
Jim Gray at IBM
The Transaction Processing Revolution

Bruce G. Lindsay
IBM Almaden Research Center

560 Harry Road
San Jose, CA 95120

bgl@almaden.ibm.com

ABSTRACT
While at the IBM San Jose Research Laboratory, in the
1970’s, Dr. Jim Gray defined and developed the
fundamental concepts and techniques that underlie on-line
transaction processing systems. Jim Gray’s pivotal
contributions enabled cost efficient, on-line processing to
replace paper and batch processing systems. Today, on-
line transaction processing powers the record keeping
systems that drive today’s commerce, services, and
government.

1. INTRODUCTION
Dr. Jim Gray worked at the IBM San Jose Research
Laboratory from October 1972 until September 1980.
During that time he developed and implemented the
foundational techniques that underlie and enable on-line
transaction processing. The deployment of on-line
transaction processing reduces the cost of business
transactions by reducing delays and eliminating paper
records. Dr. Gray received the 1998 A.M. Turing Award
“For fundamental contributions to database and
transaction processing research and technical leadership
in system implementation from research prototypes to
commercial products. The transaction is the fundamental
abstraction underlying database system concurrency and
failure recovery. Gray’s work [defined] the key
transaction properties: atomicity, consistency, isolation
and durability, and his locking and recovery work
demonstrated how to build … systems that exhibit these
properties.”

On-line transaction processing provides the critical
infrastructure that enables reliable and cost efficient
financial, commercial, travel, medical, and governmental
operations. Without on-line transactions, life, as we know
it, would be quite different (and less pleasant). In order
for on-line processing to replace paper based and batch
processing record keeping two fundamental problems
must be addressed: the electronic records must be reliable
in the presence of equipment failures; and interference

among multiple, concurrent application programs
operating on shared records must be controlled.

In the context of the System R relational database project
at IBM Research [Chamb 1981, Blas 1981], Jim Gray
developed and refined recovery techniques that ensure the
reliability of the records and concurrency control methods
to coordinate interactions among simultaneously
executing programs accessing and modifying shared sets
of records. Not only did Dr. Gray develop new and
important technology, he also published and explained his
ideas to generations of database users and developers.
His “Notes on Database Operating Systems” [Gray 1978]
is a classic work familiar to many (if not most) DBMS
students and practitioners and the (big !) book [Gray
1983] provides a comprehensive description of
“Transaction Processing: Concepts and Techniques”.

2. TRANSACTION RECOVERY
Jim Gray refined the notion of a Database Transaction.
He explained that application initiated data manipulation
actions can be classified as “unprotected”, “protected”,
and “real” actions [Gray 1981b]. Unprotected actions
involve transient and internal state, such as temporary
files. Protected actions, on the other hand, are grouped
into transactions and are reflected in the state of the
transaction outcome. The outcome of a transaction must
be to either commit the effects of its protected actions to
the system state, or to abort and remove the protected
actions’ effects from the system state. This means that
protected actions must be undone on transaction failure or
abort and their effects must be ensured in the case of
transaction commit. Real actions involve sensors,
actuators, and messages outside the DBMS. While real
actions cannot be “undone”, they can be compensated.
For example, if the missile is fired, the compensation
could be “debit quantity on hand and send apologies”.

In order to achieve durable transaction atomicity (all or
nothing for protected actions) in the presence of
processor, memory, storage, communication, or
environmental failures, multiple copies of the stored data

38 SIGMOD Record, June 2008 (Vol. 37, No. 2)

must be maintained and a record of the protected action
sequence is needed to complete or undo transactions
interrupted by system failures. To achieve durable
transaction atomicity, the transition to the “committed”
state must be accomplished by a single write to non-
volatile storage. To these ends Jim Gray defined the Write
Ahead Log (WAL) protocol [Gray 1978, Gray 1981a]
while at IBM Research. The WAL protocol records the
old and new states induced by protected actions separately
from the actual state changes. The logged changes are
written to stable storage before the actual changes are
written back to stable storage (that’s the “Write Ahead”
part). Transactions are committed by simply appending
and writing a ‘commit’ record to the recovery log. Logged
changes are used to undo protected actions of aborted
transactions and of transactions in progress at the time of
a system failure. Log records are also used to redo
committed actions whose actual changes have not been
written back to stable storage at the time of a system
failure. The WAL protocol allows changed data to be
written to their stable storage home at any time after the
log records describing the changes have been written into
the stable log. This gives the Database Manager great
flexibility in managing the contents of its volatile data
buffer pools.

The recovery techniques developed by Jim Gray
and the System R team have been instrumental to the
deployment of on-line transaction processing applications.
With the ability to recover from equipment and
environmental failures, without loss of committed,
protected actions, along with atomic (all-or-nothing)
transaction completion, on-line business critical
applications become reliable enough to replace batch and
paper-based transaction processing. The impact of Dr.
Gray’s recovery technologies for transaction reliability
cannot be overstated – without adequate reliability and
durability for transactional applications, the transition to
on-line transaction processing would not have been
possible.

3. CONCURRENCY CONTROL
In order to facilitate the implementation of correct
transaction processing applications, the applications must
see a “consistent” database state and transform that state
to a new “consistent” state. Early data processing systems
ran one transaction at a time, batch style. For
performance reasons (either to overlap disk I/O latencies
or to exploit multi-processor machines), it is useful to be
able to overlap the execution of concurrent transactional
applications. If only one transactional application is
running at any time, life is simple – only the application
logic needs to be correct to ensure continued consistency.
Concurrent application execution, on the other hand,
needs to isolate each application transaction from seeing

or modifying the intermediate states of other uncommitted
transactions, while allowing access to its own changes.
While at the IBM San Jose Research Laboratory, Jim
Gray developed three key ideas related to transaction
concurrency control: the notion of transaction
serializability; degrees of consistency; and multi-
granularity locking.

Jim defined transaction serializability as the ability to re-
order the actual action history of concurrently executing
transactions to bring together all the actions of each
transaction without changing the ordering between read /
write or write / write actions on the same item by different
transactions [Eswar 1976]. He proved that any serializable
action history ensures a consistent final state if each
transactional application preserves consistency when run
in isolation. Furthermore, he proved that simple read /
write locking rules, enforced at the level of the data items,
guarantees a serializable action history. Transactions
must simply be “well formed” and “two-phase” locked to
ensure serializability. “Well formed” transactions lock
every item (for read or write) before manipulating the
item. “Two-phase” locking requires that no locks be
acquired by a transaction once a lock has been released.

Locking, and all other concurrency control methods,
ensure serializability by delaying or aborting the progress
of the transactional applications. Enforcing serializable
execution can induce intolerable delays, deadlocks, and
transaction re-tries. Building upon his seminal work in
serializability, Dr. Gray invented relaxed locking
protocols that sacrifice serializability to reduce
concurrency control conflicts while still guaranteeing
useful isolation among concurrent applications [Eswar
1976]. Among the relaxed locking protocols he defined
are cursor stability which enforces repeatable read
(completed reads prevent updates by other transactions)
only for the current data element of each query result set
and dirty read which allows reading of uncommitted
changes of other transactions. Additional non-serializable
locking protocols are possible and several have been
incorporated into commercial DBMS products.

Jim Gray not only invented transaction serializability
theory and extended it to support relaxed degrees of
consistency, he also invented multiple granularity locking
protocols that facilitate on-line bulk data activity [Gray
1975]. Multiple granularity locking supports application
isolation for not only the finest granularity lockable units
(e.g. records) but also for groupings of lower level items
into higher level lockable units.

Multi-granularity locking organizes database elements
into a hierarchy (actually a lattice) – records are grouped
into tables, tables are grouped into table sets, etc. The
multi-granularity locking protocol specifies that a lock at
any granularity applies to all the elements contained in
that granule. Additionally, before acquiring a lock at any

SIGMOD Record, June 2008 (Vol. 37, No. 2) 39

granularity, “intent” locks must be acquired for all higher
level granules. Intention lock modes (Intention Exclusive
& Intention Share) are compatible with each other and
Intention Share is compatible with Read locks. Thus, for
example, to Read lock a record, the table set and table
containing the record must first be locked Intention Share
(in that order). To scan an entire table, the table set is
locked Intention Share and the table is locked in Read
mode – there is then no need to set Read locks on each
record in the table.

The multi-granularity locking protocol enables bulk
operations, such as table scan or table delete, without
locking every component of the composite object and also
facilitates on-line data definition (i.e., DBMS schema
changes) by locking high level granules for data definition
operations. On-line data definition facilities in the earliest
RDBMS prototypes and products were one of the key
drivers of the acceptance and success of the Relational
Data Model and its early implementations.

3. CONCLUSIONS AND SUMMARY
In summary, Dr. Jim Gray’s tenure at the IBM San Jose
Research laboratory was spectacularly productive! In the
context of the System R relational database research
project, Jim developed a model for transactional
applications, invented recovery techniques making the
database reliable enough to replace paper-based and batch
processing record keeping, pioneered serializabilty theory
for understanding isolation and consistency issues,
introduced relaxed degrees of consistency, and invented
multi-granularity locking for bulk operations. Besides
making a stunning sequence of technical innovations, Dr.
Gray published his results and taught generations of
database developers and users all that he had learned and
invented [see Gray 1993 for the full story]. In addition to
making and publicizing his important innovations, he
personally implemented (and tested) his algorithms in the
System R project (and for commercial products at the
IBM Santa Teresa Laboratory).

Finally, I cannot conclude without discussing Jim’s
collaborative spirit and style. At IBM, Jim worked
openly with all the people around him, made them feel
part of the process, and accepted and gave constructive
criticism on technical matters both great and small. One
sign of Jim’s collaborative style is the number of authors
on the papers that Jim wrote. Working with Jim was a
stimulating pleasure as he both challenged his colleagues
to participate in the development of his ideas and
gratefully accepted their views and participation in
refining those ideas. While it was a great loss to IBM
when Jim left the company in 1980, we note with pride
his seminal contributions to transaction processing
technology while at IBM and congratulate him for his

continued stream of important accomplishments in the
following years.

BIBLIOGRAPHY
[Blas 1981] Mike W. Blasgen, Morton M. Astrahan,

Donald D. Chamberlin, Jim Gray, W. Frank
King III, Bruce G. Lindsay, Raymond A. Lorie,
James W. Mehl, Thomas G. Price, Gianfranco
R. Putzolu, Mario Schkolnick, Patricia G.
Selinger, Donald R. Slutz, H. Raymond Strong,
Irving L. Traiger, Bradford W. Wade, Robert A.
Yost, System R: An Architectural Overview,
IBM Systems Journal(20): 41-62 (1981).

 [Cham 1981] Donald D. Chamberlin, Morton M.
Astrahan, Mike W. Blasgen, Jim Gray, W. Frank
King III, Bruce G. Lindsay, Raymond A. Lorie,
James W. Mehl, Thomas G. Price, Gianfranco R.
Putzolu, Patricia G. Selinger, Mario Schkolnick,
Donald R. Slutz, Irving L. Traiger, Bradford W.
Wade, Rogert A. Yost, A History and Evaluation
of System R, Comm. ACM 24(10): 632-646
(1981).

 [Eswar 1976] K.P. Eswaran, J.N.Gray, R A. Lorie, I.L.
Traiger, The Notions of Consistency and
Predicate Locks in a Database System, Comm
ACM(19): 624-633 (Nov. 1976).

 [Gray 1975] Jim Gray, Raymond A. Lorie, Gianfranco R.
Putzolu, Irving L. Traiger, Granularity of Locks
in a Large Shared Database, Proc.VLDB(1),
428-451 (1975).

 [Gray 1978] Jim Gray, Notes on Data Base Operating
Systems, Lecture Notes in Computer
Science(60): 393-481 Springer-Verlag (1978).

 [Gray 1981a] Jim Gray, Paul R. McJones, Mike W.
Blasgen, Bruce G. Lindsay, Raymond A. Lorie,
Thomas G. Price, Gianfranco R. Putzolu, Irving
L. Traiger, The Recovery Manger of the System
R Database Manager, ACM Computer Surveys
13(2): 223-243 (1981).

 [Gray 1981b] Jim Gray, The Transaction Concept:
Virtues and Limitations (invited paper), Proc.
VLDB(7), 144-154 (1981).

[Gray 1993] Jim Gray and Andreas Reuter, Transaction
Processing: Concepts and Techniques, Morgan
Kaufmann, San Mateo, CA (1993).

40 SIGMOD Record, June 2008 (Vol. 37, No. 2)

