
Database Research Opportunities in Computer Games

Walker White, Christoph Koch, Nitin Gupta, Johannes Gehrke, and Alan Demers
Cornell University

Ithaca, NY 14853, USA

{wmwhite,koch,niting,johannes,ademers}@cs.cornell.edu

ABSTRACT
In this paper, we outline several ways in which the database
community can contribute to the development of technology
for computer games. We outline the architecture of different
types of computer games, and show how database technol-
ogy plays a role in their design. From this, we identify sev-
eral new research directions to improve the utilization of this
technology in computer games.

1. INTRODUCTION
Games touch the lives of many people. They are a big por-

tion of the entertainment of the average person; the typical
American teenager spends at least an hour of every day play-
ing a computer game [26]. In addition to leisure, games can
be used in such areas as training and education [28] or mod-
eling and simulation [21]. Furthermore, computer games
are big business, rivaling the movie industry in revenues and
profits. The Entertainment Software Association estimates
that computer and video game software sales in 2006 were
$7.4 billion dollars [1]. The game World of Warcraft alone
generated revenues of $471 million dollars [13]. Clearly,
people spend much of both their time and money on games.

Unfortunately, outside of computer graphics, there has
been little academic impact on the development of computer
games. Even in the area of machine learning and artificial
intelligence, much of the technology used in games was de-
veloped in the 1980s, and the newer research does not ade-
quately address current needs [32].

We believe that the database community has unique capa-
bilities that it can bring to this area. However, the ways in
which it can contribute are not immediately clear. In partic-
ular, obvious directions such as spatial indexing are already
being used by the industry, and so work in these areas is
likely to yield only incremental benefit. Instead, we as a
community need to understand both the state of the art and
future needs of game developers. At the recent Austin Game
Developers Conference, which is dedicated to the design of
massively multiplayer online (MMO) games, several game
studios highlighted the difficulties that they encounter with
commercial database software [7, 20, 27]. In addition, the
authors of the present article have presented a unique way
in which database technology can help even non-networked

games [33] at this year’s SIGMOD conference.
In this paper, we outline some of the directions where the

database community could contribute. The directions are of
course high-level, but they are motivated by real needs in
the game industry. Furthermore they result in fascinating re-
search problems for the database community. In particular,
the confluence of expertise in large data, systems, and lan-
guages from the database community is crucial to advances
in the research directions that we outline.

We do not believe that these are all the problems. In par-
ticular, some of the problems that the database community
has been notoriously bad at, such as high-level interfaces to
the data, are central to the success of the endeavors that we
outline. However, we believe that by undertaking this re-
search, we have the means to make a significant impact on
the game community, and thus indirectly, society at large.

We wrote this article in order to familiarize the database
community with computer games and their unique chal-
lenges. In the most general sense, a computer game is a
virtual environment in which players interact with digital
objects or each other for entertainment. This includes ev-
erything from casual single-player games such as Solitaire
or Minesweeper, to immersive massively multiplayer expe-
riences like World of Warcraft or Second Life. While in the
future, data management techniques will certainly reach out
to other computer game genres, the present article focuses on
games that have an important simulation component. In par-
ticular this includes (first-person) shooter games, real-time
strategy games, massively multiplayer online games, and
various types of games for training and education. These
groups form a major share of the computer games market.

The rest of the paper is organized as follows. In Section 2
we outline, at a very high level, the system architecture of
various computer games. Within this architecture we pay
special attention to the ways in which databases and database
technology play a role. In Section 3 we identify several
broad research directions in which the database community
can improve these architectures. We conclude in Section 4.

2. GAME ARCHITECTURE
To understand how database research can help to improve

game technology, we must first understand modern game ar-

SIGMOD Record, September 2007 (Vol. 36, No. 3) 7

Physics Engine

AI Engine
(e.g Pathfinding)

Input Devices

Rendering
Engine

Audio
Engine

GUI

Data Management Layer

Models
and Textures SoundsUI

Elements

Player
D

es
ig

ne
r

or
M

od
de

r
Pr

og
ra

m
m

er
Game Engine

Game Content Character
Scripts

Character
Data

Compiler

Discrete
Simulation

Engine

Figure 1: Non-Networked Game Architecture

chitecture. In some cases, such as MMO games, databases
are already an integral part of the design, but may not be
leveraged in the most effective way. There are other cases in
which database technology may not currently be used but its
introduction could be greatly beneficial. Scripting charac-
ter behavior in single player games, as demonstrated by the
scripting language SGL, is one such example [33].

Describing modern game architecture is difficult because
there is no one way to design a particular game. While a
large part of game design lies in creating the game content,
most game studios do quite a bit of custom architecture de-
velopment. Even in cases where a game studio licenses its
software technology from others, such as Epic Games’ Un-
real Engine 3 [16], the studio is likely to modify or extend
the system in order to adequately tune performance for their
game. Furthermore, architecture often varies widely across
game genres. Therefore, our discussion of game architecture
is at best an idealization that attempts to highlight the most
important aspects of game design.

In this discussion, we classify games according to how
they are connected to each other over the network. In our cat-
egorization, there are three types of games. Non-networked
games are those that can be played locally and do not interact
with other instances over the network. In a non-networked
game, if the player wants to play with another human, then
that person must be local, acting through a second input de-
vice. Non-persistent games are networked games in which
the game state exists for only a single session. In such
games, when players start a new session they return to their
initial state and so all of their previous actions are lost. Fi-
nally, persistent games are those that provide an environment
that preserves the actions of its players. Persistent games of-
ten provide living worlds that exist and evolve beyond the
game session of any single player. Each of these types of
games can exploit database technology in different ways.

2.1 Non-Networked Games
Modern commercial games are rarely designed without

network capability, as this is an important part of game value
and longevity. However, non-networked functionality is an
important part of any game, and its architecture is typically
a subset of any of the others.

One of the most important aspects of modern game design
is that it be data-driven. Loosely defined, a data-driven de-

sign is one in which the game content is separate from the
game code [10]. This design style has several advantages.
It allows the game studio to separate development between
programmers and game designers, two groups with essen-
tial but not necessarily overlapping skills. It also allows the
studio to reuse the code, typically referred to as the game
engine, for other games, or even license the engine to other
studios. Finally, it allows the game content to be modified by
users. “Modders” are after-market designers who replace old
game content with new content in order to keep a game fresh
and interesting. Allowing users to create their own content
can significantly increase the appeal and life-span of a game.

With that said, “game content” is a fairly vague term. Ob-
viously, it includes media such as character models, tex-
tures, or sounds. It also includes the data used to define the
story-line or initial starting state of the game objects [31]. It
even includes scripting languages that define character be-
havior [12, 8]. As character designers often have a different
set of skills from programmers, these scripts are usually de-
veloped using high-level tool-sets like Simbionic [15].

Figure 1 represents the architecture of an idealized non-
networked game. It illustrates the separation of the game
content from the game engine. The former is created
by game designers or by modders, while the latter is the
purview of programmers. Given the volume and diversity
of game content, games obviously need a sophisticated data
management layer in order to handle this data. However, it
is not immediately clear that this is a problem of interest to
database researchers. Objects are simply loaded in memory
as needed; games do not need particularly complex query
processing to handle things like sound or artwork.

One easily identifiable area in which databases can help
non-networked games is the discrete simulation engine [33].
To understand this part of a game engine, we must first un-
derstand the event-loop architecture of games. Every game
has a main loop that animates the game. Each pass through
the loop corresponds to a frame of animation on screen. Dur-
ing a single pass, the game engine does the following:

• computes the behavior of all the game objects by
querying the current state of the world,

• updates the state of all the game objects according to
this computed behavior, and

• draws the new state of the world to the screen.
The query-update part of this animation loop is what we term
the discrete simulation engine. In basic game frameworks
like XNA [22], the simulation-engine is processed lock-step
with the graphics engine, so nothing can change on screen
without an explicit update from the simulation engine. More
sophisticated engines run the simulation and graphics en-
gines as separate threads, with the simulation engine running
at a slower rate [17]. In between updates from the simula-
tion engine, the graphics engine thread interpolates the world
state in order to provide smoother animated behavior.

The query-update model of the simulation engine makes it
an obvious candidate for application of database technology.

8 SIGMOD Record, September 2007 (Vol. 36, No. 3)

However, to do this, we need to understand how the sim-
ulation engine fits with the other components of the game
engine. For example, the graphics engine needs to know the
state of the world in order to render it. If the world state is
represented in the database, should this engine access it us-
ing a database API? Or, since graphics programmers rarely
know SQL or other database languages, should they access
it through an object-oriented API, with the game engine au-
tomatically handling the conversion? Similarly, the AI en-
gine needs to access the world state so that it can perform
long-term planning (often asynchronously from the anima-
tion loop). As AI queries are often much more complex than
those of the graphics engine, it is not clear that the same API
is appropriate for both.

Conversely, there is the issue of how the simulation thread
itself receives data from other parts of the system. For exam-
ple, the physics engine often handles such issues as collision
detection, which are a part of the query-phase of the simula-
tion engine. Should collision detection be treated as a black-
box operator, or is there a way to integrate it into the query
plan? As another example, the simulation thread needs to
react to commands sent to it by the player through the input
devices. It is possible for multiple commands to queue up
during a single pass of the loop, and the query plan must ad-
just itself accordingly. All of these are important software
engineering questions, and there is not one simple answer.

2.2 Non-persistent Games
Most games played over a network are not persistent. In

games like Half-Life 2 or Halo 3, a player cannot save a
game during network play. If the player leaves the game
during the session, then all of her state is lost and she must
be initialized again when she rejoins. This feature is accept-
able because the games are designed with short term goals
that can be completed in a single session. There are some
non-persistent games, like Diablo 2, that allow players to
keep some very limited local state between sessions, such as
their abilities or their equipment. However, the state of the
complete game environment is never saved.

The defining characteristic of a non-persistent game is that
there is no single authority for the game state. As such, it is
common for these games to be designed peer-to-peer, espe-
cially on a LAN where latencies are low. Sometimes these
games will connect to a initial broker server which can match
up games looking to network with one another. But once the
game instances are connected, no central server is involved.

Architecturally, non-persistent games are similar to non-
networked games except that they have an additional net-
work layer. The additional challenge with these types of
games is concurrency control. As there is no one authori-
tative repository for the game state, it is a challenge to keep
the states consistent in real time. There are many different
solutions to this problem. Older games use lock-step or pes-
simistic synchronization protocols [2]. More modern games
use optimistic synchronization protocols. In these designs,

Client

Server 1

Map/Application Servers

Directory
Server

Server 2 Server 3 Server 4

Monitoring
Database

World State
Database

Transactional Database Cache

Login
Server

User Accounts
Database

Figure 2: Persistent Game Architecture

the games partition their data so that each game instance is
“authoritative” on a particular set. On data on which a game
instance is not authorative, it simulates the other instances
between network messages, and rolls back any simulations
that are not correct [24].

In addition to concurrency control issues, another way in
which database technology can fit into non-persistent games
is game monitoring. Game companies are increasingly in-
terested in gathering information about demographics and
play-behavior from their users. This allows them to evalu-
ate what features of the game are successful and should be
incorporated into the design of future games. It also helps
them to understand their market for purposes of advertising
or localizing game content. Monitoring is used extensively
in MMOs [18], but it is possible with any game connected to
the Internet. For example, the gathering of this data may be
part of the terms of service of the broker used to match up
game instances.

Monitoring game data is a challenging problem because
there is so much of it. In its most primitive form, monitoring
consists of a log of the history of the game’s world state over
time. However, this level of detail is unnecessary and very
difficult to analyze. Furthermore, the designers may want to
break up the data for use by different groups in the company.
The data needed by the marketing department is not the same
data that the designers need to analyze gameplay.

2.3 Persistent Games
Persistent games always have an authoritative store of the

current game state. Therefore, they almost always have a
client-server architecture. As such, the game is sold as a ser-
vice, because the game studio must manage a data center in
order to keep the game running. Therefore, persistent games
have much more in common with traditional database appli-
cations than other games. Indeed, databases already play a
central role in all existing MMO games, which are the most
common example of a persistent game.

There are a variety of persistent architectures in use, but
we can summarize them at a high level with the illustration

SIGMOD Record, September 2007 (Vol. 36, No. 3) 9

in Figure 2. The primary difference between this architec-
ture and that of the previous two categories is that no one
machine is responsible for all of the components of the game
engine. For example, no server runs a copy of the graphics
engine, as this is clearly unnecessary. On the other hand,
the client almost never does any arbitration or make any au-
thoritative decision other than computing local game state
and rendering it. Industry aversion to client-side computa-
tion is very strong, as clients are subject to being reverse-
engineered and hacked. Hacked clients could be modified to
“cheat” at the game, ruining the experience for other play-
ers, and thus devaluing the service provided by the game
studio. Therefore, in a modern MMO game design, no client
computation is ever allowed to determine the outcome of an
interaction of a player with a game object.

Instead of client-side computation, the simulation engine
is run on an application server. This application server may
be anything from a single server thread on one machine to a
distributed application spread across many machines. Appli-
cation servers are often termed “map servers” because each
server instance typically corresponds to a geographic zone.
In this implementation, when a player crosses from one geo-
graphic zone in the game to another, her client must change
servers. This hand-off is typically achieved through a di-
rectory server, which can also redirect the client in case of
server failure. This design is favored because players can
only influence others in their geographic vicinity, so this
provides a natural way to reduce the communication band-
width between server instances. The treatment of zone bor-
ders leads to complex concurrency control problems, includ-
ing real-time consistent propagation of visible effects across
zone boundaries as well as the atomic client hand-off opera-
tion mentioned above. These issues are handled differently
in every architecture.

Another technical challenge with persistent games is
transaction management. In non-persistent games, data cor-
ruption can easily be handled just by ending the session. Per-
sistent games, on the other hand, must react to such issues
by rolling back incomplete or failed transactions. They do
this by managing the world state entirely within a database,
which may be disk resident or in-memory. In addition to
guaranteeing transactional behavior, this also provides the
world state with an opportunity to persist in the case of
server failure.

The problem with this approach is that disk-resident
databases are not designed to handle the load that these types
of games require, and in-memory databases that may be able
to handle such loads do not provide the required persistence.
Game transactions are highly interdependent, with the out-
come of each update likely to affect the next query. As a
result, even using high-end commercial products such as Or-
acle, Microsoft SQL Server or BerkeleyDB, today’s MMO
games struggle to achieve much more than 500 transactions
per second [7], and this transaction rate cannot be improved
by simply adding more machines. In order to deal with this

problem, most architectures have a database cache that sits
in front of the database. This custom designed application
handles the transactions in main memory and only periodi-
cally writes to the actual database for persistence.

The overhead of all this transaction management comes at
a price. Even the fastest MMO games cannot handle more
than about 10 frames per second [7] in their simulation en-
gine. As with graphics threading in non-networked games,
game designers handle this problem via interpolation. State
changes in the simulation are represented at a very coarse
level, which are then interpolated in the client in order to
produce smooth results. For example, in World of Warcraft,
if a player starts dancing, the world state database only notes
that the player is dancing and for how long. The exact ani-
mation of the dance is entirely up to the client and may be
visibly different between two different clients.

In addition to the world state database, persistent games
have two other important databases. One is the monitoring
database which serves the same role as for non-persistent
games. The other is the accounts database. This is a standard
database that acts as a gateway to make sure that the player
is authorized to join the game.

To put all of the pieces together, let us walk through a sam-
ple session in an MMO using the architecture in Figure 2.
The player starts playing by connecting her client to a login
server, which checks that the player has a valid and current
account with this game service. If so, the client is handed off
to the directory server, which will assign her an application
server. To do this, the directory server will load the player’s
state from the world state database to determine her phys-
ical location. Once assigned to an application server, the
player interacts with all players on her server, which includes
all those in her immediate vicinity. All computation of this
interaction occurs either on the application server or in the
database cache, but is rendered locally at the client. Should
the player change zones or lose touch with the server, she is
assigned a new one by the directory server. When the player
quits the session, her final state is stored to the world state
database so she can begin the game there when she returns.

3. RESEARCH DIRECTIONS
The presence of database technology in games opens up

several opportunities for research. Many of these research
possibilities, like query processing, query optimization, and
indexing are traditional topics that need to be explored again
with new assumptions. Others, like motion steering [25, 29,
30], introduce new problems to the database community. We
survey here three broad research directions of which we have
the best understanding so far.

3.1 Database Engines for Games Workloads
3.1.1 Query Processing

The most immediate problem for the community to ad-
dress is that of new query processing requirements. The
vast majority of database research is devoted to optimizing

10 SIGMOD Record, September 2007 (Vol. 36, No. 3)

queries for disk I/O. Games, on the other hand, need to pro-
cess database queries at about the graphics frame rate, and
therefore cannot afford to access the disk. Currently, high
speed SATA drives like the WD Raptors have a uniform sus-
tained transfer rate that tops out at 85 MB per second [14].
This means that a typical game that wants to run its simula-
tion engine at 20 frames per second [17] can access only a
little more than 4 MB per query-cycle. With gaming-grade
PCs currently shipping with gigabytes of RAM, it makes
much more sense in this context to focus optimizing query
performance in memory.

There has been considerable work in the community on
streaming [5, 23, 6, 11] and in-memory databases [3, 4].
However, games have unique workloads that present several
new optimization challenges. In particular, games perform
a fairly even mixture of queries and updates, organized in
bursts of O(n) queries followed by O(n) updates, corre-
sponding to the simulator frame rate. This means that any
index structures developed for games must support an ex-
tremely high rate of churn. Solving this problem can open
up whole new areas of query processing. For example, one
of the more interesting discoveries in the development of
the SGL language [33] was that, in some cases, it may be
cheaper to completely annihilate an index and rebuild it,
rather than to support the rebalancing behavior of the in-
dex. For example, suppose we have a game with n charac-
ters interacting with each other. In order to process a partic-
ular query efficiently, we need a d-dimensional orthogonal
range tree. We can build a non-dynamic tree from scratch
in O(n logd−1 n) time. A dynamic tree does not need to
be rebuilt every frame; we can just remove and reinsert the
character at a new position. If only k out of the n characters
need to be updated, then this sequence of removal and up-
dates costs O(k logd−1 n log log n) time [9]. The overhead
of this dynamic structure can be significant if k is very close
to n, reducing the number of frames per second that we can
achieve. Hence, if we can batch the read-only part of game
actions, as SGL does, to amortize the cost of rebuilding the
index, the static index may be cheaper than the dynamic one.

3.1.2 Indexing
Games also present the opportunity for the development

of a wide array of new index structures. The single greatest
computational problem for games [19] is the O(n2) prob-
lem: if the action of each game object depends on every
other game object, then this action takes O(n2) steps to com-
pute, where n is the number of game objects. SGL identi-
fied aggregate indices as a straight-forward means to solve
this problem [33]. However, it only provided indices for a
limited class of aggregates. There are many important ag-
gregates not covered by this work. For example, all of the
range-dependent aggregates in SGL assumed that the play-
ers were out on a battlefield with no obstacles blocking vis-
ibility. In order to take obstacles into account, we need to
develop aggregate indices that are compatible with visibility
graph structures, like binary space partition trees.

In developing these new indices, the research needs to
be aware of their memory footprint as well as their per-
formance. Just as it is too expensive to read game data
from the disk each frame, the indices must reside entirely
in memory. This can be nontrivial for high-dimensional in-
dex structures such as the orthogonal range trees used by
SGL. A d-dimensional tree with fractional cascading takes
O(n logd−1 n) storage. In a 32-bit address space where the
aggregates being computed are all doubles, an index for a
4-dimensional orthogonal range query (e.g. x-position, y-
position, armor strength, and health) in a game with 10,000
objects would require a structure nearly 0.5 GB in size. This
is 1/8th the address space of a 32-bit machine, and thus sup-
porting multiple such indices is clearly untenable. While
some of this problem can be solved by moving to a 64 bit
machine, this causes the pointer size to double and so even
more memory is necessary.

3.1.3 Engine Support for New Languages
In [33] the authors showed that translating game AI scripts

into relational database queries and optimizing them allows
for increased scalability. These game scripts, however, call
for a few extensions of the query language in order to support
such new features as randomness or combining the effects
of simultaneous actions. We need to develop efficient query
processing and optimization techniques for these extended
query languages.

3.2 Adaptation of Game-Specific Algorithms
3.2.1 Steering

We need to adapt game-specific algorithms to be compati-
ble with these query engines. Motion steering is a canonical
example of this. To understand what we mean by motion
steering, we need to understand how motion planning works
in games. Traditionally this planning is achieved at two lev-
els [25]. In the first level, classic pathfinding algorithms such
as A? are used to find the shortest path through a collection
of static, unmoving objects; this path is computed once, be-
fore the character begins to move. However, once the char-
acter starts moving along this path, we need to worry about
collisions with other characters. This is achieved using ar-
tificial potential fields, which gently push a character away
before a collision happens [30]. Potential fields calculations
must be queried every frame, and therefore should be pro-
cessed by the query engine. As the field must be computed
anew for each game object, in a game with n moving ob-
jects this computation is O(n2) – and thus expensive – when
these objects become crowded together.

Existing potential field algorithms are not amenable to tra-
ditional aggregate indexing techniques. For example, if a
game object is at position pu, then the computation of the
potential field may require us to evaluate the function

F (pu) =
∑
u′ 6=u

1
||pu − pu′ ||

for each object u. We cannot do this with a sum index, be-

SIGMOD Record, September 2007 (Vol. 36, No. 3) 11

cause the values that we want to sum are different for each
location pu. Fortunately, computing these algorithms ex-
actly is not important; it is only important that the behav-
ior “looks correct” onscreen. Thus, if the algorithms can be
altered in such a way that they are amenable to aggregate
indexing, this can help greatly with game performance.

3.2.2 Set-At-A-Time Processing
Another way in which game algorithms need to be re-

designed to take advantage of database technology is to
make them more amenable to set-at-a-time processing. If
one action depends on the result of another (e.g. a charac-
ter cannot steal gold from a chest if another character steals
it first) then it is difficult to process these actions as a sin-
gle query. SGL handles this problem through a computa-
tional model that supports simultaneous actions [33]. While
games already use this computational model for a large part
of their design, some actions are easier to model than oth-
ers. For example, steering algorithms are not always perfect,
and collisions may occur. When this happens, the simula-
tion engine needs to resolve the collision before the results
are rendered onscreen. The problem then, is to determine
how to resolve these collisions in a set-at-a-time fashion. In
traditional game engines, objects move one at a time, so if
there is a collision, the object can be moved back to its origi-
nal location. If we move all of the objects at once, we need to
be concerned about a second object moving into its original
location, thus preventing us from undoing the move.

3.3 Consistency in Networked Games
Players in a networked game may be geographically dis-

persed, so speed-of-light round trip times are on the order
of several tens of milliseconds. Actual measured RTTs can
be significantly longer, exceeding the simulation frame rate.
These delays make consistency a serious problem. So far we
have seen two design points for networked games:
Non-persistent Games. A sophisticated non-persistent
game uses a P2P architecture and optimistic concurrency
control. Each instance is authoritative about the player and
game objects that it holds. For the remaining objects, the
instance optimistically simulates operations and rolls back if
the result eventually received from the authoritative instance
is in conflict. This means every instance is either execut-
ing (authoritatively) or simulating (optimistically) the entire
game state. Note the number of network connections grows
as the square of the number of instances. So this approach
generally cannot scale beyond a handful of instances.
Persistent Games. In a modern persistent game, all game
computation is done at a central server, which is usually di-
vided into zone servers internally as discussed above. This
approach does not simplify computation at the client very
much. Effectively, the client is not authoritative about any-
thing, but because of the long RTT between client and cen-
tral server, each client must execute its own actions opti-
mistically (in order to show them to the user in near-real
time) and then resolve conflicts as they are received from the

server. Moreover, the central server is a scaling bottleneck.
We need to research ways to integrate these two designs

to achieve greater scalability and potentially lower average
latency. One possible approach is to use optimistic concur-
rency control against a central server (as in the persistent
case) but allow clients to be authoritative about objects they
hold (as in the non-persistent case). Making clients authori-
tative allows a design in which the central server makes se-
rialization decisions by ordering events in the virtual world,
but the server is not required to execute any of the game
logic, thus making it more scalable. We could then use local-
ity properties of game moves to limit the amount of specula-
tive computation required at each client to only those com-
putations needed to display relevant nearby state to the user.
This is roughly equivalent to the division of a central server
into zone servers as discussed earlier. Using the zone assign-
ments, the server could route to each client only the moves
and game state data needed for its local computation.

4. CONCLUSIONS
In this paper, we have illustrated how databases fit into

computer games and research areas in which the database
community can contribute. As a final word, aside from be-
ing an interesting area for new research problems, we think
there are two important reasons why the database commu-
nity should embrace games.

The first reason has to do with multicore architectures.
The computer science research community has been riding
Moore’s law for the last four decades, and the exponential
increase of clock frequency has translated into exponential
performance growth for years. Worries that Moore’s law
cannot continue have been looming on the horizon, and the
computer architecture community has developed ingenious
ways to address some of these ailments. For example, rela-
tive slow memory speeds have been addressed with caches,
out-of-order execution, and speculative execution; low uti-
lization of processor resources has been addressed with si-
multaneous multithreading, and so on. However, recently
clock frequency growth stalled because the power dissipa-
tion trends became unmanageable. We now hope that we
can ride Moore’s law again by doubling the number of cores
in every new generation of processors, resulting in the next
wave of exponential performance growth through massive
parallelism. The database community has much expertise
with parallelization of database queries. Injecting database
processing models into computer games may thus also be an
investment into the future for an easy transition to a highly
parallel programming model.

Second, recent years have witnessed a significant drop
in enrollments in computer science at American universi-
ties. Many universities are currently developing programs
in computer games. For example, at Cornell we have an un-
dergraduate minor in computer games that is associated with
the Game Design Initiative at Cornell University (GDIAC;
http://gdiac.cis.cornell.edu) in which several

12 SIGMOD Record, September 2007 (Vol. 36, No. 3)

of the authors of this paper have become heavily involved.
In GDIAC courses, students work cooperatively across dis-
ciplines and years. A typical GDIAC student group involves
artists, writers, musicians, and programmers, all working to-
gether to make an original game. All students engage in the
game design process, planning and refining game rule sys-
tems, mechanics, and interfaces. Attracting students to the
field of computer science through computer games is one
way to convey the excitement of our field [34], and we be-
lieve that the database community is poised to contribute.
Acknowledgments. This work is supported by the National
Science Foundation under Grant IIS-0725260, the Air Force
under Grant FA9550-07-1-0437, and a grant from Microsoft
Corporation. Any opinions, findings, conclusions or recom-
mendations expressed herein are those of the author(s) and
do not necessarily reflect the views of the sponsors.

5. REFERENCES
[1] Entertainment Software Association. 2006 sales,

demographic and usage data: Essential facts about the
computer and video game industry.
http://www.theesa.com/.

[2] P. Bettner and M. Terrano. 1500 archers on a 28.8:
Network programming in Age of Empires and beyond.
In Proc. GDC, 2001.

[3] P. Bohannon et. al. The architecture of the Dalı́
main-memory storage manager. Multimedia Tools
Appl, 4(2):115–151, 1997.

[4] P. A. Boncz and M. L. Kersten. Monet: An
Impressionist Sketch of an Advanced Database
System. In Proc. Basque Int. Workshop on Information
Technology, San Sebastian, Spain, July 1995.

[5] D. Carney et. al. Monitoring streams — a new class of
data management applications. In Proc. VLDB, 2002.

[6] S. Chandrasekaran et. al. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR,
2003.

[7] B. Dalton. Online gaming architecture: Dealing with
the real-time data crunch in MMOs. In Proc. Austin
GDC, Austin, TX, September 2007.

[8] B. Dawson. Game scripting in Python. In Proc. GDC,
2002.

[9] M. de Berg et. al. Computational Geometry:
Algorithms and Applications. Springer Verlag, 2nd
edition, 2000.

[10] M. DeLoura, editor. Game Programming Gems,
volume 1. Charles River Media, 2000.

[11] A. Demers et. al. Cayuga: A general purpose event
monitoring system. In CIDR, 2007.

[12] M. Dickheiser, editor. Game Programming Gems,
volume 6. Charles River Media, 2006.

[13] Screen Digest. Western world MMOG market: 2006
review and forecasts to 2011.
http://www.screendigest.com/reports, March 2007.

[14] Western Digital. WD Raptor WD740ADFD.
http://www.wdc.com/en/products/products.asp?driveid=244.

[15] D. Fu, R. Houlette, and R. Jensen. A visual
environment for rapid behavior definition. In Proc.
Conf. on Behavior Representation in Modeling and
Simulation, 2003.

[16] Epic Games. http://www.unrealtechnology.com.
Corporate Website, 2007.

[17] Intel. Threading games for performance: A one day
hands-on workshop by intel. In Proc. GDC, San
Francisco, CA, March 2007.

[18] D. Kazemi. Gameplay metrics for a better tomorrow.
In Proc. Austin GDC, Austin, TX, September 2007.

[19] P. Kruszewski and M. van Lent. Not just for combat
training: Using game technology in non-kinetic urban
simulations. In Proc. Serious Game Summit, GDC,
San Francisco, CA, March 2007.

[20] J. Lee, R. Cedeno, and D. Mellencamp. The latest
learning - database solutions. In Proc. Austin GDC,
Austin, TX, September 2007.

[21] D. McGrath, M. Ryan, and D. Hill. Simulation
interoperability with a commercial game engine. In
European Sim. Interop. Workshop, 2005.

[22] Microsoft. XNA developer center.
http://msdn2.microsoft.com/en-us/xna/default.aspx.

[23] R. Motwani et. al. Query processing, approximation,
and resource management in a data stream
management system. In Proc. CIDR, 2003.

[24] A. Mulholland and T. Hakala. Programming
Multiplayer Games. Wordware Publishing, 2004.

[25] J. O’Brien and B. Stout. Embodied agents in dynamic
worlds. In Proc. GDC, San Francisco, CA, 2007.

[26] Bureau of Labor Statistics. American time use survey.
http://www.bls.gov/tus/, 2006.

[27] S. Posniewski. Massively modernized online: MMO
technologies for next-gen and beyond. In Proc. Austin
GDC, Austin, TX, September 2007.

[28] M. Prensky. Digital Game-Based Learning.
McGraw-Hill, New York, 2001.

[29] C. Reynolds. Steering behaviors for autonomous
characters. In Proc. GDC, 1999.

[30] B. Stout. Artificial potential fields for navigation and
animation. In Proc. GDC, 2004.

[31] M. Thamer. Act of mod: Building Sid Meier’s
Civilization IV for customization. Game Developer,
August:15–18, 2005.

[32] Various. Artificial intelligence in computer games.
Roundtable Discussion at GDC, San Francisco, CA,
March 2007.

[33] W. White et. al. Scaling games to epic proportions. In
Proc. SIGMOD, pages 31–42, 2007.

[34] M. Zyda. Introduction: Creating a science of games.
Communications of the ACM Special Issue: Creating
a science of games, 50(7):26–29, July 2007.

SIGMOD Record, September 2007 (Vol. 36, No. 3) 13

