
Extending Object Database Interfaces with Fuzziness through
Aspect–Oriented Design

Miguel-Ángel Sicilia & Elena Garćıa-Barriocanal
Computer Science Dept., University of Alcalá {msicilia,elena.garciab}@uah.es

Abstract

Fuzzy logic has been used yet for extending data-
base models to deal with vagueness in the definitions
of linguistic concepts as “tall” or “long”. However,
the extension of existing programming interfaces for
fuzziness requires a proper modularization of the un-
derlying concerns of numerical imprecision handling.
Such modularization should not interfere with ex-
isting programming practices, and they should not
obscure the original design. Aspect–oriented design
(AOD) enables such form of non–intrusive extensions
to be added to existing software libraries. In this pa-
per, the main design and implementation issues of
such AOD–based extensions on OJB database libraries
are briefly sketched.

1 Introduction

Fuzzy set theory provides numerical models for han-
dling vagueness as expressed for example in sentences
like “x is tall”. In such sentences, the determination
of which individuals belong to the class or set tall is
a matter of (numerical) degree that depends on their
height, as modeled in what is commonly known as
“membership functions”. In addition, other related
mathematical frameworks have provided numerical
models for other kinds of imprecision or uncertainty
[13]. The integration of such models into database
structures has been subject of a significant amount of
research in recent years. Fuzzy databases and fuzzy
querying research has resulted in diverse extensions
to the relational and object data models [2, 3, 5].
Further, several implementations of fuzzy queries on
top of commercial database systems or standard in-
terfaces have been developed, e.g. [9, 17, 18].

In some modern database approaches, interfaces
for orthogonal persistence of objects [1] are provided
to the programmers, i.e. the provision of persis-
tence is the same for all data irrespective of their
type. This entails that no specific programming is
required to make a type persistent. The extension

for fuzziness of such kind of interfaces can be ac-
complished by adding elements to the query syntax
and also by augmenting programming interfaces to
deal with the desired fuzzy capabilities — e.g. as in
[9]. In any case, several reasons point to some im-
plementation characteristics that are required for a
seamless integration with existing interfaces. On the
one hand, extensions should be strictly additive, i.e.
they should not interfere with the non–fuzzy capa-
bilities of the programming and querying interfaces,
both for the sake of backward–compatibility and of
ease of learning [12]. And on the other hand, the
extensions should be properly modularized, not ob-
scuring the original design and architecture of the ex-
tended database libraries. The first requirement can
be met through a careful design, using polymorphism
and proxy objects as described in [9], and using re-
flective capabilities when required. Nonetheless, the
second requirement calls for specialized design and
implementation capabilities that allow the extension
of software with cross–cutting concerns (as fuzziness
can be considered with regards to data representa-
tion). Aspect–oriented design (AOD) [16] provides
the required modularization capabilities for the lat-
ter issue. In this paper, the implementation issues
of fuzzy extensions to object–database interfaces are
approached from the perspective of AOD. Such novel
approach is then put into practice through a concrete
case study using aspectj to extend the Java–based
interfaces of the ObjectRelationalBridge (OJB)1

open–source libraries. Related work includes studies
of fuzziness related to prototype theory of categoriza-
tion [15] to classify types of software units, but no pre-
vious research exists on the introduction of fuzziness
in software units through aspect–oriented techniques.

The rest of this paper is structured as follows. Sec-
tion 2 describes the rationale behind using AOD to
implement fuzziness as a concern in existing program-
ming interfaces. In Section 3, the general issues of
extending OJB interfaces with fuzziness are described.
Then, a simple case of fuzzy extension is sketched in

1http://db.apache.org/ojb/

Section 4.

2 Fuzziness as a Concern in Object-
Oriented Software

Imperfection in information should be addressed
early in the lifecycle due to the specifics of un-
certainty and imprecision in conceptual modeling
[4], and its impact on architectural and implemen-
tation decisions — most notably in persistence
and querying [9]. Information imperfection is a
logical “matter of interest”, according to COS-
MOS [14] terminology. It can be organized in
several classifications [14], one for each of the
considered principal aspects of imperfection, e.g.
Imprecision-Related, Uncertainty-Related,
Inconsistency-Related or Hybrid. Further
subdivisions inside those categories may refer to
more specific types of imperfection according to a
given list like Smet’s taxonomy [13]. For example,
FuzzyElement refers to “imprecision without error”
without decidability as in “age is close to 30”, while
PossibleElement refers to “happen–ability” as
a kind of uncertainty. According to the kind of
element in the conceptual model that is subject to
imperfection, we can have additional classifications
in another dimension, namely Imperfect-Element,
and ImperfectRelationship, the former con-
taining subdivisions as Imperfect-Class,
Imperfect-Attribute, Imperfect-Function
and Imperfect-Result, which roughly correspond
to classes, attributes, methods and method results
in object–oriented conceptual models. Imperfect
conceptual model elements can be expressed in the
domain model through extensions to the Unified
Modeling Language (UML) notation like the one
sketched in [8].

AOD can be used as the candidate detailed de-
sign technique whenever concerns cross–cut software
modules, and it becomes the required option if ex-
isting libraries are required to be extended for fuzzi-
ness without changing the syntax and semantics of
their interfaces. This is because aspects like those
of aspectj[6] allow the proper modularization and
encapsulation of concerns, avoiding tangling existing
source code. Moreover, AOD enhances maintainabil-
ity, since the added concerns for fuzziness are sepa-
rated from “crisp” functionality, so that defects can
be easily located. In addition, AOD for the imple-
mentation of fuzziness eases the production of “crisp”
and “fuzzy” versions of the same software, since the
features of advice and introduction contained in as-

pects are dynamic, and thus they can be “disabled”
by simply excluding the aspects from the concrete
build of the system.

3 Extending OJB with aspectj

As mentioned above, the techniques of aspect-
oriented design (AOD) provide improved modular-
ity to software systems by focusing on separation of
concerns [16]. Fuzziness can be considered a cross–
cutting concern for existing database processing li-
braries, so that it can be added to existing crisp soft-
ware without altering the original programming in-
terfaces. As a proof of concept for introducing fuzzi-
ness, the OJB framework has been extended by using
AspectJ. The AspectJ framework [6] is an AOD ex-
tension to the Java programming language based on
the concept of dynamic pointcut (the intersection of a
number of well–defined execution points) and advice
(code attached to specific pointcuts). Using aspects
in OJB requires a previous recompilation of its source
code version. OJB supports multiple persistence ap-
plication programming interfaces (APIs), including
JDO and ODMG compliant ones. However, all of
them are built on top of a persistence kernel, so that
it makes sense to concentrate first on it, and later
address higher–level interfaces. In addition, a princi-
ple of “minimum difference” with existing interfaces
and programming idioms is followed, in an attempt to
maximize the usability of the extensions in the sense
described in [12].

3.1 Extending metadata handling

Metadata handling in OJB is centralized in the
MetadataManager class, implementing a singleton
pattern that can be used to obtain a reference
to the DescriptorRepository instance containing
object mapping and manipulation information for
persistent objects. The class needs to be ex-
tended to deal with the required metadata describ-
ing fuzzy constructs. The better way to do it is by
merging standard metadata descriptions with fuzzy
ones. This can be accomplished by invoking the
mergeDescriptorRepository method after a (suc-
cessful) call to the MetadataManager.init method
at construction time, by capturing its pointcut
through an around advice. The following code frag-
ment sketches an aspect encapsulating such process-
ing:

public aspect FuzzyMetadataManagement {

DescriptorRepository drp;

void around (MetadataManager m):

target(m) && call(* MetadataManager.init(..)){

try{ proceed(m);

}catch(MetadataException e){throw e;}

drp = loadFuzzyDescRepository();

m.mergeDescRepository(drp);

}

private DescriptorRepository

loadFuzzyDescRepository(){

DescriptorRepository dr =

new DescriptorRepository();

// load descriptor repository..

return dr;

} //...}

The loadFuzzyDescRepository method simply car-
ries out the processing of the fuzzy schema descrip-
tion residing in a XML file, similar to that described
in [9]. It should be noted that neither inheritance
nor reflection would have been enough to make this
change without modifying existing libraries, since at
least the getInstance method of MetadataManager
would had to be changed to instantiate a new sub-
class or build it dynamically.

3.2 Describing Imperfect-Elements

The current interface of DescriptorRepository
makes use of ClassDescriptor for the object–
relational mapping descriptions, which in turn uses
FieldDescriptor to specify the storage of class
attributes. Both elements can be extended to
their fuzzy counterparts through subclassing, and
other conceptual data elements like associations
[10] can be derived from the common super–class
DescriptorBase which is an open–ended hook for
them. Imperfect-Class and Imperfect-Attribute
concerns can be implemented by extending the
ClassDescriptor and FieldDescriptor classes re-
spectively with methods to query for the data map-
ping of the membership degrees, required to im-
plement querying and storage functionality. Fig-
ure 1 depicts some of the details of such extension
as a UML diagram. As showed in Figure 1, the
AttributeDescriptorBase is used as an intermedi-
ate extension point for persistence mappings that are
not necessarily relational, while FieldDescriptor
provides the specific details of the relational map-
ping. FuzzyFieldDescriptor is provided as the
base class for any relational–mapping of imperfect at-
tributes, and FuzzyNumericFieldDescriptor is one
of its subclasses representing the mapping for (trian-
gular) fuzzy numbers. FuzzyClassDescriptor en-
capsulates the details for the relational mapping of
fuzzy classes and sub–classes, with the possible vari-
ants described in [9]. Extensional mappings store

-m_TableName

ClassDescriptor

+getAttribute()

+setAttribute()

-attributeMap

DescriptorBase

+getComparator()

-m_ColumnName

-m_ColumnType

-m_IsKeyField

FieldDescriptor

-m_PersistentField

AttributeDescriptorBase

1
 *

Future Extension...

+isExtensional()

-m_MembTableName

-m_MembColumnName

FuzzyClassDescriptor

FuzzyFieldDescriptor

+getMembership(in Key)

FunctionObject

0..1

-m_Left

-m_Center

-m_Right

FuzzyNumericFieldDescriptor

Future Extension...

Figure 1: Extension of OJB description classes

explicitly the membership degrees for each object
in the database, while intensional mappings provide
a FunctionObject instance encapsulating arbitrarily
complex computations of membership degrees for the
class. In this latter case, Java’s reflection capabilities
enable the specification of a FuzzyObject subclass in
the configuration file that is instantiated dynamically
at run–time.

3.3 Basic fuzzy storage

Object storage both in ODMG and JDO mappings pro-
ceeds in cascade, storing the graph of references
starting from the object being stored. For exam-
ple, JDO provides a method makePersistent in the
PersistentManager interface to make concrete in-
stances persistent, and it also provides persistence
by “reachability”, so that any instance linked to
a persistent one (transitively) is also made persis-
tent. The underlying core OJB API ultimately uses
the store methods in the PersistenceBroker in-
terface to resolve those calls, which explicitly han-
dles also the storage of Collection implementing
classes. The storage of fuzzy classes only requires
code modifications for extensional fuzzy classes, in
which membership degrees are explicitly stored. To
do so, variants of the store methods with an ad-
ditional parameter are required. Aspectj intro-
ductions can be used to accomplish such exten-
sion, avoiding subclassing such a complex class like
PersistenceBrokerImpl. The aspect can be tar-
geted to the interface PersistenceBroker to guaran-
tee that future implementation classes also are pro-
vided with fuzzy storage methods. The following
code fragment sketches such extension:

public aspect FuzzyStorageHandler {

public void PersistenceBroker.store(

Object obj, Double m,String fuzzyClass)

throws PersistenceBrokerException;

public void PersistenceBrokerImpl.store(

Object obj, Double m,String fuzzyClass)

throws PersistenceBrokerException {

store(obj); storeMembership(obj,m,fuzzyClass);

}

public void

PersistenceBrokerImpl.storeMembership(

Object obj, Double m, String fc)

throws PersistenceBrokerException {

FuzzyClassDescriptor c = (FuzzyClassDescriptor)

descriptorRepository.getDescriptorFor(fc);

if (c.isExtensional()){

// call access layer to store m...

} } }

The fuzzyClass attribute is required since a single
object may belong to more than one fuzzy class with
different degrees, i.e. multiple classification outside
of the capabilities of the programming language is as-
sumed. The storage of fuzzy attributes is delegated in
PersistenceBrokerImpl to a JdbcAccess interface
which acts as a layer encapsulating the construction
of SQL sentences from metadata descriptors and ac-
tual objects to be stored. The delegation chain can
be followed through the StatementManager — re-
sponsible for the value binding process — class to
the StatementsForClass interface and implementa-
tion – which only provides caching for statement tem-
plates — and to the SqlGenerator interface and im-
plementation, which actually build the SQL queries
from class descriptions by delegating to a number of
classes, one for each type of SQL sentence. In conse-
quence, it is in the SqlUpdateStatement where the
actual sentence creation logic resides, where it can be
seen that no modification is required to store fuzzy
classes, since it relies in the (extended through poly-
morphism) behavior of ClassDescription.

In contrast, the storage of fuzzy fields as those
described by FuzzyNumericFieldDescriptor
require dynamic extension of the methods
appendListOfColumns and appendListOfValues
since they assume a single table column for each
field. This can be accomplished by an aspect design
as the one sketched in what follows:

public aspect FuzzySqlFieldHandling{

List around (SqlInsertStatement i):

target(i) && args(cld) && args(buf)

&& call(List SqlInsertStatement.

appendListOfColumns(

ClassDescriptor cld, StringBuffer buf)){

List aux=null;

try{ aux = proceed(m, cld, buf);

}catch(Exception e){throw e;}

if (cld.getClass().equals(new

FuzzyNumericFieldDesc().getClass())){

// add columns to SQL INSERT in buf...

} } // ...}

The around advice is able to dynamically extend
the behavior of the SQL–forming methods by manip-
ulating parameters and return values.

3.4 Fuzzy querying through aspects

The abstract SqlQueryStatement class and its con-
crete subclass SqlSelectStatement together imple-
ment the generation of SQL SELECT clauses from
queries. Queries for fuzzy classes and fuzzy at-
tributes can be formed by extending getStatement
invocations by using an around advice and an im-
plementation technique similar to the one described
above for insertions. In addition, it is required that
the membership degrees of the result collections are
differentiated from standard attributes of the ob-
jects. To do so, query results returning from methods
like getCollectionByQuery in PersistenceBroker
need to be wrapped into objects representing pairs
(o, µq(o)). This must be done at the level of the im-
plementation of the method getCollectionByQuery
in PersistenceBrokerImpl since memberships come
from the access layer as conventional retrieved data-
base columns.
public aspect FuzzyObjectWrapping{

Collection around (PersistenceBroker p):

target(p) && args(cld) && args(buf)

&& call(Collection

PersistenceBroker.getCollectionByQuery(

Query query)){

Collection aux=null;

try{

aux = proceed(p, query);

}catch(PersistenceBrokerException e){throw e;}

return this.wrapResultCollection(aux);

}

// ...}

Fuzzy query criteria instead of crisp ones can be in-
troduced by extending the Criteria class and asso-
ciated code. This can be accomplished alternatively
by introducing additional methods to Criteria or by
subclassing it. Fuzzy query results can be processed
by casting to a class representing the pairs, resulting
in a programming idiom like that described in [12]:
it = e.fuzzyIterator();

while (it.hasNext()){

FuzzyObject aux = (FuzzyObject) it.next();

X anX = (X) aux.getObject();

double mu = aux.getMembership();

// do processing...

}

4 Example: Adding Fuzzy Classes
and Fuzzy Numbers

The general design issues provided in the previous
section can be used to implement a wide range of
fuzzy extensions. In this section, we focus on two sim-
ple extensions for the sake of illustration, providing
some important implementation details. Concretely,
we will extend OJB with fuzzy classes and fuzzy num-
bers as attributes of classes, so that simple flexible
queries can be issued through standard means. The
domain used as a case study is that of market segmen-
tation under fuzziness, taken from [11]. A conceptual
model for the basic definitions in the case study is
provided in Figure 2.

-criteria

«fuzzy»

CustomerSegment

«fuzzy»

BZ

«fuzzy»

MGC

«fuzzy»

MVC

«fuzzy-function» +getRelationshipNetValue()

-name

-contactDetails

CustomerBase

-period#

Period

«fuzzy-number» -expectedIncrementalContrib

«fuzzy-number» -estimatedTrajectory

CustomerEstimations
*

*

Figure 2: Main conceptual elements

In Figure 2 customers are instances of
CustomerBase, and the estimated value of their
relationship with the company is described from the
marketing perspective in terms of estimations about
duration (loyalty) and estimated increase in purchase
volume for each period in the medium–term forecast.
Both estimations are imprecise fuzzy numbers as
marked by the stereotype <<fuzzy-number>>. Tri-
angular fuzzy numbers can be represented by triples
of real numbers (a, b, c) where a < b < c and it is
assumed that it represents a vague notion of real
number roughly as “between a and c, and very close
to b”. The net value of their relationship is computed
from those estimations by an algorithm producing
also imprecise results (<<fuzzy-function>>), so it
returns fuzzy numbers as return values. Such values
is used by a process of fuzzy clustering not covered
here that produce fuzzy classes BZ (below zero),
MGC (most growable customers) and MVC (most
valuable customers). Such classes are defined by
overlapping membership functions as described in
[11].

The system then uses the values for a sequences of
periods to compute the membership degree of each
customer for each of the classes (as in [11]), storing it
in a explicit, extensional way, since marketing experts

are able to change them due to other factors that may
affect the relationship trajectory.

The storage of the example is used by specifying
an XML schema like the following:

<class-descriptor class="CustomerEstimations"

table="CUSTOMER_EST" >

<field-descriptor

name="expectedIncContrib"

column="EXP" left="EXP0" right="EXP1"

type="FuzzyNum" att-left="left"

att-center="center" att-right="right"

primarykey="false" />

...

</class-descriptor>

<class-descriptor class class="MGC"

table="MGC" type="fuzzy" extensional="true"

membershipTable="CUSTOMER_BASE" membField="MGC">

...

</class-descriptor>

Basically, schema definitions are OJB–like
schemas with extended data mapping attributes
and elements intended to be processed by
loadFuzzyDescRepository. Fuzzy attributes
(numbers) are mapped in the simplest way, by
explicitly declaring the properties of the class that
hold the left, center and right points describing
the fuzzy number, so that the appropriate getX()
methods could be invoked through reflection in the
access layer.

Queries can be issued to the persistence layer by
standard means provided in the core interfaces. For
example, the following query returns a fuzzy subset
of “BZ” (a subset of the crisp class CustomerBase)
that has values (approximately) greater than 4.3.

broker.wrapFuzzySubsets();

Criteria criteria = new Criteria();

criteria.addGreaterOrEqualThan(

"expectedIncContrib", new Double(4.3));

QueryByCriteria query = new QueryByCriteria(

CustomerBase.class, criteria, "BZ");

Collection res=broker.getCollectionByQuery(query);

It should be noted that higher–level interfaces like
Jdo can be used alternatively to carry out fuzzy
queries. For example, the following Jdo query returns
the fuzzy subset of MVC filtered (in a crisp way) by
state and area.

String filter =

"contactDetails.state == state && " +

"contactDetails.area > area";

Extent extent = pm.getExtent(CustomerBase.class,

true, "asc;fuzzySubset=MVC");

Query query = pm.newFuzzyQuery(extent, filter);

((FuzzyQuery)query).interpretAllFuzzy();

... Collection result =

(Collection)query.execute("Georgia", "200");

In the above example, the “MVC” string encoded
in the parameters to getExtent is used to specify
the class descriptor associated to the actual Java
class CustomerBase, and the interpretAllFuzzy()
method explicitly forces the wrapping of query results
for membership processing.

5 Conclusions

Fuzziness can be considered as a separate cross–
cutting concern in existing software, and in conse-
quence, AOD techniques provide a convenient frame-
work to implement fuzzy extensions to existing li-
braries. As a proof of concept for such approach, the
AOD extension of the OJB libraries using aspectj
has been described, along with a concrete case study
regarding implementations of class and attribute con-
cerns for fuzziness. The resulting design combines in-
heritance and aspects to come up with an extension
that entails no modifications to existing OJB source
code. Concretely, metadata processing is weaved at
initialization and querying times, and polymorphism
is used to provide alternate metadata and query re-
sult processing idioms that handle fuzziness, achiev-
ing full backwards compatibility with existing code.

References

[1] Atkinson, M. P., Daynes, L., Jordan, M.J., Print-
ezis, T., Spence, S.: An Orthogonally Persistent Java.
ACM Sigmod Record, 25(4), 1996

[2] Bosc, P., Pivert, O.: Fuzzy Querying in Conventional
Databases, In: Zadeh, L., Kacprzyk, J. (eds.): Fuzzy
Logic for the Management of Uncertainty. John Wiley,
New York, 1992, 645–671

[3] Buckles, B.P., Petry, F.E: A Fuzzy Representation of
Data for Relational Databases. Fuzzy Sets and Sys-
tems 7, 1982, 213–226

[4] Chen, G.: Fuzzy logic in data modeling : semantics,
constraints, and database design. Kluwer Academic
Publishers, 1998

[5] De Caluwe, R. (ed.): Fuzzy and Uncertain Object-
Oriented Databases, Concepts and Models. World Sci-
entific, Singapore, 1997

[6] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten,
M., Palm, J. and Griswold, W.G.: An Overview of
AspectJ. In: Proc. of the European Conference on
Object-Oriented Programming (ECOOP), 2001

[7] Russell, C. et al.: Java Data Objects (JDO) Version
1.0, proposed final draft, Java Specification Request
JSR000012, 2001

[8] Sicilia, M. A., Garćıa, E., Gutiérrez, J. A.: Integrat-
ing fuzziness in object oriented modelling languages:
towards a fuzzy-UML. In: Proceedings of the Interna-
tional Conference on Fuzzy Sets Theory and its Ap-
plications (FSTA), 2002, 66-67

[9] Sicilia, M.A., Garćıa, E., Dı́az, P. and Aedo, I.:
Extending Relational Data Access Programming Li-
braries for Fuzziness: The fJDBC Framework. Lec-
ture Notes in Computer Science 2522, Springer, 2002,
314–328

[10] Sicilia, M.A., Gutiérrez, J.A., Garćıa, E.: Design-
ing Fuzzy Relations in Orthogonal Persistence Object-
Oriented Database Engines. Lecture Notes in Com-
puter Science 2527, Springer, 2002, 243-253

[11] Sicilia, M.A., Garćıa, E.: On Fuzziness in Relation-
ship Value Segmentation: Applications to Personal-
ized e-Commerce. ACM SIGECOM Newsletter, 4(2),
2003, 1–10

[12] Sicilia, M.A., Garćıa, E., Gutiérrez, J.A.: In-
troducing Fuzziness in Existing Orthogonal Persis-
tence Interfaces and Systems. In: Advances in Fuzzy
Object-Oriented Databases: Modeling and Applica-
tions, IDEA Group Publishing, 2004, 241–268

[13] Smets, P.: Imperfect information: Imprecision-
Uncertainty. In: Uncertainty Management in Infor-
mation Systems: From Needs to Solutions. Kluwer
Academic Publishers, 1997, 225–254

[14] Sutton Jr., S.M. and Rouvellou, I.: Modeling Soft-
ware Concerns in Cosmos. In Proceedings of the First
International Conference on Aspect–Oriented Soft-
ware Development (AOSD 2002), ACM Press, 127-
133

[15] Sutton Jr, S.M. and Rouvellou, I.: Applicability of
Categorization Theory to Multidimensional Separa-
tion of Concerns. In: Proceedings of the Workshop on
Advanced Separation of Concerns, OOPSLA 2001

[16] Sutton Jr., S. M. and Tarr, P.: Aspect-Oriented De-
sign Needs Concern Modeling. In: Proc. of the Aspect
Oriented Design Workshop on Identifying, Separating
and Verifying Concerns in the Design, Enschede, The
Netherlands, 2002

[17] Yazici, A., George, R., Aksoy, D. (1998). Design and
Implementation Issues in the Fuzzy Object-Oriented
Data Model. Information Sciences, 108(1-4), 241–260

[18] Zadrozny, S., Kacprzyk, J: FQUERY for Access: To-
wards Human Consistent Querying User Interfaces.
In: Proceedings of the 1996 ACM Symposium on Ap-
plied Computing (SAC’96), 1996, 532–536

