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ABSTRACT
The need for large-scale data sharing between autonomous
and possibly heterogeneous decentralized systems on the
Web gave rise to the concept of P2P database systems. De-
centralized databases are, however, not new. Whereas a def-
inition for a P2P database system can be readily provided, a
comparison with the more established decentralized models,
commonly referred to as distributed, federated and multi-
databases, is more likely to provide a better insight to this
new P2P data management technology. Thus, in the paper,
by distinguishing between db-centric and P2P-centric fea-
tures, we examine features common to these database sys-
tems as well as other ad-hoc features that solely characterize
P2P databases. We also provide a non-exhaustive taxonomy
of the most prominent research efforts toward the realization
of full-fledged P2P databases.

1. INTRODUCTION
Content-sharing systems on the Web have renewed inter-

est in the design and deployment of decentralized database
management systems. Unlike the early nineties decentralized
infrastructures, which were realized as federated or multi-
database systems involving a relatively small handful of re-
mote databases, current ones are conceived as large-scale,
loosely-coupled peer-to-peer (P2P) systems.

The P2P paradigm offers an interesting alternative to
existing information system infrastructures. The most im-
portant features are: (1) scalability in terms of the number
of nodes and distribution, (2) direct access to data at the
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source which guarantees freshness in contrast to centralized
repositories, (3) robustness and resilience against attacks
and churn by exploiting self organization principles, and (4)
simplified deployment because resources (nodes) from the
“edge” of the Internet can be used and no special infras-
tructure is required to join the network (e.g. a new data
repository can be added to a P2P network without any par-
ticular administrative task or declaration of adherence to a
common schema).

A P2P database system (PDBS) is conceived as a collec-
tion of autonomous local repositories which interact (e.g.,
establish correspondences or exchange query and update re-
quests) in a peer-to-peer style. That is, local repositories are
autonomous peers with equal rights and are linked to only a
small number of neighbors. Furthermore, the term ‘reposi-
tory’ indicates that a single peer might be a collection of files
rather than a full-fledged DBS with established data man-
agement functionality. Such repositories may not exhibit a
common interface, but they can still provide a DBS-like ac-
cess functionality, as it happens for Web databases

Clearly, several characteristics of PDBS and past decen-
tralized systems, including autonomy and heterogeneity, are
common to the two approaches. This observation under-
scores the necessity of a detail comparison among the two
approaches and the identification of their essential charac-
teristics that would clarify the definition of PDBS and make
it distinct. Toward this, this paper compares modern dis-
tributed data paradigms, such as P2P database systems [15],
with distributed database systems [8, 31] and cooperative
multiple database systems, such as federated databases [4]
and multi-databases [7]. The goal is to clarify some of the es-
sential differences and similarities from a data management
point of view. Hence, we distinguish between DB-centric fea-
tures from P2P-centric ones in our comparison. Given that
PDBSs are currently on an evolutionary path, such a dis-
tinction would help to identify which characteristic, for ex-
ample, distribution and federation, might be relevant in a
P2P environment. Another contribution of this paper is a
taxonomy of a non-exhaustive list of existing P2P and dis-
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tributed database prototypes that are compared based on
the above features.

This paper is organized as follows. Section 2 reviews estab-
lished decentralized database systems and compares their
data integration architectures to that of PDBS. Section 3
highlights the characteristics of P2P systems that make
them similar or different with respect to distributed and fed-
erated database systems. Section 4 provides a taxonomy of
existing P2P prototypes with respect to the above features,
and discusses future research directions. Section 5 concludes
the discussion by giving a summary and a few enlightening
thoughts.

2. TWO DATA INTEGRATION ARCHI-
TECTURES

A database system (DBS) is a software that manages one
or more databases. A distributed database system (DDBS)
is a software that manages one or more logically-related
databases, spanning a network. Both a federated database
system (FDBS) and a multi-database system (MDBS) are
collections of pre-existing DBSs in which operations can be
applied to multiple component DBSs in a coordinated man-
ner. The key distinction between FDBSs and MDBSs is their
methods for integrating the component DBSs and their as-
sumptions about the autonomy of these components. In both
FDBSs and MDBSs, component DBSs are typically hetero-
geneous, for example, they use different data models or for-
mats. To deal with such heterogeneity, FDBSs adopt more
traditional DDBS techniques that rely on a single global
federated schema. In contrast, multiple federated schemas
may coexist in MDBSs between the different cooperating
component DBSs, allowing thus partial and controlled data
sharing. In addition, any of the component DBS can itself
be a DDBS in both FDBSs and MDBSs.

So, a common characteristic of all past decentralized, mul-
tiple database systems, namely DDBS, FDBS and MDBS,
consist of component databases which are DBSs with a
well-defined database schema. As a result, these distributed
systems support data access across component DBSs by
means of some form of a common schema that integrates
the local component DBS schemas. For DDBSs, the common
schema is defined a-priori. On the other hand, for FDBSs
and MDBSs, a common federated schema is the result of an
agreement between the participants DBSs as shown in the
multi-layer data architecture in Figure 1(a).

The federated schema based architecture consists of four
layers as shown in Figure 1(a): (i) a local schema, expressed
in the local data model schema; (ii) a local component
schema, which is possibly a translation of the data model
of the local DBS into a canonical model; (iii) a local export
schema, which contains those elements of the component
schema that the local DBS is willing to share with others,
for instance by defining access control policies; and finally,
(iv) a federated schema, which is a global federated schema in
FDBS and application-oriented federated schema in MDBS.
A federated schema is the actual global schema that con-
tains information on distribution and allocation of internal
export schemas. In MDBS, different federated schemas may
coexist to support data sharing for different applications. In
both FDBS and MDBS, mappings must be defined between
the local schemas and the global federated schemas. Such
mappings express the correspondences between elements in

Local Schema Local Schema/Instances

Export Schema/Instances

Local Schema/Instances

Export Schema/Instances

Local Schema

Federated Schema

(a)

Export SchemaExport Schema

Component
Schema

DBMS1
(b)

Component
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DBMS2 PDBS1 PDBS2

Mapping Graph/Global Index
MappingMapping

Figure 1: Data Integration Architecture of (a)
FDBS/MDBS and (b) PDBS.

the local schemas and elements in the global schemas in
Local-As-View(LAV)/Global-As-View(GAV) style [25].

The commonly known P2P applications are basically file
sharing systems [14, 23], where the notion of a global me-
diated schema is irrelevant. However, several recent efforts
in the database community have been aimed at extending
these systems to full-fledged peer-based data management
systems [11, 13, 17, 27]. The main data integration and in-
teroperability idea in peer data management is to avoid a
global schema by providing mappings between pairs of in-
formation sources. Mappings between all pairs are not nec-
essary. It is sufficient that the graph representing the avail-
able mappings be connected. Mappings between two sources
are then obtained by composing the pairwise mappings such
that there is a path connecting the two sources [6, 17, 36],
and a much earlier proposal where integration is conceived
as binary between two sources, partial, and query-dependent
[30]. The query circumscribes the integration context.

Figure 1(b) illustrates a P2P architecture for data inte-
gration. Observe that a component schema does not exist at
each peer (compared to FDBS/MDBS architecture), since a
common mediated schema is less likely in a P2P architec-
ture. Basically, an export schema contains only the elements
of the local schema that a peer wants to share with the out-
side world. One can also assume that a local schema does not
exist at all, and part of the actual instance is exposed to the
outside. Note that instances and schemas can be used in-
terchangeably in PDBS and the latter are less relevant than
in FDBSs and MDBSs, where the availability of schemas is
mandatory.

Most importantly, peers autonomously decide the ex-
changed part with other peers in data integration scenar-
ios [11, 13, 30], by means of mapping rules (source-to-target
dependencies that connect their local schemas). Note that
the mapping rules are not necessarily symmetric. Thus, the
top-level layer in Figure 1(b) is what we call the mapping
graph or global index. The global index may be either cen-
tralized or distributed.

3. P2P AND ESTABLISHED DISTRIBUTED
DATABASE SYSTEMS: DIFFERENCES
AND COMMONALITIES

3.1 Distribution, Autonomy, Heterogeneity
All decentralized database architectures – P2P or feder-

ated, distributed or multi-databases – share a set of common
features. The classification given in [31] illustrates the DBS
implementation alternatives. As Figure 2 illustrates, the var-
ious DBS categories can be characterized along the following
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three dimensions:

(i) Distribution, ranging from a centralized architecture
(no distribution) (D0) to a client-server distribution
(moderate distribution) (D1) to a peer-to-peer (or to
full-scale distribution) (D2);

(ii) Autonomy, ranging from zero autonomy
(tight integration)(A0), semi-autonomy (loose
integration)(A1) to full autonomy or total isola-
tion (A2);

(iii) Heterogeneity, ranging from zero heterogeneity (homo-
geneous systems)(H0) to full heterogeneity (H1).

Thus the set of possible database systems is characterized
by the Cartesian product {D0,D1,D2} × {A0,A1,A2} ×
{H0,H1}. For instance, element (A0, D1, H0) identifies prop-
erties of distributed database systems, i.e., no heterogeneity
and no autonomy, as discussed in the introduction. Elements
(A1, D0, H1) and (A1, D1, H1) capture properties of hetero-
geneous federated database systems and distributed heteroge-
neous federated database systems, respectively. These latter
systems are instances of the class of FDBSs. They are semi-
autonomous in the sense that they may act independently
but may still cooperate to selectively share data.

Multi-databases and distributed multi-databases are cap-
tured by (A2, D1, H1) and (A2, D2, H1), respectively. These
systems belong to the class of MDBSs: they are highly de-
centralized, heterogeneous and totally independent of one
another, in the sense that each DBS component is not aware
of the existence of all other DBSs and their databases.

Below we will further discuss the concept of heterogeneity
adopted for such database systems. However, as opposed to
heterogeneity, the dimensions of autonomy and distribution
need to be refined in order to better classify the modern
PDBSs.

A cursory observation might classify PDBSs as another
instance of MDBSs. However, a closer look at their data
integration architecture reveals that these two systems sup-
port completely different data access methods. Specifically,
MDBSs support a query interface on top of a multi-database
layer. A query, referred to as global request, is issued through
this interface. The query is then shipped to the component
databases as Figure 3 shows. As the query reaches the com-
ponent databases, it is translated into a local request. Al-
though a user is seldom aware of the presence of the underly-
ing component databases it always receives back a complete
answer.

On the other hand, in a PDBS, a query is submitted to
a local peer and it may or may not be forwarded to the
subsequent peers in its original form or in a form modified
by the visited peers. The forwarding depends on the map-
ping graph. Thus, no global request is submitted to all peers
with the requirement that a response is expected. However,
a complete response is not guaranteed. Further, unlike DBS
components of MDBSs, a peer in a PDBS is free to join
or leave the network at will and has no obligation to per-
form administration tasks. Thus, a peer in PDBS exhibits
a much higher degree of autonomy than DBS components
of MDBSs. To capture this distinction, we introduce a new
point AP2P and redefine the meaning of A2 along the au-
tonomy dimension in Figure 2. This new point AP2P now
reflects full autonomy or total isolation as opposed to A2,
which now reflects quasi-full autonomy.

Pure P2P Systems

PDBSs

A1 A2

D1

Heterogeneity

Autonomy

Distribution

D2

DHT−based P2P Systems

Hybrid Systems

Super−peer Systems

Dsp

Dhyb

H1

DDBSs

FDBSs

MDBSs

Ap2p: a new degree of autonomy

Figure 2: DBS Implementation Alternatives with
Modern P2P Architectures.

The distribution dimension needs to be refined as well.
Distribution in PDBSs is strongly dependent on the under-
lying P2P network. Existing P2P networks can be classi-
fied into three broad categories: pure P2P, super-peer sys-
tems and hybrid systems. Pure P2P are systems positioned
at point (Ap2p, D2, H0)

1 i.e., systems in which all partici-
pants have the same functionality and do not store global
indexes. Super-peer networks are networks in which a num-
ber of peers (super-peers) may have internal indexes that
describe the data of other peers and other super-peers. In
such super-peer systems, the communication and level of
distribution is done in two phases: at the super-peers level
and underneath at the peers level. Finally, hybrid systems
are systems in which servers or clusters may play a role in
storing global indexes. Both hybrid systems and super-peer
systems may be classified somewhere between client-server
(D1) and pure P2P systems (D2) and are denoted DHyb and
DSP in the figure, respectively.

The above pure P2P networks are referred to as unstruc-
tured networks in that restrictions are not imposed on data
placement. These networks are among the early P2P net-
works basically used for file sharing. Recently, the so-called
structured P2P networks have been gaining momentum.
Such networks are based on DHTs (Distributed Hash Ta-
bles) in which uniform hash keys are used to enable efficient
lookups. These networks use a protocol to maintain locally
information about a subset of their neighbors and enable ef-
ficient routing. From a distribution perspective, structured
networks can be classified at same level D2 (in Figure 2) as
the pure P2P unstructured networks. However, we shall see
in the remainder that, based on other features, there are dif-
ferences between PDBSs over these different P2P networks.

An often-cited reason to favor P2P solutions are their scal-
ability and stability and self-repairing characteristics. In the
case of PDBSs, this is reflected in the behavior of the map-
ping graph. However, these properties will only hold for some
PDBSs, and most are at risk of a melt-down if the system
experiences frequent membership changes, a problem known
as churn. In effect, an existing path in the mapping graph
may quickly disappear due to a membership change. This is

1Note that pure P2P distributed systems are positioned
at point (A0, D2, H0) according to the classification given
in [31] which does not have the Ap2p point.
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Figure 3: Simplified System Architecture of (a) a
MDBS and (b) a PDBS.

a common pattern in distributed systems, where the partic-
ipating nodes are at the edge of the network infrastructure,
that is, machines of simple users. Query processing is based
on forwarding from peer-to-peer. Its performance will de-
pend on the length of mapping path, which can be excessive
in unstructured P2P networks.

The three dimensions discussed above are considered fun-
damental, but they are not sufficient for a comprehensive
comparison between old and new distribution paradigms, es-
pecially with respect to heterogeneity. In the following we in-
troduce two additional dimensions, i.e., database-centric di-
mensions, which have been extensively studied in the context
of classical distributed data management and P2P-centric
dimensions originating for the P2P paradigm.

3.2 Database-centric Dimensions
One of the main goals in distributed database systems

is to provide transparency while exploiting the features of a
distributed environment. This comprises transparency at the
level of fragmentation, replication, and transaction support.
The dimensions related to these issues are the following.

Fragmentation and allocation design. DDBS allow a flex-
ible design of fragmented relations and their placement at
different sites in a top-down fashion. In contrast, data in-
tegration systems like FDBS and MDBS follow a bottom-
up approach by integrating data kept at the original sites.
In structured DHT-based systems, the placement of data is
determined by the system hash function, i.e., the node re-
sponsible for a given data item is ‘computed’ by the system.
Though, a DHT maintains the allocation dynamically in or-
der to deal with leaving or joining nodes, this allocation is
still system-defined. In contrast, in DDBS the allocation is
defined by the user as part of the database design step. Un-
structured PDBSs in their pure form (i.e., without exploiting
structured indexes) act like data integration systems where
each node keeps authority on its own data and thus decides
on allocation autonomously.

Data independence. DDBS implement the notion of data
independence, i.e., the fact that the logical model and the
physical implementation are kept separate, thus allowing a

set of abstractions that realize the data management tasks in
a suitable way. In P2P systems, a data independence notion
is also desirable [18] as data need to be independent of their
physical location in the network.

Transactional support. The ability to support ACID-style
transactions is a fundamental requirement in many database
applications that require strong data consistency. However,
for the distributed case this is only addressed in DDBS by
special protocols. There are also some proposals of federated
and peer-to-peer databases that support relaxed consistency
criteria [32], but basically it is still an open issue if and how
ACID properties can be achieved in loosely-coupled systems
of autonomous nodes. Nevertheless, transaction support is
required to some extent if replicas of data are maintained
by a PDBS and updates are supported in a PDBS.

View on the world. The typical assumption in a classical
database system is the closed world assumption meaning
that all relevant facts are stored in the database and re-
turned if requested by a query. However, this is difficult or
even impossible to achieve in a PDBS where nodes are al-
lowed to join and leave the network at any time. Thus, these
systems are usually based on the open world assumption
(i.e., the assumption that the data and results are incom-
plete) and return only certain query answers [17].

Recall and Query Services. The query capabilities are di-
verse in traditional DDBS, where location and fragmenta-
tion transparency are embedded in the query languages.
In PDBS, instead, the query services are still limited and
highly depend on the kind of network underneath. In partic-
ular, unstructured networks support keyword-based queries,
whereas structured network handle both lookups [34] and
range queries [16]. The query language expressiveness may
still be extended in both kinds of networks. Another dif-
ference between structured and unstructured networks re-
lies in the perfect/non-perfect recall. Under this respect,
structured networks are similar to traditional distributed
architectures as they achieve perfect recall (i.e., equal to 1),
whereas unstructured networks do not (less than 1).

3.3 P2P-centric Dimensions
The following dimensions address special characteristics

of P2P-based approaches, that are also desirable for data
management in PDBS.

Degree of coupling. The degree of coupling is intended as
the “awareness” of the existence of other peers. In DDBS,
all nodes are known by other sites (or at least by the co-
ordinator site) at any time, thus realizing a tightly coupled
scenario. In PDBSs, peers can join or leave the network dy-
namically. In such case, the degree of coupling among peers
is less tight, as a peer can be aware of the existence of a few
neighbors, and this awareness changes over time. The degree
of coupling also determines the level of self-organization. In
structured P2P systems where the system controls the data
placement, the ability of peers to self-organizing in a PDBS
is limited. In contrast, peers in an unstructured P2P network
can continuously self-organize to a cluster or a hierarchy.

Overlay Network topology. The different classes of P2P
overlay networks differ mainly in their topology. Unstruc-
tured PDBS are similar to DDBS: there is no fixed topology
– the overlay network is a result of the connections estab-
lished between the nodes.

The next level is formed by super-peer networks where
dedicated peers maintain more information about their as-

8 SIGMOD Record, March 2008 (Vol. 37, No. 1)



sociated peers and are interconnected with other super-peers
in a predefined way (e.g., a ring or hypercube). In contrast,
structured PDBS are based on a fixed topology like a hy-
percube [33], a ring [34], a tree [19], a binary tree [21], or a
B-tree [26].

Routing strategies. This dimension is tightly connected
with the topology dimension. In systems without a fixed
topology where information is stored at the neighbor peers,
the only choice to answer requests is flooding. However, sev-
eral solutions have been proposed which are based on main-
taining routing information in order to allow directed se-
mantic routing. In contrast, structured PDBS rely on infor-
mation about neighbors and usually implement some kind of
greedy routing. For instance, in [34], finger tables are main-
tained on each peer and used to route the search toward the
neighbors having an identifier closer to the search key.

Scalability. Unstructured networks differ from structured
ones for what concerns scalability. Unstructured networks
based on flooding are poorly scalable as the messages may
flood the network quickly. Super-peer networks partially
solve the problem whenever super-peers are used as prox-
ies and flooding is only performed between those. Random
walks may also be beneficial since the query is forwarded
to only one peer at a time, thus significantly reducing the
the network traffic. Structured networks are more scalable
than unstructured ones since the queries are only routed to
selected peers and can guarantee perfect recall. The goal
in such networks is to achieve a less than linear increase
in complexity, as the capabilities of the distributed system
grow and more hosts join it.

Anonymity and Security. A feature that characterizes P2P
systems is anonymity, i.e., in some applications, the origin
of both requests and information should remain unknown.
By routing requests through many peers and also replicating
content, the identity of participants should be kept hidden.
Another level of abstraction is the security measures of a
PDBS, i.e., only authorized users must be granted access
to privileged data. This entails the ability to authenticate
users.

4. TAXONOMY OF EXISTING P2P DATA-
BASE SYSTEMS

In this section, we review some of the proposals for PDBS
and DDBS, and classify them on the basis of the features
identified above. As a disclaimer, the reader must notice
that this list is meant to be illustrative rather than exhaus-
tive, thus further systems may be added to our taxonomy. In
particular, we do not survey XML P2P systems, which can
be found in [24], where XML data management techniques
for P2P are discussed and compared. Research challenges
on search and security issues and the view materialization
problem for P2P databases are discussed in [10] and in [15],
respectively. Finally, in this paper we do not survey P2P
content distribution models, for which a comprehensive sur-
vey can be found in [3]. Our aim is instead that of putting
together and giving a unified view of representative sets of
present PDBS and past DDBS.

We first realized that the systems we have taken into con-
sideration fall into three categories: super-peer PDBS, which
embody the DSP degree of distribution in Figure 2, Struc-
tured (DHT-based) PDBS, that correspond to D2, and Hy-
brid PDBS, that are at DHyb. Moreover, we consider DDBS

as representatives of the old architectures2. The compared
systems are reported in Table 1.

4.1 Unstructured super-peer PDBS
Edutella [28] is a super-peer PDBS, in which super-peers

are responsible for query routing in first place, and requests
are only later forwarded to simple peers. The kind of queries
it can handle are RDF-based top-K queries. Moreover, scal-
ability is highly affected by the presence of super-peers and
clusters of nodes. Fragmentation and transaction support
are to be added, along with access control and security is-
sues that are still unsolved.

4.2 Structured PDBS
Pier [20] is an Internet-scale query processor that can be

applied to P2P file-sharing (see next subsection). It imple-
ments the logical data independence principle of relational
databases. It does not have a persistent storage, as each item
is kept alive for a ‘soft-state’ lifetime, after which it is dis-
carded. This way, the ACID storage semantics of distributed
databases is sacrificed. It implements the forward-progress
multi-hop routing strategy, in which query processor upcalls
can be used to drop redundant messages in the network.
Metadata is not stored in a catalog as in distributed DBS,
but computed on the fly when needed.

Galanis et al. [12] uses a DHT-based infrastructure to re-
alize XPath searches. Structural summaries and value sum-
maries are used to bias the search toward the correct peers.
Scalability and routing protocols are the same of a DHT.

GridVine [2] is a DHT-based semantic overlay network,
based on P-Grid [1]. Contrary to other DHTs, it uses an
order-preserving DHT function, that allows compute pre-
fix and range queries, while not affecting the scalability.
The queries supported are RDF-based. The routing strat-
egy is based on Semantic Gossiping, i.e. mappings on RDF
schemas. UniStore [22], which is also based on P-Grid, sup-
ports similarity-based selections and joins as well as top-K
and skyline queries.

4.3 Hybrid PDBS
Piazza [17] is a peer-to-peer data integration system that

enables sharing heterogeneous data in a distributed and scal-
able fashion. Peers are related to each other by means of se-
mantic mappings, i.e., equalities or subsumptions between
query results on different peers, as well as by means of stor-
age expressions. The topology of the network is a freely in-
terconnected mesh of peers with semantic relationships be-
tween them. Piazza has a centralized index rather than a dis-
tributed one. This makes it more similar to a search engine
than to a DHT. Nevertheless, this index is scalable with the
number of attributes of the individual peers. HePToX [6] is
a P2P data integration system that supports data/metadata
heterogeneity and guarantees query answering by means of
the mapping graph along and against the direction of map-
pings.

PIERSearch [27] is an hybrid solution that fuses a DHT-
based search for rare items and a flooding search strategy for

2We limit ourselves to consider a sample of distributed
databases, i.e., the ones that closely resemble modern
P2P data management infrastructures. Many of the multi-
databases and federated databases proposals followed the ar-
chitecture given in Figure 1, where queries are posed against
a global schema. We do not report them here for space rea-
sons.
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popular items, being the latter based on Gnutella [14] query
processor. Being an hybrid solution, it benefits from both
technologies by taking the best of them. In particular, scal-
ability is improved by the logarithmic search in DHTs, and
the routing strategy is mainly semantic, based on inverted
lists.

PeerDB [29] is a full-fledged P2P data management sys-
tem, that employs agents to enable an effective query
processing strategy. The network consists of simple nodes
(peers) and LIGLO (location independent global names
lookup) servers. These servers assign unique IDs to the peers
and keep trace of their current status (online/offline). The
queries are formulated in SQL and the query processing
is agent-aided. In particular, to ensure a secure connection
among peers, a 128-bit encryption scheme is employed.

4.4 Distributed DBS
Mariposa [35] can be considered a pioneering PDBS, since

it is a database distributed over a WAN network, as opposed
to its predecessors that were distributed in LAN networks.
Mariposa adheres to a total decentralization model, in which
there is no central authoritarian administration, not even
for data and query allocation. Moreover, there is no upper
bound to the number of machines that can be connected and
no global synchronization is demanded. These characteris-
tics make it an early precursor of PDBS. All the distributed
DBS features, and in particular, the routing strategy are
reformulated in microeconomic terms.

R* [38] is a distributed database that realized a dis-
tributed query evaluation strategy, according to which a
global query plan is yielded at the master site and local
query plans are executed by the apprentices, i.e., local sites
that decide on the local part of the computation. R* did
not support replication or fragmentation, but had imple-
mented the location transparency, as well as a resilient sup-
port for transaction management. The metadata catalog can
be stored within both local and remote sites, thus guaran-
teeing that routing of a request is done by using the catalog
entries.

SDD-1 [5] was the first distributed database, federating
data module (DM) sites and transaction module (TM) sites,
having separate data and transaction management function-
alities. Fragments can be stored redundantly and the user is
not aware of their allocation. The data necessary for a com-
putation is saved into local workspaces, and can be retrieved
by reducer programs, that assemble it on a processing site.
Due to its modular design, this system was tremendously
anticipating the modern distributed architectures.

5. CONCLUSIONS
The emergence of PDBS, a new type of decentralized data

management system over P2P networks has raised a num-
ber of interesting questions: What DDBS or MDBS features
would be adopted in PDBSs? What operations would require
execution on multiple peers, and if so, how would they be
handled? Which distribution and federation characteristics
might be relevant in a P2P environment?

In this paper, we addressed these and similar questions by
providing a comparison among past decentralized database
systems and PDBSs in which DB-centric and P2P-centric
features were distinguished. Using these features, we analyze
a number of existing systems summarized in Table 1.

Whereas DB-centric features characterize the distributed

architectures of the past, very few P2P systems realize the
data independence principle, while none of them have strate-
gies for replication and fragmentation, and, most impor-
tantly, none of them has support for transactions. We be-
lieve that these features are of utmost importance to realize
full-fledged P2P database systems.

Concerning P2P-centric features, a surprising result of our
analysis has been the tremendous modernity of distributed
paradigms, and their anticipation of the times. Most of the
lessons learned from these systems are about scalability and
query routing strategies. It would be interesting to see how
to apply the latter strategies to P2P databases.

A final observation is devoted to anonymity, security, and
access control problems, which are still open and challenging
issues in P2P data management. While these issues have
been discussed for file-sharing systems [37, 10], their impact
on P2P database security is yet to be investigated.
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