processes ran in
NonStop mode so that they could tolerate any single hardware
failure and many software failures without disrupting service.
The disk processes maintained mirrored disks so that a disk failure
would not disrupt service. If a process or processor failed all the
transactions being run by that process or processor were aborted
(rolled-back); but unrelated transactions were unaffected by the
failure. On failure, ownership of all devices (disks and
communications lines) was automatically switched to other
processors.

First, the sheer technical challenge of providing a fault tolerant
and high-performance transaction processing system with SQL as
its interface meant that much of the underlying Tandem data
management structure needed to be reworked. Secondly there was
the ongoing question within the company of whether this was the
right direction and would provide sufficient differentiation and
benefit to justify the cost. Not surprisingly, Tandem customers
and prospects were both impressed by and strongly supportive of
the effort - since they well understood its value in simplicity,
functionality and future maintainability. NonStop SQL was
developed by a relatively small team, many of whom Jim
recruited from outside Tandem. He served as everything from
architect to developer to cheerleader within the team while at the
same time continuing to explain the benefits to Tandem’s upper
management and fostering customer interest and support. While
there were implementations of SQL both before and after
NonStop SQL, none were integrated into the underlying system,
as well as being fault tolerant and expandable.

A Google search of SQL today returns 248,000,000 hits. Current
SQL products range from IBMs DB2 product to the Microsoft
SQL Server. Jim’s ability to look at a problem like the coming
need for faster, more capable and easier to maintain transaction
processing systems and see how a new data model, language and
system could help realize that is, in no small part, a reason for
SQL’s acceptance and prevalence in today’s environment.

6. WHY COMPUTERS FAIL

Not surprisingly, Jim spent a lot of time at Tandem investigating
why computers fail and what can be done about it. He
characterized this as “Reliability and availability are different:
Availability is doing the right thing within the specified response
time. Reliability is not doing the wrong thing.” Up until this time,
there had been academic work on computer failure but nothing
that really addressed the commercial fault-tolerant system.

One of Tandem’s strengths was the fault tolerant nature of the
hardware and software design. Jim realized quickly that designing

SIGMOD Record, June 2008 (Vol. 37, No. 2)

hardware to be fault tolerant, though tricky, was the easier part of
the problem. He worked with a number of Tandem customers to
explore the failures they encountered and his results were
enlightening and somewhat unexpected. Hardware “mean time
between failure” (MTBF) was measurable in years. Failures
occurred in several areas in running systems. First, there is “infant
mortality” which consisted of new hardware or software still
having the bugs shaken out. This accounted for about 30% of the
failures. Systems administration, including operator, configuration
and maintenance actions accounted for more than 40% of the
failures. Software faults accounted for about 25%. Finally there
were environmental failures, which accounted for a relatively
small percentage of outages.

As Jim stated, “The implications of these statistics are clear: the
key to high-availability is tolerating operations and software
faults”. However, a secondary implication of the statistics is
actually contradictory. New and changing systems have higher
failure rates. Therefore a way to improve availability is to install
proven hardware, and software, and then leave it alone. On the
other hand, a high percentage of outages were caused by “known”
hardware or software bugs, which had fixes available, but the
fixes were not yet installed in the failing system. This suggested
that one should install software and hardware fixes as soon as
possible. The conflict: “never change the system and do the
changes ASAP”.

Since failures happen for many different reasons one of the key
points in fault tolerance is to contain the failure and its impact as
much as possible. To that end Tandem added a Transaction
Management Facility (software) to its fault tolerant system
(NonStop and Guardian) to ensure that “units of work” either
completed or, in the event of a failure of some sort, removed their
effects completely. Due to the unreliable nature of data
communications at the time Jim also proposed redundant,
resumable communications sessions. Finally, he noted that
dealing with system configuration, operations, and maintenance
remained an unsolved problem. Administration and maintenance
people were doing a much better job than we had reason to
expect. Since we couldn’t hope for better people, the only hope
was (and still is) to simplify and reduce human intervention in
these aspects of the system.

7. DECENTRALIZATION / SCALABILITY

Another area that Jim probed while at Tandem was that of
decentralization, scalability —and particularly distributed
processing. Tandem systems were designed to be scalable —
growing from 2 to 16 processors in a single system, with possibly
hundreds of connected systems. In the 1980°s the telephone was
the best example of a distributed, decentralized system. It
contained thousands of computers, and almost a billion terminals.
Today the best example is probably the internet.

One of the issues that troubled Jim was that most of the 1970’s
had been spent trying to develop centralized data and applications
leading to an “integrated database”. Tandem’s goal, on the other
hand, was to allow customers to use a decentralized system (many
computer systems networked to provide a common service).
Clearly there is no “best” system design, but Jim noted several
areas which needed to be considered: capacity, response-time,
availability, cost, security, and modularity.

The main technical problem unique to decentralized systems is the
lack of global (centralized) knowledge. Where are things?

43

Unfortunately, security, integrity, auditability, performance and
changeability all are adversely impacted by having a centralized
system. It seemed likely that the concept of an integrated database
would be restricted to single computers or at most local networks
of computers managed by a single authority.

Decentralized systems, by necessity, must do more
communication, and while the communications overhead and
availability necessary to realize such a system were not
insignificant, they could be minimized and the overall benefit
could be significant. Decentralized systems lend themselves
strongly to the “requestor-server” approach, which in turn can
lead to a more robust and resilient system in areas like availability
through fault tolerance, parallel processing, modular growth and
geographic distribution (putting data near its consumers).

In a decentralized system, the time and equipment cost to
transport messages rose by at least an order of magnitude at each
degree of distribution and the reliability of message transmission
dropped by at least an order of magnitude at each degree of
distribution. As a consequence, the message cost of a distributed
algorithm was an important measure of its cost - messages were
expensive and wide-area messages were very expensive.

So at the time, the case against distributed systems seemed pretty
clear: wide-area networks were slow and unreliable - not to
mention fabulously expensive. Local networks were thousands of
times faster, more reliable, and cheaper. However, in comparison
to centralized systems, local networks waste instructions and time.
The narrow focus on message cost ignored the benefits of
distributed systems - allowing many processors to be applied to a
problem in parallel. Distributed systems offer high availability

44

through fault tolerance. They can also provide modular growth,
and geographic distribution of data - putting the data and
processing next to the user. Distributed systems offered good peak
performance through parallelism, and good price performance by
using inexpensive components. As a final point, Jim submitted
that, often it was simply not possible to construct a shared
memory system with comparable power.

While there will probably never be a clear winner in the
centralized/decentralized processing debate, Jim’s work
foreshadowed much of the decentralization and distribution we
see in today’s systems.

8. CONCLUSION

Throughout his career, and particularly while he was at Tandem,
Jim recognized areas where the existing ideas and practices would
not be sufficient in the future. He became involved in those areas
from both a theoretical and practical perspective and moved them
forward with insight, research, papers, presentations and products.

9. REFERENCES

Rather than list individual references to the above information the
reader is directed to a catalog of Jim’s papers and presentations at:

http://research.microsoft.com/~Gray/

and select “Publications” from the left column.

SIGMOD Record, June 2008 (Vol. 37, No. 2)

