

[Editor’s note: With the exception of the last pages –which would be the back cover of the printed issue– that are not

included in this file, it has the same contents as the printed edition. All the articles are also available individually

online and have been put together here for convenience only.]

SIGMOD OFFICERS, COMMITTEES AND AWARDS .. 1

EDITOR'S NOTES... 2

REGULAR ARTICLES

Exploiting Predicate-window Semantics over Data Streams ... 3

T. M. Ghanem, W. G. Aref and A. K. Elmagarmid

Micro-views, or on How to Protect Privacy while Enhancing Data Usability –

Concepts and Challenges .. 9

J.-W. Byun and E. Bertino

Research Issues in Data Stream Association Rule Mining.. 14

N. Jiang and L. Gruenwald

Join Minimization in XML-to-SQL Translation: An Algebraic Approach.................................... 20

 M. Mani, S. Wang, D. Dougherty and E. A. Rundensteiner

Dynamic Count Filters .. 26

 J. Aguilar-Saborit, P. Trancoso and V. Muntes-Mulero

Towards a Dynamic Multi-Policy Dissemination Control Model (DMDCON)............................ 33

 Z. Li and X. Ye

B-tree Indexes for High Update Rates .. 39

 Goetz Graefe

EVENT REPORTS (B. Cooper, editor)

Report on the 10th International Symposium on Database Programming

Languages (DBPL 2005) .. 45

G. Bierman and C. Koch

INDUSTRY PERSPECTIVES (A. Eisenberg and J. Melton, editors)

The WS-DAI Family of Specifications for Web Service Data Access and Integration 48

M. Antonioletti, A. Krause, N. W. Paton, A. Eisenberg, S. Laws, S. Malaika,

J. Melton and D. Pearson

DISTINGUISHED DATABASE PROFILES (M. Winslett, editor)

Moshe Vardi Speaks Out on the Proof, the Whole Proof, and Nothing But the Proof 56

DATABASE PRINCIPLES (L. Libkin, editor)

Query Reformulation with Constraints... 65

 A. Deutsch, L.Popa and V. Tannen

S
IG

M
O

D
 R

e
c
o
rd

–

M

a
r
c
h

2

0
0

6

–

V

o
lu

m
e

3

5

 I

s
s
u

e

1

 –

w

w
w

.s
ig

m
o
d
.o

rg
/
re

c
o
rd

SIGMOD Record

SIGMOD Record is a quarterly publication of the Special Interest Group on Management of Data (SIGMOD) of the

Association for Computing Machinery (ACM). SIGMOD is dedicated to the study, development, and application of

database and information technology. SIGMOD Record Web Edition is also freely available online at

http://www.sigmod.org/record.

SIGMOD Record solicits contributions of articles, technical notes, reports, and proposals for special sections.

Conference announcements and calls for papers are published if relevant to the interests of the group and, in most

cases, are limited to one page. All contributions should be sent to the editor for consideration. Submitted technical

papers are reviewed for importance and correctness. Priority is given to papers that deal with current issues of

interest to a broad audience. Papers should be submitted electronically in PDF format to

record@sigmod.acm.org, and they should follow a format similar to that of the SIGMOD conference

proceedings (but with a larger font): 10 point font, single-space, 2-column, 8.5'' by 11'' page size with 1'' margins all

around and no page numbers. They should also be formatted for letter size pages and must contain all fonts

embedded. Submitted articles are limited to 6 pages unless prior agreement of the editor is obtained.

By submitting your article for distribution in this Special Interest Group publication, you hereby grant to ACM the

following non-exclusive, perpetual, worldwide rights: 1) to publish in print on condition of acceptance by the editor;

2) to digitize and post your article in the electronic version of this publication; 3) to include the article in the ACM

Digital Library; and 4) to allow users to copy and distribute the article for noncommercial, educational or research

purposes. However, as a contributing author, you retain copyright to your article and ACM will make every effort to

refer requests for commercial use directly to you. Therefore, ACM is asking all newsletter authors to include their

contact information in their submissions. Opinions expressed in articles and letters are those of the author(s) and do

not necessarily express the opinions of the ACM or SIGMOD. Author(s) should be contacted for reprint

authorization.

Mario A. Nascimento, SIGMOD Record Editor.
record@sigmod.acm.org

Dept. of Computing Science, University of Alberta

Edmonton, AB, Canada

Associate Editors:

Ugur Çetintemel (Research Centers), ugur@cs.brown.edu

Brian Cooper, Georgia Institute of Technology (Articles, Reports, Notes), cooperb@cc.gatech.edu

Andrew Eisenberg, IBM Corporation (Standards), andrew.eisenberg@us.ibm.com

Cesar Galindo-Legaria (Research Surveys), cesarg@microsoft.com

Alexandros Labrinidis, University of Pittsburgh (Web Edition), labrinid@cs.pitt.edu

Leonid Libkin, University of Toronto (Database Principles), libkin@cs.toronto.edu

Jim Melton, Oracle Corporation (Standards), jim.melton@acm.org

Jignesh Patel, Univ. of Michigan, Ann Arbor (Systems and Prototypes), jignesh@eecs.umich.edu

Ken Ross, Columbia University (Influential Papers), kar@cs.columbia.edu

Len Seligman, The MITRE Corporation (Industry Perspectives), seligman@mitre.org

Marianne Winslett, University of Illinois (Distinguished DB Profiles), winslett@cs.uiuc.edu

SIGMOD Record (ISSN 0163-5808) is published quarterly by the Association for Computing Machinery, Inc., 1515

Broadway, New York, NY 10036. Periodicals postage paid at New York, NY 10001, and at additional mailing

offices. POSTMASTER: Send address changes to SIGMOD Record, ACM, 1515 Broadway, New York, NY 10036.

Visit the SIGMOD Online website at http://www.acm.org/sigmod

SIGMOD Officers, Committees, and Awardees

Chair Vice-Chair Secretary/Treasurer

Raghu Ramakrishnan
Department of Computer Sciences
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706-1685

USA
raghu@cs.wisc.edu

Yannis Ioannidis
University Of Athens

Department of Informatics & Telecom

Panepistimioupolis, Informatics Bldngs

157 84 Ilissia, Athens

HELLAS
yannis@di.uoa.gr

Mary Fernández
ATT Labs - Research
180 Park Ave., Bldg 103, E277
Florham Park, NJ 07932-0971
USA
mff@research.att.com

Information Director: Alexandros Labrinidis, University of Pittsburgh, labrinid@cs.pitt.edu.

Associate Information Directors: Manfred Jeusfeld, Dongwon Lee, Michael Ley, Frank Neven, Altigran

Soares da Silva, Jun Yang.

Advisory Board: Tamer Ozsu (Chair), University of Waterloo, tozsu@cs.uwaterloo.ca, Rakesh

Agrawal, Phil Bernstein, Peter Buneman, David DeWitt, Hector Garcia-Molina, Jim Gray,
Masaru Kitsuregawa, Jiawei Han, Alberto Laender, Krithi Ramamritham, Hans Schek, Rick
Snodgrass, and Gerhard Weikum.

SIGMOD Conference Coordinator: Jianwen Su, UC Santa Barbara, su@cs.ucsb.edu

SIGMOD Workshops Coordinator: Laurent Amsaleg, IRISA Lab, Laurent.Amsaleg@irisa.fr

Industrial Advisory Board: Daniel Barbará (Chair), George Mason Univ., dbarbara@isse.gmu.edu, José

Blakeley, Paul G. Brown, Umeshwar Dayal, Mark Graves, Ashish Gupta, Hank Korth, Nelson M. Mattos,

Marie-Anne Neimat, Douglas Voss.

SIGMOD Record Editorial Board: Mario A. Nascimento (Editor), University of Alberta,

mn@cs.ualberta.ca, José Blakeley, Ugur Çetintemel, Brian Cooper, Andrew Eisenberg, Leonid Libkin,

Alexandros Labrinidis, Jim Melton, Len Seligman, Jignesh Patel, Ken Ross, Marianne Winslett.

SIGMOD Anthology Editorial Board: Curtis Dyreson (Editor), Washington State University,

cdyreson@eecs.wsu.edu, Nick Kline, Joseph Albert, Stefano Ceri, David Lomet.

SIGMOD DiSC Editorial Board: Shahram Ghandeharizadeh (Editor), USC, shahram@pollux.usc.edu,

A. Ailamaki, W. Aref, V. Atluri, R. Barga, K. Boehm, K.S. Candan, Z. Chen, B. Cooper, J. Eder, V. Ganti, J.

Goldstein, G. Golovchinsky, Z. Ives, H-A. Jacobsen, V. Kalogeraki, S.H. Kim, L.V.S. Lakshmanan, D.

Lopresti, M. Mattoso, S. Mehrotra, R. Miller, B. Moon, V. Oria, G. Ozsoyoglu, J. Pei, A. Picariello, F. Sadri, J.

Shanmugasundaram, J. Srivastava, K. Tanaka, W. Tavanapong, V. Tsotras, M. Zaki, R. Zimmermann.

SIGMOD Digital Review Editorial Board: H. V. Jagadish (Editor), Univ. of Michigan,

jag@eecs.umich.edu, Alon Halevy, Michael Ley, Yannis Papakonstantinou, Nandit Soparkar.

Sister Society Liaisons: Stefano Ceri (VLDB Foundation and EDBT Endowment), Hongjun Lu (SIGKDD and

CCFDBS), Yannis Ioannidis (IEEE TCDE), Serge Abiteboul (PODS and ICDT Council).

Latin American Liaison Commitee: Claudia M. Bauzer Medeiros (Chair), University of Campinas,

cmbm@ic.unicamp.br Alfonso Aguirre, Leopoldo Bertossi, Alberto Laender, Sergio Lifschitz, Marta

Mattoso, Gustavo Rossi.

Awards Committee: Moshe Y. Vardi (Chair), Rice University, vardi@cs.rice.edu. Rudolf Bayer,

Masaru Kitsuregawa, Z. Meral Ozsoyoglu, Pat Selinger, Michael Stonebraker.

Award Recipients:

Innovation Award: Michael Stonebraker, Jim Gray, Philip Bernstein, David DeWitt, C. Mohan, David Maier,

Serge Abiteboul, Hector Garcia-Molina, Rakesh Agrawal, Rudolf Bayer, Patricia Selinger, Don Chamberlin,

Ronald Fagin.

Contributions Award: Maria Zemankova, Gio Wiederhold, Yahiko Kambayashi, Jeffrey Ullman, Avi

Silberschatz, Won Kim, Raghu Ramakrishnan, Laura Haas, Michael Carey, Daniel Rosenkrantz, Richard

Snodgrass, Michael Ley, Surajit Chaudhuri.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 1

Editor’s Notes

As I type this text, 2006 is only a few days old, and as such, I wish we all accomplish the successes we

aim at this New Year.

The first thing I want to communicate to you is that José Blakeley is retiring from his position as

Associate Editor (Research Surveys). I remember the first time I met him in 1995. At that time he was

already an Associate Editor; he has been in this role for over 10 years, and even he cannot remember

exactly for how long he has been doing it. Besides being, in all likelihood, the longest running Associate

Editor ever, as well as doing a fantastic job in such position, José is well known in our communit. I want

to thank him very much for all the service he has done for SIGMOD’s community and for the Record.

To serve as the new Associate Editor (Research Surveys) I have invited, Cesar Galindo-Legaria, and he

has kindly accepted the invitation. Cesar is the development manager of the query optimizer in the

Microsoft SQL Server product and well published in the database literature. I am confident Cesar will

continue the tradition José built, and keep the Record a good venue for publishing thorough and

informative survey papers, which some have told me to be an important feature in the Record.

As you may recall from previous issues, Jignesh M. Patel and Karl Aberer have also retired from their

positions as Associate Editors (System/Prototypes and Book Reviews, respectively) and I am still in the

process of finding colleagues to take over their positions. It is not easy to do so as many of the good

candidates I have talked to are simply too busy to commit to yet something else. But I am sure this is

just a matter of time until we have the full board of Associate Editors rebuilt. In fact, by the time you

read this I hope this is not longer a concern.

As usual, I am not going to introduce each of the papers in this issue, but I can tell you that it covers a

number of different topics. As an editor I am happy to see that happening. On the one hand, it shows the

broadness of our domain and, on the other hand, it also allows almost everyone to find at least one article

close to his/her research interests.

There is not much more news or updates from my part at this time (which I think is good news). Let me

conclude by transmitting message from Raghu (who was unable to write the usual Chair’s Message for

this issue): “several issues are developing and a full update will be forthcoming in the next issue.” Until

then I hope you enjoy this issue.

Mario Nascimento, Editor.

October 2005

2 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Exploiting Predicate-window Semantics over Data Streams

Thanaa M. Ghanem Walid G. Aref Ahmed K. Elmagarmid

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398
{ghanemtm,aref,ake}@cs.purdue.edu

ABSTRACT
The continuous sliding-window query model is used widely in
data stream management systems where the focus of a con-
tinuous query is limited to a set of the most recent tuples.
In this paper, we show that an interesting and important
class of queries over data streams cannot be answered using
the sliding-window query model. Thus, we introduce a new
model for continuous window queries, termed the predicate-

window query model that limits the focus of a continuous
query to the stream tuples that qualify a certain predicate.
Predicate-window queries have some distinguishing charac-
teristics, e.g., (1) The window predicate can be defined over
any attribute in the stream tuple (ordered or unordered).
(2) Stream tuples qualify and disqualify the window pred-
icate in an out-of-order manner. In this paper, we discuss
the applicability of the predicate-window query model. We
will show how the existing sliding-window query models fail
to answer some of the predicate-window queries. Finally, we
discuss the challenges in supporting the predicate-window

query model in data stream management systems.

1. INTRODUCTION
The emergence of data streaming applications calls for

new query processing techniques to cope with the high rate
and unbounded nature of data streams. Queries over data
streams are characterized by the following: (1) Most of the
queries in the streaming environment are continuous. Con-
tinuous queries need continuous reevaluation as new tuples
arrive, and (2) Usually, queries are interested only in a spe-
cific part (window-of-interest) of the received data. The
sliding-window query model [1] is introduced to answer con-
tinuous queries that are interested only on the most recent
stream tuples. There are two common types of sliding-
windows: Time-based sliding window (e.g., tuples in the
last hour) and tuple-based sliding window (e.g., the last
100 tuples). Window-aware operators (e.g., window-join [3,
5, 6] and window-aggregates [7]) are modifications of their
counterpart traditional operators to support sliding-window
queries. The main difference in window-aware query opera-
tors is the need to process tuples expired from the window
as well as new tuples incoming into the window.

1.1 Motivation
Continuous sliding-window queries over data streams have

been introduced to limit the focus of a continuous query to
a specific part (window-of-interest) of the incoming stream
tuples. The window-of-interest in the sliding-window query
model includes the most-recent input tuples. In a sliding-

window query over n input streams, S1 to Sn, a window
of size wi is defined over the input stream Si. The sliding-
window wi can be defined over any ordered attribute attr

in the stream tuple (e.g., a timestamp or a sequence num-
ber). As the window slides, the query answer is updated
to reflect both the new tuples entering the sliding-window
and the old tuples expiring from the sliding-window. Tuples
enter and expire from the sliding-window in a First-In-First-
Expire (FIFE) fashion.

An interesting and important class of queries is not sup-
ported by the sliding-window query model. Consider a con-
tinuous query that is interested only in the input tuples that
qualify a certain predicate p, where p is defined over an
unordered attribute. For example, consider a temperature
monitoring application in which a large number of sensors
are spatially distributed, and each sensor sends continuously
its current temperature. A common query in this environ-
ment is: Q1 “Continuously, report the sensor identifiers for

sensors that have temperature greater than 90”. At any time
point T ′, the window-of-interest for Query Q1 includes only
the sensors that qualify the predicate “temperature greater

than 90”. If a sensor S reports a temperature greater than
90, then S should be considered in Q1’s window. Whenever
S reports another temperature that disqualifies the pred-
icate “temperature greater than 90”, S expires from Q1’s
window. Notice that sensors enter and expire from Q1’s
window in an out-of-order manner. A sensor expires (and
hence is deleted) from Q1’s window only when the sensor
reports another temperature that disqualifies the window
predicate.

To utilize the sliding-window query model, the query se-
mantics reads as follows: Q2: “Continuously, report sensor

identifers for sensors that have temperature greater than 90

in the last T time units”, where T is the size of the sliding-
window. The Query Q2 is semantically different from Query
Q1. The main difference between the two queries is that the
window-of-interest in Q1 includes “sensors having tempera-

ture greater than 90” while the window-of-interest in Q2 in-
cludes “sensors that have reported temperature greater than

90 in the last T time units”.
Example 1: This example illustrates the difference be-

tween Q1 and Q2 (with T=5). Consider the tempera-
ture monitoring application where the input stream has
the schema <SensorID, Temperature, TimeStamp>. As-
sume that the following input tuples have arrived <2,88,1>

<2,92,2> <3,91,3> <1,95,4> <2,89,5> <3,95,6>. Q1 and
Q2 produce the following output: (1) When tuple <2,92,2>

arrives, Sensor 2 is reported in the answer. Similarly, when

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 3

w

Temp90 91 92 93 9489888786

Figure 1: Example 1

tuple <3,91,3> arrives, Sensor 3 is reported in the query an-
swer. Later, when tuple <2,89,5> arrives, Sensor 2 expires
(is deleted) from the answer. On the other hand, when tuple
<3,95,6> arrives, Sensor 3 is not deleted from the query an-
swer since Sensor 3 still qualifies the window predicate only
with a different temperature. Figure 1 gives the behavior of
Sensors 2 (white circles) and Sensor 3 (black circles) in query
Q1. (2) In Query Q2, when tuples <2,92,2> and <3,91,3>

arrive, Sensors 2 and 3 are reported in the answer. Later,
when tuple <2,89,5> arrives, the answer will not be affected
since temperature 89 disqualifies the predicate. When tu-
ple <3,95,6> arrives, Sensor 3 will be reported again in the
query answer. To summarize, at time 6, the answer to Q1
is Sensors 3 and 1, because these are the sensors with tem-
perature greater than 90 at time 6. In contrast, the answer
to Q2 is Sensors 2, 3 and 1. Sensor 2 appears in the answer
of Q2, because Sensor 2 reports a temperature greater than
90 once in its history in the past 5 time units. Notice that
Sensor 2 will expire from Q2 at time 7 (when tuple <2,92,2>

is 5 time units old).

1.2 The Negative Tuples Approach
In the rest of this paper we assume that the pipelined

query execution model with the negative tuples approach [1,
2] is used to process window queries over data streams. The
pipelined query execution model for data streams is a modi-
fication of the one used in traditional database management
systems [2] where all query operators are connected via first-
in-first-out queues. In the negative tuples approach, a spe-
cial operator, termed EXPIRE, is added at the bottom of
the query pipeline; one EXPIRE operator per data stream.
EXPIRE buffers the input stream tuples, and outputs a neg-
ative tuple whenever a tuple expires from the window. The
negative tuple is processed by the various operators in the
query pipeline to negate the effect (if any) of the correspond-
ing positive tuple. The output of the continuous query is a
continuous stream of positive and negative tuples. A neg-
ative tuple is interpreted as a deletion of a previously pro-
duced positive tuple.

2. THE PREDICATE-WINDOW QUERY
MODEL

The predicate-window query model is a generalization
over the sliding-window query model where the former sup-
ports a larger class of continuous queries over data streams.
The window-of-interest for the predicate-window includes
the input stream tuples that satisfy a given predicate.

Assumptions: In the predicate window query model, we
have the following assumptions:

• Each input stream tuple t has a correlation attribute

t.CORAttr. The input stream tuples with the same
value of the correlation attribute are correlated to-
gether as follows. If a later tuple tn carries the same
values of the correlation attribute as that of t, then
tn is considered an update over t. In Example 1, the
correlation attribute is SensorID. Therefore, tuple
<2,89,5> is an update over tuple <2,91,2>.

• There is no regular pattern for updates. In Example 1,
some sensors may send their readings every fixed time
interval and some other sensors send their readings
whenever a change in temperature is detected.

2.1 Continuous Predicate-window Query Se-
mantics

A predicate-window query Q is defined over n data
streams S1 to Sn and n window predicates P1 to Pn where
the window predicate Pi is defined over the tuples in stream
Si. At any point in time T , the answer to Q equals the an-
swer to a snap-shot query Q′, where Q′ is issued at time T

and the inputs to Q′ are the tuples in stream Si that qualify
the predicate Pi at time T .

Assume that an input tuple ti from stream Si has the
following schema: ti < CORAttr, PAttrs, Attrs >, where
CORAttr is the correlation attribute, PAttrs are the at-
tributes over which the predicate Pi is defined and Attrs are
the other attributes. A tuple ti qualifies the predicate Pi at
time T , iff: (1) ti arrives in the stream at point in time be-
fore T , (2) ti.PAttrs qualifies Pi and (3) There is no stream
tuple t′i that arrives after ti and t′i.CORAttr = ti.CORAttr.

2.2 Syntax and Operators
We represent the predicate-window by adding a new con-

struct, termed PWINDOW, to SQL. The syntax for PWIN-
DOW is as follows:

PWINDOW <predicate> ON <CORAttr>

where <predicate> is the predicate that qualifies (and
disqualifies) tuples into (and out of) the window and
<CORAttr> is one or more attributes that correlate incom-
ing stream tuples.

Example 1 revisited: The following is the SQL syntax
for the query Q1 in Example 1:
SELECT S.SensorID

FROM Sensors S

[PWINDOW S.Temperature > 90 ON S.SensorID]

A new operator PWINDOW needs to be incorporated in
the stream query engine. The PWINDOW operator is a gen-
eralization of the EXPIRE operator. PWINDOW is placed
at the bottom of the query pipeline (Figure 2). PWINDOW
encapsulates the window predicate (or multiple predicates)
and applies it on every incoming stream tuple. PWINDOW
is responsible for notifying the query pipeline by any changes
in the window contents. PWINDOW is a statefull operator
that needs to keep all tuples currently in the window in its
state H. PWINDOW produces three different types of tu-
ples:

1. Positive Tuple (t+): When a new incoming stream
tuple t qualifies the window predicate and t.CORAttr

is not in H, PWINDOW inserts t in H and output a
positive tuple for t.

2. Update Tuple (tu): When a new incoming stream
tuple t qualifies the window predicate and t.CORAttr

4 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

+/u/−

+/u/−

+/u/−+/u/−

SUM

4

3

S

S

2SS1

PWINDOW PWINDOW

Figure 2: The PWINDOW operator

is already in H, PWINDOW updates the attributes of
t in H and produces an update tuple for t as output.

3. Negative Tuple (t−): When a new incoming stream
tuple t does not qualify the window predicate and
t.CORAttr is in H, PWINDOW deletes t from H and
produces a negative tuple for t as output.

Different operators in the query pipeline will be furnished
by methods to process the different types of tuples. The out-
put of the query is a stream of positive, update, and negative
tuples. An update tuple is interpreted as a replacement for
the previously produced positive tuple with the same values
of the correlation attributes. The negative tuple is inter-
preted as a deletion of the previous positive (or update)
tuple with the same values of the correlation attributes.

3. A COMPARISON WITH THE EXISTING
WINDOW APPROACHES

In this section, we show how the existing sliding-window
query approaches fail to answer some of the predicate-
window queries. We use query Q1 (from Example 1) as
a running example.

3.1 WHERE Clause
The main difference between a predicate in PWINDOW

and a predicate in the where-clause is that a disqualified
tuple in the PWINDOW predicate may result in a negative
tuple as an output while a disqualified tuple in the where-

clause predicate does not result in any output tuples. We
illustrate the difference between the window predicate and
the where predicate by the following example. Consider a
SQL query that is similar to Q1 but the window predicate
is expressed in the where predicate as follows:
SELECT S.SensorID

FROM Sensors S

WHERE S.Temperature > 90

If this query is continuously running as the stream tuples
arrive, at time 2, when tuple <2,92,2> arrives, Sensor 2 is
reported in the query answer. Later, when tuple <2,89,5>

arrives, and since the temperature 89 disqualifies the where

predicate, tuple <2,89,5> does not affect the query answer.
The output from the SQL query with the where predicate
is different from the expected output of Q1. In Q1, al-
though tuple <2,89,5> disqualifies the window predicate,
tuple <2,89,5> results in an output negative tuple to expire
Sensor 2 from the query answer.

The where predicate cannot be used to express predicate-
window queries. When a tuple t qualifies the where pred-
icate and is reported in the query answer, t will remain in

the query answer for ever. In the predicate-window query
model, when a tuple t qualifies the window predicate and is
reported in the query answer, later, t may be deleted from
the query answer if t receives an update so that t does not
qualify the window predicate any more.

3.2 Sliding-windows
The sliding-window query model fails to answer some of

the predicate-window queries (as shown in Example 1). The
sliding-window query model is characterized by the follow-
ing: (1) A window with size w is defined over an ordered
attribute in the stream schema (e.g., a timestamp or a se-
quence number) and (2) Tuples enter and expire from the
sliding-window in a First-In-First-Expire (FIFE) fashion.
Some of the predicate-window queries do not follow the char-
acteristics of the sliding-window query model. For example,
consider query Q1. The window predicate is defined over
the unordered attribute temperature. There is no window
size for the sliding-window that can emulate the behavior
of Q1. Moreover, in Q1, tuples enter and expire from the
predicate-window in an out-of-order manner. A tuple ex-
pires from the predicate window whenever the tuple receives
an update that disqualifies the window predicate. Due to
the different characteristics, some of the predicate-window
queries cannot be answered using the sliding-window query
model.

3.3 Partitioned Sliding-windows
Partitioned sliding-window queries have been introduced

and used by several data stream management systems [1,
7]. A partitioned sliding-window partitions the input stream
into sub-streams and the sliding-window is applied on each
sub-stream independently. The windows of the various sub-
streams are merged to produce the final query answer. The
CQL clause for the partitioned-window is as follows:
PARTITIONBY <PARAttr>

ROWS <w>

WHERE <predicate>

where <PARAttr> is the partitioning attribute, <w> is the
sub-stream sliding-window size, and <predicate> is an op-
tional window filter.

The “partition by <PARAttr>” in the partitioned-window
clause is similar to the “ON <CORAttr>” in the PWIN-
DOW clause. The two clauses aim to group input stream
tuples having the same value of some attribute. Although
having some similarities, we show that partitioned sliding-
windows fail to answer some predicate-window queries.

A partitioned sliding-window query may have two classes
of predicates as follows: (1) Partitioned-window predicates
(where <predicate> in the PARTITION BY clause) and
(2) Query predicates (the outer where clause in the query).
The difference between the partitioned-window predicate
and the query predicate is as follows. The partitioned-
window predicate qualifies (and disqualifies) tuples into (and
out-of) the window for each sub-stream. In this case, the
window size is calculated over the qualified tuples only. For
example, if the window size is 3, then at any time point,
the last 3 qualified tuples will be inside the window of the
corresponding sub-stream. On the other hand, the query
predicate qualifies (and disqualifies) tuples into (and out-of)
the query answer. In this case, the window size is calculated
over both qualified and disqualified tuples. For example,
if the window size is 3, the last 3 tuples will be inside the

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 5

(a) (b)

SS

SELECT

SELECT

EXPIRE

EXPIRE

Figure 3: Partitioned sliding-window

window of the corresponding sub-stream. From these last
3 tuples, only the qualified tuples will be used in the query
answer.

In the following, we show that both the partitioned-
window query with window predicates and the partitioned-
window query with query predicates are semantically dif-
ferent from the window predicate in the predicate-window
query model.

3.3.1 Partitioned-window predicates
A partitioned-window clause partitions the stream into

sub-streams. A partitioned-window predicate qualifies
(and disqualifies) tuples into (and out-of) each sub-stream.
Assume that a partitioned sliding-window Qp query that is
similar to Q1 but with the window predicate “temperature

> 90” is used as the partitioned-window filter. The CQL
syntax for Qp is as follows:
SELECT S.SensorID

FROM Sensors S

[Partition By S.SensorID

Rows 1

WHERE S.Temperature > 90]

The semantics of the query Qp is as follows: “For each

sensor, continuously report the last reading with tempera-

ture > 90”. The query pipeline for Qp is shown in Figure 3a,
where the window filter (the select operator) is applied be-
fore the window size (the EXPIRE operator). Let Qp be
a continuously running while the stream tuples arrive. At
time 2, when tuple <2,92,2> arrives, Sensor 2 is reported in
the query answer. Later, when tuple <2,89,5> arrives, since
89 disqualifies the selection filter, tuple <2,89,5> is filtered
out and does not contribute to the window for Sensor 2 sub-
stream. Tuple <2,92,2> expires from the window only when
Sensor 2 reports another reading with temperature greater
than 90. Notice that the output of Qp is different from the
output of the predicate-window query Q1. In Q1, when tuple
<2,89,5> arrives, Sensor 2 expires from the query answer.

The window filter in Qp is different from the window pred-
icate in Q1 in the following: the window filter in Qp qualifies
(and disqualifies) tuples into (and out of) the sub-streams.
On the other hand, the window predicate in Q1, qualifies
(and disqualifies) sub-streams into (and out of) the query
answer.

3.3.2 Query predicates
The other type of predicates in the partitioned-window

query is the query predicate. The query predicate in a
partitioned-window query qualifies tuples into the query
answer. The window for each sub-stream may include both
qualified and disqualified tuples. Consider a partitioned-
window query Qp’ similar to Q1 but with the window

predicate used as a query predicate as follows:
SELECT S.SensorID

FROM Sensors S

[Partition By S.SensorID

ROWS 1]
WHERE S.Temperature > 90

The semantics for Qp’ is as follows: “Continuously re-

port the readings with temperature greater than 90 consid-

ering only the last reading for each sensor”. The pipeline
for query Qp’ is given in Figure 3b where the window size
(the EXPIRE operator) is applied before the query filter
(the select operator). Assume that query Qp’ is continu-
ously running when the stream tuples arrive. At time 3,
tuple <3,91,3> arrives to the EXPIRE operator. Since it is
the most recent reading for Sensor 3, tuple <3,91,3> will be
forwarded to the select operator. Since 91 qualifies the se-
lection predicate, Sensor 3 is produced in the query answer.
Later, at time 6, tuple <3,95,6> arrives. Upon receiving
<3,95,6>, since only the last reading for each sub-stream
resides inside the window, the EXPIRE operator will emit
two tuples: a negative tuple -<3,91,3> and a positive tuple
<3,95,6>. Both tuples will be passed to the select operator.
Both -<3,91,3> and <3,95,6> appear in the query answer.
Notice that the semantics of the reception of -<3,91,3> then
<3,95,6> is that Sensor 3 is deleted from the answer then
Sensor 3 is reported again in the answer.

Qp’ query answer (including the deletion then insertion
of Sensor 3) is semantically different from the predicate-
window query Q1. The semantics of the predicate-window
query requires that at any point in time, the query answer
includes all sensors satisfying the window predicate. Q1 se-
mantics does not hold in the time interval between the dele-
tion and insertion of Sensor 3 in Qp’ window. The length of
the time period for the semantically wrong answer is non-
deterministic since tuples may encounter delays in the query
pipeline. The problem can be worse if an aggregate oper-
ation (e.g., COUNT) is performed over the output tuples.
Assume that another query is interested in the COUNT of
sensors having temperature greater than 90. Assume that
before tuple -<3,91,3>, the COUNT value was 10. Upon re-
ceiving -<3,91,3>, the COUNT operator will update its an-
swer to 9. When tuple <3,95,6> is processed by the COUNT
operator, a new count with value 10 will be produced. No-
tice that the count of value 9 should not appear in the query
answer.

The previous examples shows that in the partitioned-
sliding-window, the independent application of the
partitioned-window clause and the where-clause is seman-
tically different from the predicate-window query. The rea-
son is that the independent evaluation of the window and
the query predicates cannot capture the case of a tuple still
being inside the window but only with a different value.

3.4 The NOW window
The keyword NOW defines a window over a data

stream [1]. The NOW window means that at any point
in time, say T , the answer of the query should include only
the tuples that have a timestamp T . The NOW window
is semantically different from the predicate-window query.
Consider a query Qn that is similar to Q1 with the NOW
window. The CQL syntax for Qn is as follows:
SELECT S.SensorID

6 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

FROM Sensors S [NOW]
WHERE S.Temperature > 90

The semantics for Qn is as follows: “Report the sensors that

have reported temperature greater than 90 NOW ”. Assume
that Qn is continuously running when the input stream tu-
ples arrive. At time 2, the query answer will include only
Sensor 2 (because of the arrival of tuple <2,92,2>). Simi-
larly, at time 3, the window will include only Sensor 3.

Query Qn’s answer is different from Q1’s answer. At any
time point T , the NOW window includes only tuples that
arrive at time T. On the other hand, at any time T , the
predicate-window may include tuples that have arrived be-
fore T .

3.5 Punctuations
A punctuation is an artificial tuple, carrying a predicate

p, that is inserted in the data stream to mark the end of
a subsequence [9]. A punctuation tuple with predicate p

arriving at time T means that no more tuples qualifying
p will arrive later (after time T) in the input stream. The
punctuation predicate does not carry any information about
the input stream tuples that have arrived before time T and
already have been used in generating the query answer. The
tuples used in generating the query answer before the arrival
of a punctuation p may include both tuples qualifying p and
tuples disqualifying p.

The punctuation predicate cannot be used to represent
the window predicate in the predicate-window query model.
The reason is that before the arrival of a punctuation p,
tuples disqualifying p may be included in the window-of-
interest of a query. On the other hand, a window predicate,
say wp, ensures that, at any time point, only tuples qualify-
ing wp are included in the window-of-interest of the query.
Due to the different semantics, punctuations fail to evaluate
predicate-window queries.

4. TYPES OF PREDICATE-WINDOW
QUERIES

The window predicate can take several other forms other
than the selection predicate in Query Q1. In this section,
we discuss the various types of predicate-window queries.

4.1 Select predicate-window
In the select predicate-window type, the window predicate

is a selection predicate that is defined over one attribute
in the input stream. The selection predicate compares the
incoming stream tuple against a constant (e.g., Temperature
> 90).

4.2 Join predicate-window
The join predicate-window is a generalization of the select

predicate-window. The join window predicate is defined over
an attribute in the input stream tuple and compares the
incoming stream tuple against a set of constants stored in a
relational table.

Example: Consider the following scenario: Persons wear-
ing RFID’s are moving inside a building. Each RFID contin-
uously reports the RoomID of the current location. Consider
the following query: “Continuously report the identifiers of

persons located in one of the AlertRooms”. The pre-defined
set of alert rooms is stored in a relational table AlertV alues.
The window predicate in this query is a join predicate be-
tween the incoming stream and the AlertV alues table.

4.3 Dynamic predicate-window
In the select and the join predicate-windows, the window

predicate is fixed and the updates cause tuples to qualify into
(or disqualify from) the window. The dynamic predicate-
window is another type of predicate-windows in which tuples
expire from the window because the window predicate is
continuously changing (e.g., current time).

Example: A sliding-window query is a dynamic
predicate-window in which the window predicate is de-
fined over the timestamp attribute. Consider the following
sliding-window query: “Continuously report the sensor iden-

tifiers for sensors that have reported a reading in the last T

time units”. The same query can be rephrased as “Con-

tinuously report the sensor identifiers for tuples that have a

timestamp greater than NOW − T”. The SQL representa-
tion for this query is:
SELECT S.SensorID

FROM Sensors S

PWINDOW S.TimeStamp > NOW − T ON S.TimeStamp

4.4 IN/OUT predicate-window
In the previous sections, we introduced the predicate-

window query model with one predicate defined in the
PWINDOW clause. In this section, we introduce an ex-
tended predicate-window query model, namely the IN/OUT
predicate-window model. The main idea in the IN/OUT
predicate-window model is to distinguish between two pred-
icates: (1) IN window-predicate: tuples that qualify
the IN window-predicate will be considered by the query.
(2) OUT window-predicate: when a tuple currently in
the predicate-window qualifies the OUT window-predicate,
then that tuple will expire from the window. The IN and
OUT window predicates are different and are independent.
The two predicates should not have any overlap (no stream
tuple can satisfy both the IN and OUT predicates at the
same time). In the predicate-window query model, the OUT
window-predicate (implicitly) is the complement of the IN
window predicate.

5. CHALLENGES IN REALIZING
PREDICATE-WINDOWS IN DATA
STREAM MANAGEMENT SYSTEMS

In this section, we discuss the challenges in realizing the
predicate-window query model in data stream management
systems.

5.1 Incremental Maintenance of the Query
Answer

As discussed in Section 2.2, the PWINDOW operator is
responsible for tracking changes in the window and emit-
ting tuples accordingly (positive, update, or negative tu-
ples). The output tuples from PWINDOW flow in the query
pipeline and are processed by the various operators. The re-
sults of processing these tuples by the various operators are
used to update the query answer incrementally. For each
relational operator and for each tuple type, the following
should be specified: (1) The actions to be taken by the op-
erator to process the input tuple, (2) the changes in the
operator’s state (if any) due to the processed tuple, and
(3) the output of the operator.

The incremental maintenance of continuous predicate-
window queries is different from the traditional incremental

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 7

query maintenance. The incremental evaluation of contin-
uous queries in traditional databases has been addressed in
Tapestry [8] and the maintenance of materialized views [4].
Tapestry addresses append-only queries in which an out-
put tuple will remain in the query answer forever. Unlike
Tapestry, the output tuple of a predicate-window query may
be updated or deleted. On the other hand, materialized
views deal with data resident on disk and the query answer
is materialized. In materialized views, changes to the base
tables are reflected into the materialized view via incremen-
tal maintenance algorithms [4]. Unlike materialized views,
both the input to and output of the predicate-window query
is a stream of tuples.

Long-living tuples: Unlike sliding-windows, a tuple en-
tering the predicate-window may remain in the window for
long periods of time. We call the tuples that do not ex-
pire from the predicate-window as “long-living-tuples”. The
number of tuples inside a predicate-window can grow un-
boundedly due to long-living tuples. Limiting the number
of tuples inside a predicate-window is an interesting area of
research.

5.2 Predicate Selectivity
For the window predicate, two different selectivities can

be distinguished: positive selectivity and negative selectiv-
ity. The positive selectivity is defined the same as the tradi-
tional selectivity definition. Positive and update tuples will
contribute to the positive selectivity of the window predi-
cate. Negative tuples emitted from the window predicate
will contribute to the negative selectivity. The negative se-
lectivity can be defined as the selectivity of the OUT predi-
cate in the predicate-window query. The OUT predicate can
be implicit as the complement of the window predicate or
explicit as in the IN/OUT predicate-window query model.

Positive and negative selectivities are illustrated by Fig-
ure 4. Given query Q1 as in Example 1, the OUT predicate
in this query is (implicitly) the complement of the window
predicate “temperature greater than 90”. Figure 4 gives
the input of two different sensors to the PWINDOW oper-
ator. The circles in the figure represent the input to the
PWINDOW operator. The white circles represent positive
or update output tuples, the black circles represent nega-
tive output tuples, and the gray circles represent filtered
out inputs. The two PWINDOW operators have the same
number of input tuples (11 tuples) and the same number
of positive/update tuples (5 tuples) but a different number
of negative tuples (black circles). The negative selectivity
of the query depends on the update pattern of the input
tuples. Estimating the selectivity of the window predicate
is critical for query optimization. Estimating the positive
and negative selectivities of the window predicate is another
interesting area for future research.

5.3 Shared Execution of Predicate-window
Queries

Applications over data streams always involve a large
number of concurrent continuous queries over the same data.
Queries must be handled collectively by exploiting similar-
ities and sharing resources such as computation, memory,
and disk bandwidth among the queries. The PWINDOW
operator is a new operator introduced by the predicate-
window query model. Sharing the PWINDOW operator
among several predicate-window queries can greatly improve

101
100
90
80
70

Temperature

Time

(a)

Time

Temperature

70
80
90

100
101

(b)

Figure 4: Object Update Pattern

the performance of the query processing engine. Efficient
techniques for sharing the PWINDOW is an interesting area
for future research.

6. CONCLUSION
In this paper, we proposed the predicate-window query

model as a general model for window queries over data
streams. Examples are discussed to illustrate how the ex-
isting sliding-window query approaches fail to answer some
of the predicate-window queries. Moreover, the predicate-
window query model can emulate the behavior of the sliding-
window query model. We discussed several challenges and
open research issues that need to be thought of for efficient
realization of the predicate-window query model inside a
data stream management system.

7. ACKNOWLEDGMENT
This work was supported in part by the National Sci-

ence Foundation under Grants IIS-0093116, IIS-0209120,
and 0010044-CCR.

8. REFERENCES
[1] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query

Language: Semantic Foundations and Query Execution.
Technical report, Stanford University, October 2003.

[2] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and
A. K. Elmagarmid. Query Processing using Negative Tuples in
Stream Query Engines. Technical Report 04-040, Purdue
University, April 2005.

[3] L. Golab and M. T. Ozsu. Processing Sliding Window multi-joins
in Continuous queries over Data Streams. In VLDB, 2003.

[4] A. Gupta and I. S. Mumick. Maintenance of Materialized Views:
Problems, Techniques, and Applications. IEEE Data Eng. Bull.,
18(2):3–18, 1995.

[5] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid. Stream
Window Join: Tracking Moving Objects in Sensor-Network
Databases. In SSDBM, 2003.

[6] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating Window
Joins over Unbounded Streams. In ICDE, 2003.

[7] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker.
Semantics and Evaluation Techniques for Window Aggregates in
Data Streams. In SIGMOD, 2005.

[8] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki.
Continuous Queries over Append-Only Databases. In SIGMOD,
pages 321–330, 1992.

[9] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
Punctuation Semantics in Continuous Data Streams. TKDE,
15(3):555–568, 2003.

8 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Micro-views, or on How to Protect Privacy while Enhancing
Data Usability - Concepts and Challenges

Ji-Won Byun
byunj@cs.purdue.edu

Elisa Bertino
bertino@cerias.purdue.edu

CERIAS and Department of Computer Science
Purdue University

656 Oval Drive, West Lafayette, IN 47907

ABSTRACT
The large availability of repositories storing various types of
information about individuals has raised serious privacy con-
cerns over the past decade. Nonetheless, database technol-
ogy is far from providing adequate solutions to this problem
that requires a delicate balance between an individual’s pri-
vacy and convenience and data usability by enterprises and
organizations - a database which is rigid and over-protective
may render data of little value. Though these goals may
seem odd, we argue that the development of solutions able
to reconcile them will be an important challenge to be ad-
dressed in the next few years. We believe that the next
wave of database technology will be represented by a DBMS
that provides high-assurance privacy and security. In this
paper, we elaborate on such challenges. In particular, we
argue that we need to provide different views of data at a
very fine level of granularity; conventional view technology
is able to select only up to a single attribute value for a sin-
gle tuple. We need to go even beyond this level. That is,
we need a mechanism by which even a single value inside a
tuple’s attribute may have different views; we refer them as
micro-views. We believe that such a mechanism can be an
important building block, together with other mechanisms
and tools, of the next wave of database technology.

1. INTRODUCTION
Current information technology enables many organiza-

tions to collect, store and use a vast amount of personal in-
formation in their databases. The use of innovative knowl-
edge extraction techniques combined with advanced data
integration and correlation techniques [7, 8, 16] makes it
possible to automatically extract a large body of informa-
tion from the available databases and from a large variety of
information repositories available on the web. Such a wealth
of information and extracted knowledge raises, however, se-
rious concerns about the privacy of individuals. As privacy
awareness increases, individuals are becoming more reluc-
tant to carry out their businesses and transactions online,
and many enterprises are losing a considerable amount of po-
tential profits [12]. Also, enterprises that collect information
about individuals are in effect obligated to keep the collected
information private and must strictly control the use of such
information. Thus, information stored in the databases of an
enterprise is not only a valuable property of the enterprise,
but also a costly responsibility. Consequently, data manage-
ment techniques providing high-assurance privacy and at the
same time avoiding unnecessary restrictions to data access
are in great demand. Equipped with such techniques, or-
ganizations shall be able to utilize information analysis and

knowledge extraction to provide better and tailored services
to individuals without violating individual privacy.

To date, issues related to privacy have been widely inves-
tigated and several privacy protecting techniques have been
developed. To our best knowledge, the most well known ef-
fort is the W3C’s Platform for Privacy Preference (P3P) [20].
P3P allows websites to express their privacy policy in a ma-
chine readable format so that using a software agent, con-
sumers can easily compare the published privacy policies
against their privacy preferences. P3P, however, does not
provide any functionality to keep these promises in the in-
ternal privacy practice of enterprises. To complement P3P’s
lack of enforcement mechanisms, many privacy-aware ac-
cess control models have also been investigated [3, 4, 9,
10]. Although all these models do protect privacy of data
providers1, they are very rigid and do not provide ways to
maximize the utilization of private information. Specifically,
in those models access decision is always binary; i.e., a data
access is either allowed or denied as in most conventional
access control models.

We believe that a new generation of privacy-aware ac-
cess control models should maximize information usability
by exploiting the nature of information privacy. First, in-
formation privacy is context-specific. For instance, consider
address data of consumers. The tolerance level of individu-
als for their address being used for direct marketing could be
significantly different from the address being used for con-
sumer analysis. Furthermore, the tolerance level varies from
individual to individual. Some consumers may feel that it
is acceptable to disclose their purchase history or browsing
habits in return for better services; others may feel that
revealing such information violates their privacy. These dif-
ferences in individuals suggest that access control models
should be able to maximize the utilization of private infor-
mation by taking such large variations into account.

Second, the use of data generalization2 can significantly
increase the comfort level of data providers. For example,
suppose that an enterprise has collected the birth dates of
its consumers. Such information is very personal, and many
individuals may not be comfortable with their information
being used. Suppose now that the enterprise promises its
consumers that this information will be used only in a gen-
eralized form; e.g., 〈07/23/1970〉 will be generalized to a less
specific value 〈07/1970〉 or a categorical value 〈1965−1975〉.
This assurance will surely comfort many consumers. Clearly,

1By data providers, we refer to the subjects to whom the
stored data is related.
2Data generalization refers to techniques that “replace
a value with a less specific but semantically consistent
value” [17].

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 9

Term Description Example

Privacy level Level of privacy required by data provider Low, Medium, High
Data type Types of data being collected Name, Address, Income, Age

Data usage type Types of potential data usage (i.e. purpose) Marketing, Admin, Shipping

Table 1: Privacy level, data type and data usage type

privacy enhancing access control models should be able to
utilize more information by employing data generalization
techniques.

The development of a DBMS that addresses the above
requirements is a challenging task which requires revisiting
theoretical foundations of data models as well as languages
and architectures. A core DBMS component which is cru-
cial in such a context is the access control system. Current
access control systems are fundamentally inadequate with
respect to the above goals. For example, fine-grained access
control of data, an important requirement for privacy, poses
several difficult problems and to date no satisfactory solu-
tion exists. We have yet to understand the relevant technical
requirements.

In this paper, we pose as a new challenge the development
of a new generation of access control systems. As an exam-
ple, we propose a radically new access control model that is
able to exploit the subtle nature of information privacy to
maximize the usability of private information for enterprises
with privacy guarantees. Our model is not to be considered
a complete solution; rather it is meant to show some of capa-
bilities that, in our opinion, a suitable model should provide.
In particular, our model is based on the notion of a micro-
view. A micro-view applies the well known idea of views
at the level of the atomic components of tuples, that is, to
an attribute value. By using the different precisions, one is
able to finely calibrate the amount of information released
by queries.

The remainder of this paper is organized as follows. In
Section 2, we present a high-level description of our access
control model. We discuss the technical challenges raised
by our model in Section 3 and provide a brief survey of
related work in Section 4. We then conclude our discussion
in Section 5.

2. A SKETCH OF OUR “NAIVE” MODEL
Our model is based on a typical life-cycle of data concern-

ing individuals. During the data collection phase, a data
provider submits her privacy requirement, which specifies
permissible usages of each data item and a level of privacy
for each usage. This requirement is then stored in the data-
base along with the collected data, and access to the data is
strictly governed by the data provider’s requirement. In this
section, we first illustrate how data collection is carried out
in our model and discuss the access control model in detail.

2.1 Data collection and preprocess
As a prerequisite to our approach, supported privacy lev-

els, types of data and possible data usages (i.e., purposes)
have to be clearly defined and clarified through the pub-
lished privacy policy. Table 1 describes these concepts with
some practical examples.

For simplicity of discussion, we consider the following pri-
vacy levels only: Low, Medium and High. We also consider
only three data types, name, address and income, and two

usage types, admin and marketing.
As previously mentioned, when individuals release their

personal information, they specify permissible usages of each
of their data items and a level of privacy for each usage.
For instance, a data provider may select Low on Address
for Admin; that is, she does not have any privacy concern
over the address information when it is used for the pur-
pose of administration. Thus, the address information can
be used for the administrative purpose without any mod-
ification. However, the data provider may select High on
Address for marketing. This indicates that she has great
concerns about privacy of the address information when it
is used for the purpose of marketing; thus, the address in-
formation should be used only in a sufficiently generalized
form for the marketing purpose. Note that if one wishes to
allow data providers to completely opt out from any use of
data, another privacy level (e.g., Opt-out) can be added to
indicate that the particular data should not be used at all.

Additional to storing the specified privacy requirements,
the actual data items are preprocessed before being stored in
the following way. Each data item is generalized and stored
according to a multilevel organization, where each level cor-
responds to a specific privacy level. Intuitively, data for a
higher privacy level requires a higher degree of generaliza-
tion. For instance, the address data is stored into three
levels: entire address for Low, city and state for Medium
and state for High.

Table 2 illustrates some fictional records and privacy re-
quirements stored in a conceptual database relation. No-
tice that every data item is stored in three different gener-
alization levels, each of which corresponds to a particular
privacy level. PL Admin and PL Marketing are metadata
columns3 storing the set of privacy levels of data for Ad-
min and Marketing, respectively. For instance, {L, L, M} in
PL marketing indicates that for the marketing purpose the
privacy levels of Name and Address are both Low while the
privacy level of Income is Medium.

Note that exactly how such data is organized and stored
in the database is a crucial issue as it determines the perfor-
mance and storage efficiency. However, this issue is beyond
the scope of this paper and shall be discussed in our future
work.

2.2 Access Control
In our model, data users query the database using stan-

dard SQL statements. However, the data accessible to each
query varies depending on the privacy levels of the data and
the purpose of the query4. That is, each query runs as if it
is running on a view that is defined by the purpose of the
query and the privacy levels of data. We call such views
micro-views. Tables 3 and 4 illustrate this effect. For in-

3The metadata columns may be viewable to any user, but
they can be modified only by authorized users.
4In this paper, we assume that each query is associated with
a specific purpose.

10 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

CustID Name Address Income PL Admin PL Marketing

1001
L Alice Park L 123 First St., Seattle, WA L 45,000

{L, M, H} {H, H, H}M Alice P. M Seattle, WA M 40K-60K
H A.P. H WA H Under 100K

1002
L Aaron Parker L 491 3rd St, Lafayette, IN L 121,000

{L, L, M} {H, M, H}M Aaron P. M Lafayette, IN M 120K-140K
H A.P. H IN H Over 100K

1003
L Carol Jones L 35 Oval Dr, Chicago, IL L 64,000

{L, L, L} {L, M, H}M Carol J. M Chicago, IL M 60K-80K
H C.J. H IL H Under 100K

Table 2: Private information and metadata

CustID Name Address Income

1001 Alice Park Seattle Under 100K

1002 Aaron Parker 491 3rd St, Lafayette, IN 120K-140K

1003 Carol Jones 35 Oval Dr, Chicago, IL 64,000

Table 3: Micro-view for Admin purpose

CustID Name Address Income

1001 A. P. WA Under 100K

1002 A. P. Lafayette, IN Over 100K

1003 Carol Jones Chicago, IL Under 100K

Table 4: Micro-view for Marketing purpose

stance, any query against the base table in Table 2 with
Admin purpose returns a result that is equivalent to the re-
sult of the query run on the micro-view in Table 3. As the
micro-views directly reflect the information that is allowed
by each data provider, querying against these views does not
violate privacy.

Note that the major difference of our model from conven-
tional database models is that in our model, different sets
of data may be returned for the same query, depending on
the privacy levels of data and the purpose of the query. For
instance, suppose that the following query is written against
the base table in Table 2: “SELECT * FROM Customer
WHERE CustID = 1002”. If the purpose of this query is
Admin, then the system will return a tuple 〈‘Aaron Parker’,
‘491 3rd St, Lafayette, IN’, ‘120K-140K’〉 as Aaron’s privacy
levels for Admin are specified as {L, L, M}. On the other
hand, if the purpose of the query is Marketing, then a tuple
〈‘A. P.’, ‘Lafayette, IN’, ‘Over 100K’〉 will be retrieved as
his privacy levels for Marketing is {H, M, H}.

An important issue to be addressed is how we associate
a purpose with each query. Note that it is not trivial for a
system to correctly infer the purpose of a query as it means
that the system must correctly deduce the actual intention of
database users. However, if we assume that users are honest,
then the problem of associating a purpose with each query
becomes relatively easy; i.e., users themselves can specify the
purpose of their queries with an additional clause. For in-
stance, a simple select statement “SELECT name FROM

customer” can be extended to a form of “SELECT name
FROM customer FOR marketing”. We believe that this
is a reasonable approach. Many privacy violations occur
from accidentally accessing unauthorized information, and
thus it is important to develop a mechanism that database
users can use to protect themselves from committing such
accidental violations. A more sophisticated approach which
validates whether users are indeed permitted to use their
claimed purposes is thoroughly investigated in [5].

3. CHALLENGES
The comprehensive development of the approach we have

sketched in the previous section and its integration in a
DBMS architecture requires addressing several interesting
challenges.

Policy specification language. The core of our model
is that data providers can specify their privacy requirements
using a privacy level for each data category. There is thus
a strong need for a language in which privacy specifications
can be expressed precisely. A challenge is that the language
must be powerful enough to express every possible require-
ment, yet simple enough to avoid any ambiguity or conflict.
Thus usability is a crucial issue. Especially as we cannot
assume that every data provider would be an expert in pri-
vacy or any type of technology, GUI tools that are intuitive
and instructive must be provided for them. We believe that
many valuable lessons can be learned from existing technol-
ogy related to P3P [20] and APPEL [19] and work on user
interaction design (See [21] for example). It is important
that data providers have a clear understanding of the guar-
antees provided by each privacy level.

Data generalization. Needless to say, devising a quality
data generalization technique is one of the key challenges.
There are two important issues to be addressed here. The
first issue is that the generalization process must preserve
meaningful information from actual data as inadequate in-
formation would not be of any use. For example, although
numeric or structured data may be easy to generalize into
multiple levels that are meaningful, it is unclear how un-
structured data (e.g., textual data) should be generalized
into multiple levels. We need also to devise generalization
policies and ontologies supporting systematic and consistent
data generalization across the database. The other impor-
tant issue is that the generalization process must produce a
sufficient level of data privacy by effectively suppressing dis-
tinctive information in individual data. For instance, con-
sider the names of individuals. There are certain names
that are less frequent than the others, and inadequate gen-
eralization techniques would not hide the uniqueness of such
names. Moreover, if the content of database may changes
dynamically, hiding such uniqueness becomes much more
challenging. Clearly, a key challenge in data generalization
is to balance the trade-off between information preservation
and information loss. Also, generalization must be efficient.
In many cases, the system will have to perform data gen-
eralization “on the fly” while processing a query. In other
cases, post-processing of queries is required because what
has to be returned may depend on various factors such as
the cardinality and statistics of the results or even the past
accesses. Many valuable lessons can be learned from var-

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 11

ious generalization techniques that are available in statis-
tical databases [1]. The main challenge here is that these
techniques may have to be used dynamically in a variety of
settings, ranging from data storage to query processing.

Metrics for data privacy and data usability. So far,
we have claimed that both privacy and usability of data can
be achieved when data is sufficiently generalized. However,
a key question is: how can we determine whether or not a
certain generalization strategy provides a sufficient level of
privacy and usability? As one can generalize data in var-
ious ways and degrees, we need metrics that methodologi-
cally measure the privacy and usability of generalized data.
Such metrics are necessary to devise generalization tech-
niques that satisfy the requirements of both data providers
and data users.

Metadata storage. In our “naive” model, we assumed
that the collected data is generalized and stored into multi-
ple privacy levels at the preprocessing stage. This approach
is simple and effective, yet may require large storage space.
For instance, suppose there are n privacy levels in a system.
This means that the required storage space would be n times
the size of the collected data. Another approach is to post-
pone the generalization process to the time of data access.
This method does not require any additional storage and
may help avoid unnecessary data generalization. As some
data items are accessed much less frequently than the others,
those rarely accessed data items do not have to be general-
ized unless they are accessed. However, the overall perfor-
mance may significantly suffer. Another possible solution is
to use both pre-generalization and post-generalization selec-
tively. For example, only data items that are expected to be
accessed frequently are pre-generalized and stored. Other
data items that are not pre-processed should be generalized
when they are accessed. Also, for better performance the
post-generalized data may be cached in a special space. Us-
ing this approach, one can try to reduce the overall cost of
generalization process. However, a challenge here is to bal-
ance the trade-off between storage and performance. Yet
another approach could be based on the use of views, which
would have to be extended with innovative capabilities for
value generation and transformation.

Complex query processing. In this paper we have con-
sidered only simple queries; i.e., queries without join, sub-
queries or aggregations. A key question here is whether com-
plex queries can be introduced in our model. Even though
it seems that they can be correctly processed in the model,
it is not clear whether the results of such queries would be
still meaningful. For instance, how do we calculate the sum
of several generalized values, and how do we interpret such
results?

Applicability to general-purpose access control. Al-
though we have limited our discussion to access control for
privacy protection, we believe it is possible to extend our
model to a general-purpose access control model. For in-
stance, each user can be assigned a trust level5, and the
access control system can control, based on the user’s trust
level, degrees of precision on accessible information. This

5The trust level is not chosen by users, but assigned to users
by security officers.

approach is very similar to multilevel secure database sys-
tems [6, 15, 13], where every piece of information is classi-
fied into a security level and every user is assigned a security
clearance. However, the main difference is that our approach
can provide a much finer level of control as the access control
decision is based on the question of “how much information
can be allowed for a certain user”, rather than “is informa-
tion allowed for a certain user or not”. In other words, our
model utilizes the elaborated version of cover story in mul-
tilevel secure databases. This type of finer grained access
control can be extremely useful for internal access control
within an organization as well as information sharing be-
tween organizations. Even though such an extension seems
very promising at this point, further investigation is required
to confirm this hypothesis.

Other issues. There are many other issues that re-
quire careful investigation, such as problems of polyinstan-
tiation [11, 14], inference and integrity. Addressing such
issues is also crucial for the development of comprehensive
access control models for high-assurance privacy.

4. RELATED WORK
To date, several approaches have been reported that deal

with various aspects of the problem of high-assurance pri-
vacy systems. Here we briefly discuss the approaches that
have provided some initial solutions that can certainly be
generalized and integrated into comprehensive solutions to
such problem.

The W3C’s Platform for Privacy Preference (P3P) [20]
allows web sites to encode their privacy practice, such as
what information is collected, who can access the data for
what purposes, and how long the data will be stored by the
sites, in a machine-readable format. P3P enabled browsers
can read this privacy policy automatically and compare it
to the consumer’s set of privacy preferences which are spec-
ified in a privacy preference language such as A P3P Pref-
erence Exchange Language (APPEL) [19], also designed by
the W3C.

The concept of Hippocratic databases that incorporates
privacy protection within relational database systems was
introduced by Agrawal et al. [2]. The proposed architecture
uses privacy metadata, which consist of privacy policies and
privacy authorizations stored in two tables. A privacy policy
defines for each attribute of a table the usage purpose(s), the
external-recipients and a retention period, while a privacy
authorization defines which purposes each user is authorized
to use.

Byun et al. presented a comprehensive approach for pri-
vacy preserving access control based on the notion of pur-
pose [4, 5]. In the model, purpose information associated
with a given data element specifies the intended use of the
data element, and the model allows multiple purposes to
be associated with each data element. The granularity of
data labeling is discussed in detail in [4], and a systematic
approach to implement the notion of access purposes, using
roles and role-attributes is presented in [5].

Previous work on multilevel secure relational databases [6,
13, 15] also provides many valuable insights for designing a
fine-grained secure data model. In a multilevel relational
database system, every piece of information is classified into
a security level, and every user is assigned a security clear-

12 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

ance. Based on this access class, the system ensures that
each user gains access to only the data for which he has
proper clearance, according to the basic restrictions. These
constraints ensure that there is no information flow from
a lower security level to a higher security level and that
subjects with different clearances see different versions of
multilevel relations.

In order to prevent re-identification of anonymized data,
Sweeney introduced the notion of k-anonymity [18]. K-
anonymity requires that information about each individual
in a data release be indistinguishable from at least k-1 other
individuals with respect to a particular set of attributes.
Sweeney also proposed a technique using generalization and
suppression of data to achieve k-anonymity with minimal
distortion [17].

5. CONCLUSIONS
In this paper, we discussed a new approach for access con-

trol that maximizes the usability of private information for
enterprises while, at the same time, assuring privacy. We
believe that one direction for next-generation DBMS tech-
nology is represented by DBMS with high-assurance secu-
rity and privacy. The “naive” model we presented in this
paper provides an example of access control for such a new
DBMS. Based on this model, we discussed many challenges
that need to be addressed. We conclude this paper by saying
that ultimately suitable access control systems with high-
privacy assurance will be built by integrating techniques
such as view mechanisms, statistical databases, anonymiza-
tion, privacy-preserving computation and data mining. The
main challenge is how to integrate such techniques in a full-
fledged DBMS ensuring good performance.

6. REFERENCES

[1] Nabil Adam and John Wortmann. Security-control
methods for statistical databases: A comparative
study. ACM Computing Surveys (CSUR), 21, 1989.

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishman
Srikant, and Yirong Xu. Hippocratic databases. In
The 28th International Conference on Very Large
Databases (VLDB), 2002.

[3] Paul Ashley, Calvin S. Powers, and Matthias
Schunter. Privacy promises, access control, and
privacy management. In Third International
Symposium on Electronic Commerce, 2002.

[4] Jiwon Byun, Elisa Bertino, and Ninghui Li. Purpose
based access control for privacy protection in
relational database systems. Technical Report
2004-52, Purdue University, 2004.

[5] Jiwon Byun, Elisa Bertino, and Ninghui Li. Purpose
based access control of complex data for privacy
protection. In Symposium on Access Control Model
And Technologies (SACMAT), 2005.

[6] Dorothy Denning, Teresa Lunt, Roger Schell, William
Shockley, and Mark Heckman. The seaview security
model. In The IEEE Symposium on Research in
Security and Privacy, 1998.

[7] Xin Dong, Alon Halevy, Jayant Madhavan, and Ema
Nemes. Reference reconciliation in complex
information spaces. In ACM International Conference
on Management of Data (SIGMOD), 2005.

[8] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 1969.

[9] IBM. The Enterprise Privacy Authorization Language
(EPAL). Available at
www.zurich.ibm.com/security/enterprise-privacy/epal.

[10] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac,
Raghu Ramakrishnan, Yirong Xu, and David DeWitt.
Disclosure in hippocratic databases. In The 30th
International Conference on Very Large Databases
(VLDB), August 2004.

[11] Fausto Rabitti, Elisa Bertino, Won Kim, and Darrell
Woelk. A model of authorization for next-generation
database systems. In ACM Transactions on Database
Systems (TODS), March 1991.

[12] Forrester Research. Privacy concerns cost e-commerce
$15 billion. Technical report, September 2001.
Available at www.forrester.com.

[13] Ravi Sandhu and Fang Chen. The multilevel relational
data model. In ACM Transactions on Information and
System Security, 1998.

[14] Ravi Sandhu and Sushil Jajodia. Polyinstantiation
integrity in multilevel relations. In IEEE Symposium
on Security and Privacy, 1990.

[15] Ravi Sandhu and Sushil Jajodia. Toward a multilevel
secure relational data model. In ACM International
Conference on Management of Data (SIGMOD), 1991.

[16] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In ACM
International conference on Knowledge discovery and
data mining (SIGKDD), 2002.

[17] Latanya Sweeney. Achieving k-anonymity privacy
protection using generalization and suppression. In
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 2002.

[18] Latanya Sweeney. K-anonymity: A model for
protecting privacy. In International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems,
2002.

[19] World Wide Web Consortium (W3C). A P3P
Preference Exchange Language 1.0 (APPEL 1.0).
Available at www.w3.org/TR/P3P-preferences.

[20] World Wide Web Consortium (W3C). Platform for
Privacy Preferences (P3P). Available at
www.w3.org/P3P.

[21] Kaping Yee. User interaction design for secure
systems. In The 4th International Conference on
Information and Communications Security, 2002.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 13

Research Issues in Data Stream Association Rule Mining

Nan Jiang and Le Gruenwald

The University of Oklahoma, School of Computer Science, Norman, OK 73019, USA

Email: {nan_jiang, ggruenwald} @ou.edu

ABSTRACT
There exist emerging applications of data streams that

require association rule mining, such as network traffic

monitoring and web click streams analysis. Different from

data in traditional static databases, data streams typically

arrive continuously in high speed with huge amount and

changing data distribution. This raises new issues that need

to be considered when developing association rule mining

techniques for stream data. This paper discusses those

issues and how they are addressed in the existing literature.

1. INTRODUCTION

A data stream is an ordered sequence of items that arrives

in timely order. Different from data in traditional static

databases, data streams are continuous, unbounded, usually

come with high speed and have a data distribution that

often changes with time [Guha, 2001]. As the number of

applications on mining data streams grows rapidly, there is

an increasing need to perform association rule mining on

stream data. An association rule is an implication of the

form X ⇒ Y (s, c), where X and Y are frequent itemsets in

a transactional database and X∩Y = ∅, s is the percentage

of records that contain both X and Y in the database, called

support of the rule, and c is the percentage of records

containing X that also contain Y, called the confidence of

the rule. Association rule mining is to find all association

rules the support and confidence of which are above or

equal to a user-specified minimum support and confidence,

respectively.

One example application of data stream association rule

mining is to estimate missing data in sensor networks

[Halatchev, 2005]. Another example is to predict frequency

estimation of Internet packet streams [Demaine, 2002]. In

the MAIDS project [Cai, 2004], this technique is used to

find alarming incidents from data streams. Association rule

mining can also be applied to monitor manufacturing flows

[Kargupta, 2004] to predict failure or generate reports

based on web log streams, and so on.

Data streams can be further classified into offline streams

and online streams. Offline streams are characterized by

regular bulk arrivals [Manku, 2002]. Among the above

examples, generating reports based on web log streams can

be treated as mining offline data streams because most of

reports are made based on log data in a certain period of

time. Other offline stream examples include queries on

updates to warehouses or backup devices. Queries on these

streams are allowed to be processed offline.

Online streams are characterized by real-time updated data

that come one by one in time. From the above examples,

predicting frequency estimation of Internet packet streams

is an application of mining online data streams because

Internet packet streams is a real-time one packet by one

packet process. Other online data streams are stock

tickers, network measurements and sensor data. They have

to be processed online and must keep up with the rapid

speed of online queries. They have to be discarded right

after arrived and being processed. In addition, unlike with

offline data streams, bulk data processing is not possible

for online stream data.

Due to the characteristics of stream data, there are some

inherent challenges for stream data association rule

mining. First, due to the continuous, unbounded, and high

speed characteristics of data streams, there is a huge

amount of data in both offline and online data streams,

and thus, there is not enough time to rescan the whole

database or perform a multi-scan as in traditional data

mining algorithms whenever an update occurs.

Furthermore, there is not enough space to store all the

stream data for online processing. Therefore, a one scan of

data and compact memory usage of the association rule

mining technique are necessary. Second, the mining

method of data streams needs to adapt to their changing

data distribution; otherwise, it will cause the concept

drifting problem [Wang, 2003], which we will discuss in

Section 2.3.1. Third, due to the high speed characteristics

of online data streams, they need to be processed as fast as

possible; the speed of the mining algorithm should be

faster than the data coming rate, otherwise data

approximation techniques, such as sampling and load

shedding, need to be applied which will decrease the

accuracy of the mining results. Fourth, due to the

continuous, high speed, and changing data distribution

characteristics, the analysis results of data streams often

keep changing as well. Therefore, mining of data streams

should be an incremental process to keep up with the

highly update rate, i.e. new iterations of mining results are

built based on old mining results so that the results will

not have to be recalculated each time a user’s request is

received. Fifth, owing to the unlimited amount of stream

data and limited system resources, such as memory space

and CPU power, a mining mechanism that adapts itself to

available resources is needed; otherwise, the accuracy of

the mining results will be decreased.

Traditional association rule mining algorithms are

developed to work on static data and, thus, can not be

applied directly to mine association rules in stream data.

The first recognized frequent itemsets mining algorithm

14 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

for traditional databases is Apriori [Agrawal, 1993]. After

that, many other algorithms based on the ideas of Apriori

were developed for performance improvement [Agrawal,

1994, Han, 1999]. Apriori-based algorithms require

multiple scans of the original database, which leads to high

CPU and I/O costs. Therefore, they are not suitable for a

data stream environment, in which data can be scanned

only once. Another category of association rule mining

algorithms for traditional databases proposed by Han and

Pei [Han, 2000] are those using a frequent pattern tree (FP-

tree) data structure and an FP-growth algorithm which

allows mining of frequent itemsets without generating

candidate itemsets. Compared with Apriori-based

algorithms, it achieves higher performance by avoiding

iterative candidate generations. However, it still can not be

used to mine association rules in data streams since the

construction of FP-tree requires two scans of data.

As more and more applications generate a large amount of

data streams every day, such as web transactions, telephone

records, and network flows, much research on how to get

frequent items, patterns and association rules in a data

stream environment has been conducted [Chang, 2003,

Chang, 2004, Charikar, 2004, Chi, 2004, Cormode, 2003,

Demaine, 2002, Giannella, 2003, Huang, 2002, Jin, 2003,

Karp, 2003, Li, 2004, Lin, 2005, Manku, 2002, Relue,

2001, Yang, 2004, Yu, 2004]. However, these algorithms

are focused on one or more application areas, and none of

them fully addresses the issues that need to be solved in

order to mine association rules in data streams.

In [Gaber, 2005], Gaber et al briefly discussed some

general issues concerning stream data mining. They did

not provide a thorough discussion for issues that need to be

considered in the specific area of data stream association

rule mining; they merely addressed the state of the art

solutions. In this paper, we focus on research issues

concerning association rule mining in data streams and,

whenever possible, review how they are handled in the

existing literature.

The rest of this paper is organized as follows. Section 2

discusses general issues that need to be considered for all

data association rule mining algorithms for data streams.

Section 3 describes application dependent issues. Section 4

summarizes the merits and lessons learned from the

existing studies and concludes the paper.

2. GENERAL ISSUES IN DATA STREAM
ASSOCIATION RULE MINING

The characteristics of data streams as pointed out in Section

1 indicate that when developing association rule mining

techniques, there are more issues that need to be considered

in data streams than in traditional databases. In this section,

general issues are discussed. These issues are crucial and

need to be taken into account in all applications when

developing an association rule mining technique for stream

data.

2.1. Data Processing Model

The first issue addresses which parts of data streams are

selected to apply association rule mining. From the

definition given in Section 1, data streams consist of an

ordered sequence of items. Each set of items is usually

called “transaction”. The issue of data processing model

here is to find a way to extract transactions for association

rule mining from the overall data streams. Because data

streams come continuously and unboundedly, the

extracted transactions are changing from time to time.

According to the research of Zhu and Shasha [Zhu, 2002],

there are three stream data processing models, Landmark,

Damped and Sliding Windows. The Landmark model

mines all frequent itemsets over the entire history of

stream data from a specific time point called landmark to

the present. A lot of research has been done based on this

model [Charikar, 2004, Cormode, 2003, Jin, 2003, Karp,

2003, Li, 2004, Manku, 2002, Yang, 2004, Yu, 2004].

However, this model is not suitable for applications where

people are interested only in the most recent information

of the data streams, such as in the stock monitoring

systems, where current and real time information and

results will be more meaningful to the end users.

The Damped model, also called the Time-Fading model,

mines frequent itemsets in stream data in which each

transaction has a weight and this weight decreases with

age. Older transactions contribute less weight toward

itemset frequencies. In [Chang, 2003] and [Giannella,

2003], they use exactly this model. This model considers

different weights for new and old transactions. This is

suitable for applications in which old data has an effect on

the mining results, but the effect decreases as time goes

on.

The Sliding Windows model finds and maintains frequent

itemsets in sliding windows. Only part of the data streams

within the sliding window are stored and processed at the

time when the data flows in. In [Chang, 2004, Chi, 2004,

Lin, 2005], the authors use this concept in their algorithms

to get the frequent itemsets of data streams within the

current sliding window. The size of the sliding window

may be decided according to applications and system

resources. The mining result of the sliding window

method totally depends on recently generated transactions

in the range of the window; all the transactions in the

window need to be maintained in order to remove their

effects on the current mining results when they are out of

range of the sliding window.

All these three models have been used in current research

on data streams mining. Choosing which kind of data

process models to use largely depends on application

needs. An algorithm based on the Landmark model can be

converted to that using the Damped model by adding a

decay function on the upcoming data streams. It can also

be converted to that using Sliding Windows by keeping

track of and processing data within a specified sliding

window.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 15

2.2. Memory Management

The next fundamental issue we need to consider is how to

optimize the memory space consumed when running the

mining algorithm. This includes how to decide the

information we must collect from data streams and how to

choose a compact in-memory data structure that allows the

information to be stored, updated and retrieved efficiently.

Fully addressing these issues in the mining algorithm can

greatly improve its performance.

2.2.1. Information to Be Collected and Stored in

Memory

Classical association rule mining algorithms on static data

collect the count information for all itemsets and discard

the non-frequent itemsets and their count information after

multiple scans of the database. This would not be feasible

when we mine association rules in stream data due to the

two following reasons. First, there is not enough memory

space to store all the itemsets and their counts when a huge

amount of data comes continuously. Second, the counts of

the itemsets are changing with time when new stream data

arrives. Therefore, we need to collect and store the least

information possible, but enough to generate association

rules.

In [Karp, 2003], the most frequent items and their counts

are stored in the main memory. This technique stores the

most important information. However, because it discards

infrequent items and their counts and discarded items may

become frequent in the future, it cannot get the information

associated with non-frequent items when later they become

frequent. In [Yang, 2004], the available computer memory

is used to keep frequency counts of all short itemsets

(itemsets with k ≤ 3, where k is the maximum size of

frequent itemsets), thus the association rule mining for

short itemsets in data streams becomes trivial. But as

pointed out by the authors, this technique only suits limited

applications where k ≤ 3 and n ≤ 1800 (n is the total

number of data items). We can see that there is a trade off

between the information we collect and the usage of system

resources. The more information we collect to get more

accurate results, the more memory space we use and the

more processing time is needed.

2.2.2. Compact Data Structure

An efficient and compact data structure is needed to store,

update and retrieve the collected information. This is due to

bounded memory size and huge amounts of data streams

coming continuously. Failure in developing such a data

structure will largely decrease the efficiency of the mining

algorithm because, even if we store the information in

disks, the additional I/O operations will increase the

processing time. The data structure needs to be

incrementally maintained since it is not possible to rescan

the entire input due to the huge amount of data and

requirement of rapid online querying speed.

In [Manku, 2002], a lattice data structure is used to store

itemsets, approximate frequencies of itemsets, and

maximum possible errors in the approximate frequencies.

In [Li, 2004], the authors employ a prefix tree data

structure to store item ids and their support values, block

ids, head and node links pointing to the root or a certain

node. In [Giannella, 2003], a FP-tree is constructed to

store items, support information and node links. A proper

data structure is a crucial part of an efficient algorithm

since it is directly associated with the way we handle

newly arrived information and update old stored

information. A small and compact data structure which is

efficient in inserting, retrieving and updating information

is most favorable when developing an algorithm to mine

association rules for stream data.

2.3. One Pass Algorithm to Generate

Association Rules

Another fundamental issue is to choose the right type of

mining algorithms. Association rules can be found in two

steps: 1) finding large itemsets (support is ≥ user specified

support) for a given threshold support and 2) generate

desired association rules for a given confidence. In the

following subsections, we discuss the issues that need to

be considered to generate and maintain frequent itemsets

and association rules in data streams.

2.3.1. Frequent Itemsets

There exist a number of techniques for finding frequent

itemsets in data streams. Based on the result sets

produced, stream data mining algorithms can be

categorized as exact algorithms or approximate

algorithms.

In exact algorithms, the result sets consist of all of the

itemsets the support values of which are greater than or

equal to the threshold support. In [Karp, 2003] and [Yang,

2004], the authors use the exact algorithms to generate the

result frequent itemsets. It is important for many

applications to know the exact answers of the mining

results; however, additional cost is needed to generate the

accurate result set when the processing data is huge and

continuous. The technique proposed in [Karp, 2003] takes

two scans to generate the exact result set, and in [Yang,

2004], the algorithm generated can only mine short

itemsets, which cannot be applied to large itemsets.

Another option to get the exact mining results with

relatively small memory usage is to store and maintain

only special frequent itemsets, such as closed or maximal

frequent itemsets, in memory. In [Chi, 2004] and [Mao,

2005], the authors proposed algorithms to maintain only

closed frequent itemsets and maximal frequent itemsets

over a sliding window and landmark processing model,

respectively. In both of these cases, how we can get all the

information to further generate association rules based on

these special itemsets is an additional issue that needs to

be considered.

Approximate algorithms generate approximate result sets

with or without an error guarantee. Approximate mining

frequent patterns with a probabilistic guarantee can take

two possible approaches: false positive oriented and false

negative oriented. The former includes some infrequent

16 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

patterns in the result sets, whereas the latter misses some

frequent patterns [Yu, 2004].

Since data streams are rapid, time-varying streams of data

elements, itemsets which are frequent are changing as well.

Often these changes make the model built on old data

inconsistent with the new data, and frequent updating of the

model is necessary. This problem is known as concept

drifting [Wang, 2003]. From the aspect of association rule

mining, when data is changing over time, some frequent

itemsets may become non-frequent and some non-frequent

itemsets may become frequent. If we store only the counts

of frequent itemsets in the data structure, when we need the

counts for potential non-frequent itemsets which would

become frequent itemsets later, we cannot get this

information. Therefore, the technique to handle concept

drifting needs to be considered. In [Chi, 2004], Chi et al

proposed a method to reflect the concept drifts by boundary

movements in the closed enumeration tree (CET).

From the above discussions, we can see that when

designing a stream data association rule mining algorithm,

we need to answer a number of questions: should we use

an exact or approximate algorithm to perform association

rule mining in data streams? Can its error be guaranteed if

it is an approximate algorithm? How to reduce and

guarantee the error? What is the tradeoff between accuracy

and processing speed? Is data processed within one pass?

Can this algorithm handle a large amount of data? Up to

how many frequent itemsets can this algorithm mine? Can

this algorithm handle concept drifting and how?

In the current works published in this area, [Karp, 2003]

[Yang, 2004] [Chi, 2004] and [Mao, 2005] proposed exact

algorithms, while [Li, 2004], [Yu, 2004], [Chang, 2004],

[Manku, 2002], [Charikar, 2004] and [Giannella, 2003]

proposed approximate algorithms. Among them [Yu, 2004]

uses the false negative method to mine association rules,

while the other approximate algorithms use the false

positive method. [Chi, 2004] considered the concept

drifting problem in its proposed algorithm.

2.3.2. Mechanism to Maintain and Update

Association Rules

The next step after we get frequent itemsets is to generate

and maintain desired association rules for a given

confidence. As we can see from the previous discussions,

mining association rules involves a lot of memory and CPU

costs. This is especially a problem in data streams since the

processing time is limited to one online scan. Therefore,

when to update association rules, in real time or only at

needs, is another fundamental issue.

The problem of maintaining discovered association rules

was first addressed in [Cheung, 1996]. The authors

proposed an incremental updating technique called FUP to

update discovered association rules in a database when new

transactions are added to the database. A more general

algorithm, called FUP2, was proposed later in [Cheung,

1997] which can update the discovered association rules

when new transactions are added to, delete from, or

modified in the database. However in a data stream

environment, stream data are added continuously, and

therefore, if we update association rules too frequently, the

cost of computation will increase drastically.

In [Lee, 1997], the authors proposed an algorithm, called

DELI, which uses a sampling technique to estimate the

difference between the old and new association rules. If

the estimated difference is large enough, the algorithm

signals the need of an update operation; otherwise, it takes

the old rules as an approximation of the new rules. It

considers the difference in association rules, but does not

consider the performance of incremental data mining

algorithms for evolving data, which is especially the

situation in data stream mining. [Zheng, 2003] proposed a

metric distance as a difference measure between

sequential patterns and used a method, called TPD, to

decide when to update the sequential patterns of stream

data. The authors suggested that some initial experiments

be done to discover a suitable incremental ratio and then

this ratio be used to decide when would be better to update

sequential patterns. The TPD method is only suitable for

streams with little concept drifting, that is to say the

change of data distribution is relatively small.

2.4. Resource Aware

Resources such as memory space, CPU, and sometimes

energy, are very precious in a stream mining environment.

They are very likely to be used up when processing data

streams which arrive with rapid speed and a huge amount.

What should we do when the resources are nearly

consumed? If we totally ignore the resources available, for

example the main memory, when processing the mining

algorithm, data will be lost when the memory is used up.

This would lead to the inaccuracy of the mining results,

thus degrade the performance of the mining algorithm.

Shall we just shed the incoming data or adjust our

technique to handle this problem?

In [Gaber, 2003, Gaber, 2004, Teng, 2004], the authors

discussed this issue and proposed their solutions for

resource-aware mining. Gaber et al. proposed an

approach, called AOG, which uses a control parameter to

control its output rate according to memory, time

constrains and data stream rate [Gaber, 2003, Gaber,

2004]. Teng et al. proposed an algorithm, called RAM-

DS, to not only reduce the memory required for data

storage but also retain good approximation of temporal

patterns given limited resources like memory space and

computation power [Teng, 2004].

3. APPLICATION DEPENDENT ISSUES

Different data stream application environments may have

different needs for an association rule mining algorithm.

In this section, we discuss issues that are application

dependent.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 17

3.1. Timeline Query

Stream data come continuously over time. In some

applications, user may be interested in getting association

rules based on the data available during a certain period of

time. Then the storage structure needs to be dynamically

adjusted to reflect the evolution of itemset frequencies over

time. How to efficiently store the stream data with timeline

and how to efficiently retrieve them during a certain time

interval in response to user queries is another important

issue.

In [Giannella, 2003], the authors proposed a method to

incrementally maintain tilted-time windows for each

pattern at multiple time granularities, which is convenient

for applications where users are more interested in getting

detailed information from the recent time period. In [Lin,

2005] a time-sensitive sliding window model is created to

mine and maintain the frequent itemsets during a user

defined time interval.

3.2. Multidimensional Stream Data

In applications where stream data are multi-dimensional in

nature, multi-dimensional processing techniques for

association rule mining need to be considered. Take a

sensor data network as an example and assume that it gets

and distributes the weather information. It is possible that

when the temperature for one sensor S goes up, its

humidity will decrease and the temperature from the

sensors in close vicinity and toward the same wind

direction of the sensor S will also increase. Here,

temperature and humidity are the multidimensional

information of the sensor. How to efficiently store, update

and retrieve the multidimensional information to mine

association rules in multidimensional data streams is an

issue we need to consider in this situation.

[Pinto, 2001] proposed a method to integrate

multidimensional analysis and sequential data mining, and

[Yu, 2005] proposed an algorithm to find sequential

patterns from d-dimensional sequence data, where d > 2.

3.3. Online Interactive Processing

In some applications, users may need to modify the mining

parameters during the processing period, especially when

processing data streams because there is not a specific stop

point during the mining process. Therefore, how to make

the online processing interactive according to user inputs

before and during the processing period is another

important issue.

In [Parthasarathy, 1999], the authors presented techniques

for maintaining frequent sequences upon database updates

and user interaction and without re-executing the algorithm

on the entire dataset. In [Veloso, 2003], the interactive

approach makes use of selective updates to avoid updating

the entire model of frequent itemsets. Ghoting and

Parthasarathy proposed a scheme in [Ghoting, 2004] which

gives controlled interactive response times when processing

distributed data streams.

3.4. Distributed Environment

In a distributed environment, stream data comes from

multiple remote sources. Such an environment imposes

excessive communication overhead and wastes

computational resources when data is dynamic. In this

situation, how to minimize the communication cost, how

to combine frequency counts from multiple nodes, and

how to mine data streams in parallel and update the

associated information incrementally are additional issues

we need to consider.

Otey discussed this problem and presented an approach

making use of parallel and incremental techniques to

generate frequent itemsets of both local and global sites in

[Otey, 2003] and [Otey, 2004]. In [Veloso, 2003b], the

authors proposed a distributed algorithm which imposes

low communization overhead for mining distributed

datasets. Schuster et al presented a distributed association

rule mining algorithm called D-ARM to perform a single

scan over the database [Schuster, 2003]. The scheme

proposed in [Ghoting, 2004] gives controlled interactive

response times when processing distributed data streams.

Wolff and Schuster proposed an algorithm to mine

association rules in large-scale distributed peer-to-peer

systems [Wolff, 2004], by which every node in the system

can reach the exact solution.

3.5. Visualization

In some data stream applications, especially monitoring

applications, there is a demand for visualization of

association rules to facilitate the analysis process. An

interactive use of visualized graphs can help the users

understand the relationship between related association

rules better so that they can further select and explore a

specific set of rules from the visualization.

In [Hofmann, 2000], the authors showed how Mosaic

plots can be used to visualize association rules. In

[Bruzzese, 2004], Bruzzese and Buono proposed a visual

strategy to both overview the association rule structure

and further investigate inside a specific set of rules

selected by the user. In [Cai, 2004], the authors developed

a set of visualization tools which can be served for

continuous queries and mining displays; they trigger

alarms and give messages when some alarming incidents

are being detected based on the ongoing stream data.

4. CONCLUSIONS

In this paper we discussed the issues that need to be

considered when designing a stream data association rule

mining technique. We reviewed how these issues are

handled in the existing literature. We also discussed issues

that are application-dependent.

From the above discussions, we can see that most of the

current mining approaches adopt an incremental and one

pass mining algorithm which is suitable to mine data

streams, but few of them address the concept drifting

problem. Most of these algorithms produce approximate

results [Li, 2004, Yu, 2004, Chang, 2004, Manku, 2002,

18 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Charikar, 2004, Giannella, 2003, Lin, 2005]. This is

because due to the huge amount of data streams and limited

memory, there is not enough space to keep frequency

counts of all itemsets in the whole data streams as we do in

traditional databases. A few of the proposed algorithms

generate exact mining results by maintaining a small subset

of frequent itemsets from data streams and keeping their

exact frequency counts [Yang, 2004, Chi, 2004, Mao,

2005]. To keep track of the exact frequency counts of target

itemsets with limited memory space, one way is to adopt

the sliding window data processing model, which maintains

only part of the frequent itemsets in sliding window(s) as in

[Chi, 2004]. Another way is to maintain only special

itemsets such as short frequent itemsets, closed frequent

itemsets or maximal frequent itemsets as in [Yang, 2004,

Mao, 2005].

The current stream data mining methods require users to

define one or more parameters before their execution;

however, most of them do not mention how users can

adjust these parameters online while they are running. It is

not desirable/feasible for users to wait until a mining

algorithm to stop before they can reset the parameters. This

is because it may take a long time for the algorithm to

finish due to the continuous arrival and huge amount of

data streams. Some proposed methods let users adjust only

certain parameters online, but these parameters may not be

the key ones to the mining algorithms, and thus are not

enough for a user friendly mining environment. For

example, in [Ghoting, 2004], the authors proposed a

method to mine distributed data streams which allows the

users, to modify online only one of the mining parameters,

the response time, to trade off between the query response

time and accuracy of the mining results. For further

improvement, we may consider to either let users adjust

online or let the mining algorithm auto-adjust most of the

key parameters in association rule mining, such as support,

confidence and error rate.

Research in data stream association rule mining is still in its

early stage. To fully address the issues discussed in this

paper would accelerate the process of developing

association rule mining applications in data stream systems.

As more of these problems are solved and more efficient

and user-friendly mining techniques are developed for the

end users, it is quite likely that in the near future data

stream association rule mining will play a key role in the

business world.

Acknowledgement

This material is based upon work supported by (while

serving at) the National Science Foundation (NSF), the

NASA Grant No. NNG05GA30G issued through the Office

of Space Science and the OSU Grant. Any opinion,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the NSF.

5. REFERENCES
[Agrawal, 1993] Rakesh Agrawal, Tomasz Imielinski, Arun Swami; Mining Association Rules between Sets

of Items in Massive Databases; Int'l Conf. on Management of Data; May 1993.

[Agrawal, 1994] Rakesh Agrawal, Ramakrishnan Srikant; Fast Algorithms for Mining Association Rules;

Int'l Conf. on Very Large Databases; September 1994.

[Bruzzese, 2004] Dario Bruzzese, Paolo Buono; Combining Visual Techniques for Association Rules

Exploration; The Working Conf. on Advanced Visual Interfaces; May 2004.

[Cai, 2004] Y. Dora Cai, Greg Pape, Jiawei Han, Michael Welge, Loretta Auvil; MAIDS: Mining

Alarming Incidents from Data Streams; Int'l Conf. on Management of Data; June 2004.

[Chang, 2003] Joong Hyuk Chang, Won Suk Lee, Aoying Zhou; Finding Recent Frequent Itemsets

Adaptively over Online Data Streams; ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data

Mining; August 2003.

[Chang, 2004] Joong Hyuk Chang, Won Suk Lee; A Sliding Window Method for Finding Recently

Frequent Itemsets over Online Data Streams; Journal of Information Science and Engineering; July 2004.

[Charikar, 2004] Moses Charikar, Kevin Chen, Martin Farach-Colton; Finding Frequent Items in Data

Streams; Theoretical Computer Science; January 2004.

[Cheung, 1996] David W. Cheung, Jiawei Han, Vincent T. Ng, C.Y. Wong; Maintenance of Discovered

Association Rules in Large Databases: An Incremental Updating Technique; IEEE Int'l Conf. on Data

Mining; November 1996.

[Cheung, 1997] David W. Cheung, S.D. Lee, Benjamin Kao; A General Incremental Technique for

Maintaining Discovered Association Rules; Int'l Conf. on Database Systems for Advanced Applications;

1997.

[Chi, 2004] Yun Chi, Haixun Wang , Philip S. Yu , Richard R.; Moment: Maintaining Closed Frequent

Itemsets over a Stream Sliding Window; IEEE Int'l Conf. on Data Mining; November 2004.

[Cormode, 2003] Graham Cormode, S.Muthukrishnan; What's Hot and What's Not: Tracking Most

Frequent Items Dynamically; ACM Transactions on Database Systems; March 2005.

[Demaine, 2002] Erik D. Demaine, Alejandro Lpez-Ortiz, J. Ian Munro; Frequency Estimation of Internet

Packet Streams with Limited Space; European Symposium on Algorithms; September 2002.

[Gaber, 2003] Mohamed Medhat Gaber, Shonali Krishnaswamy, Arkady Zaslavsky; Adaptive Mining

Techniques for Data Streams Using Algorithm Output Granularity; The Australasian Data Mining

Workshop; December 2003.

[Gaber, 2004] Mohamed Medhat Gaber, Arkady Zaslavsky and Shonali Krishnaswamy; Resource-Aware

Knowledge Discovery in Data Streams; Int'l Workshop on Knowledge Discovery in Data Streams;

September 2004.

[Gaber, 2005] Mohamed Medhat Gaber, Arkady Zaslavsky, Shonali Krishnaswamy; Mining Data

Streams: A Review; ACM SIGMOD Record Vol. 34, No. 2; June 2005.

[Ghoting, 2004] Amol Ghoting, Srinivasan Parthasarathy; Facilitating Interactive Distributed Data Stream

Processing and Mining; IEEE Int'l Symposium on Parallel and Distributed Processing Systems; April

2004.

[Giannella, 2003] Chris Giannella, Jiawei Han, Jian Pei, Xifeng Yan, Philip S. Yu; Mining Frequent

Patterns in Data Streams at Multiple Time Granularities; Data Mining: Next Generation Challenges and

Future Directions, AAAI/MIT; 2003.

[Guha, 2001] Sudipto Guha, Nick Koudas, Kyuseok Shim; Data Streams and Histograms; ACM

Symposium on Theory of Computing; 2001.

[Han, 1999] Jiawei Han, Guozhu Dong, Yiwen Yin; Efficient mining of partial periodic patterns in time

series database; IEEE Int'l Conf. on Data Mining; March 1999.

[Han, 2000] Jiawei Han, Jian Pei, Yiwen Yin; Mining Frequent Patterns without Candidate Generation;

Int'l Conf. on Management of Data; May 2000.

[Halatchev, 2005] Mihail Halatchev and Le Gruenwald; Estimating Missing Values in Related Sensor

Data Streams; Int'l Conf. on Management of Data; January 2005.

[Hofmann, 2000] Heike Hofmann, Arno P. J. M. Siebes, Adalbert F. X. Wilhelm; Visualizing Association

Rules with Interactive Mosaic Plots; ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data

Mining; August 2000.

[Huang, 2002] Hao Huang, Xindong Wu, Richard Relue; Association Analysis with One Scan of

Databases; IEEE Int'l Conf. on Data Mining; December 2002.

[Jin, 2003] Cheqing Jin, Weining Qian, Chaofeng Sha, Jeffrey X. Yu, Aoying Zhou; Dynamically

Maintaining Frequent Items over a Data Stream; Int'l Conf. on Information and Knowledge Management;

2003.

[Kargupta, 2004] Hillol Kargupta, Ruchita Bhargava, Kun Liu, Michael Powers, Patrick Blair, Samuel

Bushra, James Dull, Kakali Sarkar, Martin Klein, Mitesh Vasa, David Handy; VEDAS: A Mobile and

Distributed Data Stream Mining System for Real-Time Vehicle Monitoring; SIAM Int'l Conf. on Data

Mining; 2004.

[Karp, 2003] Richard M. Karp, Scott Shenker; A Simple Algorithm for Finding Frequent Elements in

Streams and Bags; ACM Transactions on Database Systems; March 2003.

[Lee, 1997] S.D. Lee, David W. Cheung; Maintenance of Discovered Association Rules: When to

update?; Research Issues on Data Mining and Knowledge Discovery; 1997.

[Li, 2004] Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan; An Efficient Algorithm for Mining Frequent

Itemsets over the Entire History of Data Streams; Int'l Workshop on Knowledge Discovery in Data

Streams; Sept. 2004.

[Lin, 2005] Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung Wu, Arbee L. P. Chen; Mining Frequent Itemsets

from Data Streams with a Time-Sensitive Sliding Window; SIAM Int'l Conf. on Data Mining; April 2005.

[Manku, 2002] Gurmeet Singh Manku, Rajeev Motwani; Approximate Frequency Counts over Data

Streams; Int'l Conf. on Very Large Databases; 2002.

[Mao, 2005] Guojun Mao, Xindong Wu, Chunnian Liu, Xingquan Zhu, Gong Chen, Yue Sun, Xu Liu;

Online Mining of Maximal Frequent Itemsequences from Data Streams; University of Vermont, Computer

Science Technical Report CS-05-07; June 2005.

[Otey, 2003] Matthew Eric Otey, Chao Wang, Srinivasan Parthasarathy, Adriano Veloso, Wagner Meira

Jr.; Mining Frequent Itemsets in Distributed and Dynamic Databases; IEEE Int'l Conf. on Data Mining;

2003.

[Otey, 2004] Matthew Eric Otey, Srinivasan Parthasarathy, Chao Wang, Adriano Veloso, Wagner Meira

Jr.; Parallel and Distributed Methods for Incremental Frequent Itemset Mining; IEEE Transactions on

Systems, Man and Cybernetics; December 2004.

[Parthasarathy, 1999] S. Parthasarathy, M. J. Zaki, M. Ogihara, S. Dwarkadas; Incremental and interactive

sequence mining; Int'l Conf. on Information and Knowledge Management; 1999.

[Pinto, 2001] Helen Pinto, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen, Umeshwar Dayal; Multi-

Dimensional Sequential Pattern Mining; Int'l Conf. on Information and Knowledge Management; 2001.

[Relue, 2001] Richard Relue, Xindong Wu, Hao Huang; Efficient runtime generation of association rules;

Int'l Conf. on Information and Knowledge Management; October 2001.

[Schuster, 2003] Assaf Schuster, Ran Wolff, and Dan Trock; Distributed Algorithm for Mining

Association Rules; IEEE Int'l Conf. on Data Mining; November 2003.

[Teng, 2004] Wei-Guang Teng, Ming-Syan Chen, and Philip S. Yu; Resource-Aware Mining with

Variable Granularities in Data Streams; SIAM Int'l Conf. on Data Mining; 2004.

[Veloso, 2003] Adriano Veloso, Wagner Meira Jr., Marcio Carvalho, Srini Parthasarathy, Mohammed J.

Zaki; Parallel, Incremental and Interactive Mining for Frequent Itemsets in Evolving Databases; Int'l

Workshop on High Performance Data Mining: Pervasive and Data Stream Mining; May 2003.

[Veloso, 2003b] Adriano Veloso, Matthew Eric Otey, Srinivasan Parthasarathy, Wagner Meira Jr.; Parallel

and Distributed Frequent Itemset Mining on Dynamic Datasets; Int'l Conf. on High Performance

Computing; 2003.

[Wang, 2003] Haixun Wang, Wei Fan, Philip S. Yu, Jiawei Han; Mining Concept-Drifting Data Streams

using Ensemble Classifiers; ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining;

August 2003.

[Wolff, 2004] Ran Wolff, Assaf Schuster; Association Rule Mining in Peer-to-Peer Systems; IEEE

Transactions on Systems, Man and Cybernetics, Part B, Vol. 34, Issue 6; December 2004.

[Yang, 2004] Li Yang, Mustafa Sanver; Mining Short Association Rules with One Database Scan; Int'l

Conf. on Information and Knowledge Engineering; June 2004.

[Yu, 2004] Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, Aoying Zhou; False Positive or False Negative:

Mining Frequent Itemsets from High Speed Transactional Data Streams; Int'l Conf. on Very Large

Databases; 2004.

[Yu, 2005] Chung-Ching Yu, Yen-Liang Chen; Mining Sequential Patterns from Multidimensional

Sequence Data; IEEE Transactions on Knowledge and Data Engineering; January 2005.

[Zheng, 2003] Qingguo Zheng, Ke Xu, Shilong Ma; When to Update the Sequential Patterns of Stream

Data; Pacific-Asia Conf. on Knowledge Discovery and Data Mining; 2003.

[Zhu, 2002] Yunyue Zhu, Dennis Shasha; StatStream: Statistical Monitoring of Thousands of Data

Streams in Real Time; Int'l Conf. on Very Large Data Bases; 2002.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 19

Join Minimization in XML-to-SQL Translation: An Algebraic

Approach

Murali Mani Song Wang Dan Dougherty Elke A. Rundensteiner
Computer Science Dept, WPI

{mmani,songwang,dd,rundenst}@cs.wpi.edu

Abstract
Consider an XML view defined over a relational
database, and a user query specified over this view.
This user XML query is typically processed using the
following steps: (a) our translator maps the XML
query to one or more SQL queries, (b) the relational
engine translates an SQL query to a relational algebra
plan, (c) the relational engine executes the algebra
plan and returns SQL results, and (d) our translator
translates the SQL results back to XML. However,
a straightforward approach produces a relational al-
gebra plan after step (b) that is inefficient and has
redundant joins. In this paper, we report on our pre-
liminary observations with respect to how joins in
such a relational algebra plan can be minimized. Our
approach works on the relational algebra plan and
optimizes it using novel rewrite rules that consider
pairs of joins in the plan and determine whether one
of them is redundant and hence can be removed. Our
study shows that algebraic techniques achieve effec-
tive join minimization, and such techniques are useful
and can be integrated into mainstream SQL engines.

1 Introduction
Queries, and their corresponding algebra plans, gen-
erated automatically by translating queries specified
over virtual views tend to have unnecessary joins [16].
Such algebra plans take much longer time to execute
when compared to an equivalent algebra plan with-
out the unnecessary joins. In this paper, we study
the problem of how to remove unnecessary joins from
a relational algebra plan.

As it sounds, this problem has been extensively
studied in the more than thirty years of SQL and
relational history [2, 1, 8, 15, 4]. In spite of the
large amount of research, current SQL engines do
very minimal join-minimization; the only kind of
join minimization done is that of removing a join
such as A

�
c B, where c is a condition of the form

A.key = B.fk, and B.fk is foreign key attribute(s)
of B that reference A. The reason for this minimal

adoption is because existing solutions in research
assume a set semantics, which give incorrect results
when we assume bag semantics required by SQL.
As a simple example, consider the algebra plan
πattA(A × B), where A, B are relations, and attA
is the set of attributes of A. This plan returns the
attributes of A after doing a cartesian product of A
and B. The above plan is equivalent to the plan A,
under set semantics. However, under bag semantics
the above two plans give different results.

Motivating Example: Let us consider an example
application scenario from the medical domain to illus-
trate the practicality of this problem. Consider two
relations in the database of a primary clinic: one that
describes doctors, and their speciality, and another
that describes patients, who their primary doctor is,
and what their primary health issue is. The two re-
lations and their sample data are shown in Table 1.

docID name speciality
ID1 Mike ENT
ID2 Mary General
ID3 Cathy General

(a) Doctor Relation with Sample Data

patID name primaryHealthIssue doctor
SSN1 Matt Arthritis ID1
SSN2 Joe Polio ID1
SSN3 Mark Cancer ID2
SSN4 Emily Arthritis ID2
SSN5 Greg Cancer ID2
SSN6 Terry Cancer ID3
SSN7 Tina Cancer ID3

(b) Patient Relation with Sample Data

Table 1: Example Relational Database

Now consider that the primary clinic needs to ex-
port an XML view of its data to a certain class

20 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

of users. The view must specify the patients who
have been diagnosed with cancer, and their primary
health care physicians, grouped by the physicians.
Such view definitions have been studied in several
systems such as SilkRoute [5], XPERANTO [14],
and CoT [10]. Fig 1 shows this view defined using
XQuery [17] (this query is slightly modified from the
one in SilkRoute [5] for ease of explanation).
<root> {
for $d in //Doctor
where exists (//Patient[@doctor=$d/@docID

and @primaryHealthIssue=’Cancer’])
return <doctor DoctorID={$d/@docID}>
for $p in //Patient[@doctor=$d/@docID

and @primaryHealthIssue=’Cancer’])
return <patient PatientID={$p/@patID}/>

</doctor> }
</root>

Figure 1: An XML view of the relational database
from Table 1 defined using an XQuery

<root>
<doctor DoctorID=’ID2’>
<patient PatientID=’SSN3’/>
<patient PatientID=’SSN5’/>

</doctor>
<doctor DoctorID=’ID3’>
<patient PatientID=’SSN6’/>
<patient PatientID=’SSN7’/>

</doctor>
</root>

Figure 2: The result from a user query /root against
the view defined in Figure 1

Such a view is typically virtual, and not material-
ized. Once such a view is defined, one needs to sup-
port arbitrary queries to be specified over this view.
For instance, the result of the query /root is shown in
Figure 2. Consider a user query U1 that retrieves all
the patient IDs in the view, which could be specified
as //patient/@PatientID. Such a query could be
answered using the following steps: (a) our translator
translates the above XML query into SQL queries, (b)
the relational engine translates an SQL query into a
relational algebra plan, (c) the relational engine exe-
cutes the algebra plan to get SQL results, and (d) our
translator translates the SQL results back to XML to
conform to the view. After these steps, the user will
get the answer {SSN3, SSN5, SSN6, SSN7}1.

1Note that we are assuming an unordered semantics. Con-
sidering order constraints such as SSN3 and SSN5 must appear
next to each other are outside the scope of this work. Such un-
ordered semantics as we assume might be appropriate, if the
user knows that the underlying data source is relational.

For step (a), our translator uses a mapping as
shown in Figure 3. This mapping says that one root
node always exists in the view; the set of doctor chil-
dren of this root node is the doctors that have a pa-
tient with cancer; given a doctor, her patients are
those who have cancer. Such mappings are derived
from the view query definition [5, 14].

WHERE p.primaryHealthIssue=’Cancer’

SELECT *

WHERE EXISTS (
FROM Doctor d

 SELECT * FROM Patient p
 WHERE p.primaryHealthIssue=’Cancer’
 AND p.doctor=d.docID)

root

doctor

patient

SELECT *

 AND p.doctor=d.docID

FROM Patient p, doctor d

Figure 3: Mapping obtained from the view query
(Figure 1) used to answer queries.

Let us see how the translator translates the user
XML query U1 into SQL using the above mapping.
The translator can determine that the set of patients
can be obtained from the SQL query corresponding to
the patient node in the mapping. This query in turn
uses the doctor node in the mapping, which in turn
can be substituted by the SQL query corresponding
to the doctor node in the mapping. After such substi-
tutions, and some minor syntactic rewriting, we get
the SQL query Q1 that answers the user query as:

SELECT p.patientID
FROM Patient p,

(SELECT * FROM Doctor d1
WHERE EXISTS (
SELECT * FROM Patient p1
WHERE p1.primaryHealthIssue=‘Cancer’

AND p1.doctor=d1.docID)) d
WHERE p.primaryHealthIssue=‘Cancer’

AND p.doctor=d.docID

The above query specifies two joins: first there is a
join between Doctor d1 and Patient p1 to produce d,
that is the set of doctors who have cancer patients.
This d is then joined with Patient p to get the final
result. However, from the application semantics, we
know that every patient who has cancer will appear
in the view. Therefore a simpler SQL query Q2 for
answering U1 would be:2

2Q2 answers U1 if we assume that every patient has one
doctor. However even without this assumption, Q1 can be
optimized to a query which has only one join, as we will see
later. In other words, Q1 always has redundant joins.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 21

SELECT p.patientID
FROM Patient p
WHERE p.primaryHealthIssue=‘Cancer’

Even if the query such as Q1 specifies multiple
joins, it might not be inefficient, if the relational en-
gine can optimize the query. A relational engine first
translates an SQL query into a relational algebra plan
and tries to optimize this plan. This optimized plan
is what is executed. However, when we feed Q1 into
a relational engine (we use IBM DB2 V8), we get a
final plan that looks like the one shown in Figure 4.
Observe that the plan still has the two joins.

Doctor Patient

Patient

TBSCAN

TBSCAN TBSCAN

JOIN

JOIN

Figure 4: Algebra Plan corresponding to Q1 gener-
ated by an SQL engine.

In this paper, we come up with a novel set of rules
for minimizing joins in a relational algebra plan.
Our rules determine whether a join in a algebra
plan can be removed by examining other joins in the
plan. Using our rules, as well as previously studied
rules that minimize joins by examining semantic
constraints in the schema, we are able to minimize
the query plan in Figure 4 to an equivalent query
plan without any joins.

Outline of the paper
The rest of the paper is organized as follows. Sec-
tion 2 describes some of the related work in minimiz-
ing joins. Our rules for minimizing joins, along with
an example illustration, are described in Section 3.
We report on our preliminary experimental studies
that show the performance gain possible by such join
minimization in Section 4. Our conclusions and fu-
ture directions are given in Section 5.

2 Related Work
Dan Suciu reported in [16] that the translator (step
(a) in our process) in SilkRoute can produce SQL
queries with unnecessary joins, and gave some in-
sights as to why this problem might be more critical
in the world of XML views, as opposed to plain SQL
views. In XML views, there is a query associated
with each “type” whereas in SQL views, there is only

one “type” and a query associated with that type.
Hence in XML views, queries that join multiple view
queries are very frequent.

In [9], the authors study the problem of join min-
imization for XML views. Here the authors try to
optimize step (a) (as opposed to step (b) in our ap-
proach). They do this by identifying which nodes in
the view mapping such as Figure 3 form “bijective”
mappings. A node in the view mapping is said to
be a bijective mapping with respect to a relation in
the SQL database, if there is an element of this node
type in the view instance corresponding to every row
in the relation. In our example view mapping shown
in Figure 3, every row in the Doctor relation does not
appear in the view; every row in the Patient relation
also does not appear in the view. Therefore both the
doctor node and the patient node in Figure 3 do not
form bijective mappings. This means that the tech-
niques studied in [9] will end up with an inefficient
query plan such as the one in Figure 4.

In [10], the authors study a class of views where
every node in the mapping is necessarily bijective.
In other words, they disallow a view definition such
as the one in Figure 1. By making this assumption,
the authors are able to optimize step (a), and come
up with minimal SQL queries easily: every XPath
expression (or subexpression) that selects every ele-
ment in the instance corresponding to a node can be
obtained by a select query from the corresponding
relation (and no joins are needed).

In the previous section, we mentioned the rich body
of work that study join minimization assuming set
semantics. In [2], Chandra and Merlin showed that
there is a unique minimal query for any given con-
junctive query, and that such minimization is NP-
hard. In [1], the authors considered additional con-
straints such as functional dependencies specified on
the relations, and came up with a tableau (matrix)
based approach for decreasing joins. Minimization of
joins in the presence of functional dependencies was
also shown to be NP-complete in the size of the query.
In [8], the authors considered functional and inclusion
dependencies and showed that minimization of joins
is still NP-complete. Here the authors came up with
a chase technique that, given a query, expands the
query by adding conjuncts based on the functional
and inclusion dependencies. This expanded query
can then be minimized. A graph based approach,
consisting of expansion and reduction steps, for join
minimization is studied in [15]. Recently, in [4], the
authors consider physical structures such as primary
and secondary indexes, extent-based representation
of OO classes, join indexes, path indexes, access sup-
port relations, gmaps etc. The authors study how to

22 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

translate a logical query into a minimal query against
the physical schema, using a chase step that expands
the logical query to a universal query, and then a
backchase step that minimizes the universal query.

The above approaches [2, 1, 8, 15, 4] do provide a
good understanding of the problem; however, these
techniques cannot be used in SQL engines, because
SQL is based on bag semantics. The complexity
of join minimization of conjunctive queries under
bag semantics as in SQL is studied in [7, 3], and
they report that query containment is Πp

2-hard. Fur-
ther, in [3], the authors consider select-from-where
queries with bag semantics, and remark that such
queries cannot be minimized without additional se-
mantic constraints. In our work, we consider queries
that produce semi-joins in the plans (such as queries
with exists), and show that these joins can infact be
reduced without any additional semantic constraints.

The approach that we propose for join minimiza-
tion is an algebraic rewriting technique. Algebraic
rewriting rules for SQL queries have been studied ex-
tensively, for example in [11, 12, 6, 13]. Some of the
rules include removal of DISTINCT if one of the re-
turned columns is known to be unique, techniques for
decorrelation etc. However, none of the techniques
study join minimization that can optimize the query
plan shown in Figure 4. We expect that our tech-
niques described in this paper will complement exist-
ing algebraic optimization techniques.

3 Rules for Minimizing Joins
In this section, we will describe our rules for minimiz-
ing joins in an algebra plan. We will state each rule
informally, rather than using a formal notation, for
ease of explanation. Further, we assume that some
preliminary analysis of the algebra plan has already
been done to identify characteristics such as for ev-
ery operator, what columns are needed in the rest of
the algebra plan (refer to any commercial optimizer
like IBM DB2). We will use the following common
notations for our relational algebra operators: select
is denoted by σ; project is denoted by π; � denotes
join; � denotes semi-join;

o
�L denotes left-outer join;

δ removes duplicates; γ denotes grouping.
Before we define the rules, we would like to intro-

duce the notion of logical entailment. For instance,
we say that the condition (a = b) ∧ (c = d) logically
entails the condition (a = b). Given two conditions
(boolean expressions) c1 and c2, c2 logically entails
c1 if c2 → c1 is always true. In other words, when-
ever c2 evaluates to true c1 will necessarily be true.
A naive method for checking logical entailment is:
identify common “terms” in c1 and c2 using syntac-
tic analysis, and then check for all combinations of

truth values of every term, whether c2 → c1 is true.
Our first two rules are already studied and imple-

mented in most commercial systems. They utilize
semantic constraints (key-foreign key constraints) in
the schema to remove joins.

Rule 1 A
�
c B can be reduced to σc′(B) if c is a

condition that logically entails the condition A.key =
B.fk, where B.fk is foreign key referencing A, no
column in B.fk can be NULL, and no column of A is
needed in the rest of the algebra plan. c′ is obtained
from c by removing the condition A.key = B.fk. �

Rule 2 A
�
c B can be reduced to σc′(B) if c is a

condition that logically entails the condition A.key =
B.fk, where B.fk is foreign key of B that references
A, and no column of A is needed in the rest of the
algebra plan. c′ is obtained from c by removing the
condition A.key = B.fk, and by adding condition of
the form B.fk IS NOT NULL. �

Our third and fourth rules are more complex, and
form the crux of our approach. They try to remove
unnecessary semi-joins that may appear in the alge-
bra plan. Semi-joins may appear in an algebra plan
when we decorrelate a correlated SQL query. For
example, consider the SQL query corresponding to
the doctor node in Figure 3. It specifies a correlated
query, which is translated into an algebra plan such
as: Doctor

�

c Patient, where c = (doctor = docID
AND primaryHealthIssue = ’Cancer’) is the join con-
dition. The result of this semi-join is the set of rows
in the Doctor relation, that satisfy the condition.

Now in Q1, the above result is then joined with the
Patient relation. The algebra plan corresponding to
this is (Doctor

�

c1 Patient)
�
c2 Patient. Further, in

this query the two conditions c1 and c2 are identical.
In other words, the doctors who have patients are
then joined with patients. We see that the first semi-
join can be removed. We now get the query plan
Doctor

�
c2 Patient.

Rule 3 (A
�

c1 B)
�
c2 B can be reduced to A

�
c2 B if

the condition c2 logically entails the condition c1. �

The above rule can be implemented by doing a
bottom-up traversal of the algebra plan. For any
semi-join such as (A

�

c1 B), check if this operator
has an “ancestor” operator in the plan that is a join
with B, and has a join condition c2 where c2 logically
entails c1. This rule can be extended to an ancestor
semi-join also, and the correctness holds.

Rule 4 (A
�

c1 B)
�

c2 B can be reduced to A
�

c2 B if
the conditions c2 logically entails the condition c1. �

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 23

Using the above rules, we can come up with an
efficient relational algebra plan for Q1, as shown in
Figure 5. First we start with a plan that includes
a semi-join and a join. Using Rule 3, we first re-
move the semi-join. We then use Rule 1 to remove
the remaining join. The result is an efficient algebra
plan with no unnecessary joins. In our experimental
section, we show this efficient plan executes orders
of magnitude faster; we achieved improvement of a
factor of about 26 for simple queries3.

Rule 3

Doctor Patient

Patient PatientDoctor

Rule 1

Patient

Figure 5: Using our rules to minimize relational al-
gebra plan for query Q1.

4 Experimental Evaluation
We performed some preliminary experiments to illus-
trate the effectiveness of our proposed approach. Our
experiments were done on IBM DB2 V8 Database
Server, which is installed on an 1.4 GHz Pentium ma-
chine with 512 MB RAM, running Windows XP. We
used the TPC-H4 benchmark data, loading data of
different amounts from 500 MB to 4 GB.

We performed three sets of experiments. The first
set of experiments illustrate that joins can be expen-
sive. For this, we executed the following two queries:

Q4: SELECT COUNT (*) FROM LINEITEM l, PART p
WHERE l.L PARTKEY=p.P PARTKEY

Q5: SELECT COUNT (*) FROM LINEITEM l
The plans for these two queries are shown in Fig-

ure 6. The execution times for these two queries
against TPC-H data are shown in Figure 8. Note
that this join can actually be very expensive, as it is
not a key-foreign key join.

The second set of experiments is similar to our mo-
tivating example, and show the effectiveness of Rule
3. For this we executed the queries Q6, and the equiv-
alent query Q5. Our rules are able to reduce Q6 to
Q5. The plan for Q6 is shown in Figure 7. The execu-
tion times for these two queries against TPC-H data
are shown in Figure 8. Note that we get considerable
performance gain using our rules.

Q6: SELECT COUNT (*) FROM LINEITEM l,
(SELECT * FROM ORDERS o1

3To clarify, for more complex queries, where the percentage
of unnecessary joins is smaller, we expect to get lower factors
of improvement, but larger absolute values of improvement.

4http://www.tpc.org

(a) Query Plan from Q4

(b) Query Plan
from Q5

Figure 6: Illustrating that joins can be expensive.
The execution times are shown in Figure 8.

WHERE EXISTS (
(SELECT * FROM LINEITEM l1
WHERE l1.L ORDERKEY=o1.O ORDERKEY)) o
WHERE l.L ORDERKEY=o.O ORDERKEY

Figure 7: Query plan corresponding to Q6. Our rules
reduce this plan to the plan in Figure 6(b).

The third set of experiments illustrate the effec-
tiveness of Rule 4. For this consider query Q7 below:

SELECT COUNT (*) FROM LINEITEM l
WHERE EXISTS (SELECT * FROM ORDERS o1

WHERE o1.O_ORDERKEY=l.L_ORDERKEY)
AND EXISTS (SELECT * FROM ORDERS o1

WHERE o1.O_ORDERKEY=l.L_ORDERKEY)

24 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Using our Rule 4, we can remove one of the joins.
We then get an algebra plan that is equivalent to the
query Q8 given below: (Execution times of Q7 and
Q8 are shown in Figure 8.)

SELECT COUNT (*) FROM LINEITEM l
WHERE EXISTS (SELECT * FROM ORDERS o1

WHERE o1.O_ORDERKEY=l.L_ORDERKEY)

0�

200�

400�

600�

800�

1000�

1200�

0.5� 1� 2� 3� 4�

data size (GB)�

q
u

er
y

ex
ec

u
ti

o
n

 t
im

e
(s

ec
o

n
d

s)
�

Q4� Q6� Q5/Q6 optimized� Q7� Q8=Q7optimized�

Q4�

Q5/Q6 optimized�

Q6�

Q8=Q7 optimized�
Q7�

Figure 8: Execution times for the different queries

5 Conclusions and Future
Work

In this paper, we have shown that significant perfor-
mance gain can be achieved by performing join mini-
mization, and that research so far has not solved the
join minimization in a satisfactory manner. We have
come up with a solution for join minimization that is
based on the commercially used algebraic rewriting
techniques and preserves SQL bag semantics. We ex-
pect that our work will open up renewed interest in
this problem, and that the solutions will get adopted
into commercial SQL engines. As part of future work,
we need to integrate our solutions into commercial
optimizers in order to study the query compilation
time, as well as demonstrate the feasibility of our
techniques.

References

[1] A. V. Aho, Y. Sagiv, and J. D. Ullman. “Effi-
cient Optimization of a Class of Relational Ex-
pressions”. ACM Trans. on Database Systems
(TODS), 4(4):435–454, 1979.

[2] A. K. Chandra and P. M. Merlin. “Optimal
Implementation of Conjunctive Queries in Rela-
tional Data Bases”. ACM Symposium on Theory
of Computing (STOC), pages 77–90, 1977.

[3] S. Chaudhuri and M. Y. Vardi. “Optimization
of Real Conjunctive Queries”. In ACM PODS,
Washington, DC, May 1993.

[4] A. Deutsch, L. Popa, and V. Tannen. “Phys-
ical Data Independence, Constraints and Opti-
mization with Universal Plans”. In VLDB, Ed-
inburgh, Scotland, Sep. 1999.

[5] M. F. Fernandez, Y. Kadiyska, D. Suciu, A. Mor-
ishima, and W. C. Tan. “SilkRoute: A Frame-
work for Publishing Relational Data in XML”.
ACM Trans. on Database Systems (TODS),
27(4):438–493, Dec. 2002.

[6] P. Gassner, G. M. Lohman, K. B. Schiefer, and
Y. Wang. “Query Optimization in the IBM DB2
Family”. IEEE Data Eng. Bulletin, 16(4):4–18,
1993.

[7] Y. E. Ioannidis and R. Ramakrishnan. “Con-
tainment of Conjunctive Queries: Beyond Rela-
tions as Sets”. ACM Trans. on Database Systems
(TODS), 20(3):288–324, Sep. 1995.

[8] D. Johnson and A. Klug. “Testing Containment
of Conjunctive Queries under Functional and In-
clusion Dependencies”. In ACM PODS, Los An-
geles, CA, Mar. 1982.

[9] R. Krishnamurthy, R. Kaushik, and J. F.
Naughton. “Efficient XML-to-SQL Query Trans-
lation: Where to Add the Intelligence”. In
VLDB, Toronto, Canada, Sep. 2004.

[10] D. Lee, M. Mani, F. Chiu, and W. W. Chu. “NeT
& CoT: Translating Relational Schemas to XML
Schemas”. In ACM CIKM, McLean, Virginia,
Nov. 2002.

[11] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
“Extensible/Rule Based Query Rewrite Opti-
mization in Starburst”. In ACM SIGMOD, San
Diego, CA, June. 1992.

[12] H. Pirahesh, T. Y. C. Leung, and W. Hasan.
“A Rule Engine for Query Transformation in
Starburst and IBM DB2 C/S DBMS”. In IEEE
ICDE, Birmingham, UK, Apr. 1997.

[13] P. Seshadri, H. Pirahesh, and T. Y. C. Le-
ung. “Complex Query Decorrelation”. In IEEE
ICDE, New Orleans, LA, Feb. 1996.

[14] J. Shanmughasundaram, J. Kiernan, E. Shekita,
C. Fan, and J. Funderburk. “Querying XML
Views of Relational Data”. In VLDB, Roma,
Italy, Sep. 2001.

[15] S. T. Shenoy and Z. M. Ozsoyoglu. “A Sys-
tem for Semantic Query Optimization”. In ACM
SIGMOD, San Francisco, CA, May. 1987.

[16] D. Suciu. “On Database Theory and XML”.
ACM SIGMOD Record, 30(3):39–45, Sep. 2001.

[17] W3C. XQuery Working Group.
http://www.w3c.org/XML/Query.html.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 25

Dynamic Count Filters

J. Aguilar-Saborit∗ P. Trancoso+ V. Muntes-Mulero∗

J.L. Larriba-Pey∗

∗DAMA-UPC, Computer Architecture Department
Universitat Politecnica de Catalunya
+ Department of Computer Science

University of Cyprus
e-mail: {jaguilar,vmuntes,larri}@ac.upc.edu, pedro@cs.ucy.ac.cy

ABSTRACT
Bloom filters are not able to handle deletes and inserts on multisets
over time. This is important in many situations when streamed data
evolve rapidly and change patterns frequently. Counting Bloom
Filters (CBF) have been proposed to overcome this limitation and
allow for the dynamic evolution of Bloom filters. The only dynamic
approach to a compact and efficient representation of CBF are the
Spectral Bloom Filters (SBF).

In this paper we propose the Dynamic Count Filters (DCF) as a new
dynamic and space-time efficient representation of CBF. Although
DCF does not make a compact use of memory, it shows to be faster
and more space efficient than any previous proposal. Results show
that the proposed data structure is more efficient independently of
the incoming data characteristics.

1. INTRODUCTION
Streamed data processing is the source for many interesting prob-
lems in areas ranging from financial analysis to telecom processing.
In such cases, one of the basic problems is to recognize whether a
new data item belongs to a set or to know its number of occur-
rences. The problem becomes challenging when there are large
quantities of data to be processed per unit of time that evolve and
change rapidly. In those situations, the problem calls for methods
that are fast and adaptive.

Counting Bloom filters (CBF) [6] have been designed with some
of the previous objectives in mind. CBF are similar to Bloom fil-
ters [1] but substitute every presence bit by a fixed size counter.
This is a data structure with a fast access time but it suffers from
an important problem which is related to the fact that its counters
are not flexible. Consequently, the counters may become saturated
resulting in inaccuracy in the stored information. As an alternative,
Spectral Bloom Filters (SBF) [4] have been designed to overcome
the lack of adaptiveness. SBF are composed of variable sized coun-
ters that adapt to rapidly changing data sets. However, SBF require
the use of indexing structures to support this degree of adaptive-
ness, which make the access to each counter more complex and
costly compared to CBF.

Counting Bloom Filters have been investigated for their use in net-
work environments to summarize the content of peer-to-peer sys-
tems [3], to reduce file name lookups in large scale distributed sys-
tems [8], and in Internet Protocol routing lookups [5]. In the data-
base environment CBF may be used to answer queries regarding the
multiplicities of individual items, for example, in aggregate queries
or ad-hoc iceberg queries [7, 9].

Besides providing a new data structure to represent counting fil-
ters, the Spectral Bloom Filters also propose new methods for re-
ducing the probability and magnitude of lookup errors [4]. Bloom
histograms, a further compressed view of SBF, are used to keep
counting statistics for paths in XML Data [12].

In this paper we propose a new data structure to represent CBF,
that we name Dynamic Count Filters (DCF). The DCF structure
is designed for speed and adaptiveness in a very simple way. It
captures the best of SBF and CBF. As a by-product of its simplicity,
DCF does not require the use of indices. This fact reduces the
amount of memory requirements in most of the cases.

In Table 1 we present a brief qualitative comparison between the
three approaches: CBF, SBF, and DCF.

Counters Access #Rebuilds Saturated
size Time counters

CBF Static fast n/a Yes
SBF Dynamic slow high Eventually
DCF Dynamic fast low No

Table 1: Qualitative Comparison of CBF, SBF, and DCF.

It is relevant to notice that DCF borrows the qualities of the two
other techniques, the dynamic counters from SBF and the fast ac-
cess from CBF. Also, DCF’s dynamic counters avoid saturation.
Finally, although the cost of a single rebuild of our data structure is
high and only slightly better than that to rebuild SBF’s, the number
of rebuilds for DCF is orders of magnitude smaller, leading to a
much smaller overall execution time.

The results from the execution of different real-life data operation
scenarios, using both DCF and SBF to represent the data, show that
DCF’s overall memory size less than the half compared to SBF’s,
and its overall execution time is less than half the execution time
of SBF. In addition, the flexibility of the DCF structure sustains its
accuracy even in the presence of unpredicted peaks in the data set
size.

The contributions of this paper are as follows:

• The proposal of Dynamic Count Filters (DCF) with a de-
tailed description of the basic data structure and operations.

• An efficient mechanism to dynamically resize the DCF struc-
ture and avoid useless rebuilds.

26 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

• A quantitative evaluation of DCF as well as its comparison
with SBF.

This paper is organized as follows: In Section 2 we explain the
related work. Section 3 describes the Dynamic Count Filters. In
Section 4 we present the setup and discuss the experimental results
for the different scenarios. Finally, in Section 5 we present the
conclusions.

2. RELATED WORK
A Bloom Filter, proposed by Burton Bloom in 1970 [1], is basi-
cally a bit-vector of m bits that represents a set of n data elements,
S = s1, ...sn. The Bloom Filter uses k hash functions [10, 11],
h1,h2, ...,hk, that map each data element into the Bloom Filter.
Each hash function returns a value ranging from 1 to m, thus for
each data element, s ∈ S, positions h1(s),h2(s), ...,hk(s) are set
to 1. Different data elements from S may map to the same position
in the filter, hence, a given data element is in S, s ∈ S with a given
probability of error [1], only if hi(s) = 1 for 1 ≤ i ≤ k.

Bloom filters do not address the issue of deletions over multisets.
In order to overcome this limitation, Fan et al. [6] proposed the
Counting Bloom Filters (CBF), where a Bloom filter is extended
to have the capability of counting the number of different data ele-
ments that map to the same location.

2.1 Counting Bloom Filter (CBF)
A CBF represents a total of M data elements, including repeated
values. This is done by replacing bit entries of a Bloom Filter
by counters (C1,C2, ...,Cm counters). Similarly to the original
Bloom Filter, each time a new data element s is to be inserted into
the set, k hash functions are used to update k entries of the filter.
While in the Bloom Filter the entries would be simply set to one,
in the CBF the counter in each of the k entries is incremented by
one. In an analogous way, whenever a data element s is to be re-
moved from the set, the counters in the same k filter entries are
decremented by one. At any point in time the sum of the contents
of all counters is equivalent to

j= 1..m
Cj = k × M .

The usual data structure representing the CBF consists of a static
data set representation where counters have a fixed size over time.
Such a representation has two major drawbacks: (1) whenever an
insertion of a new element results in a counter overfl ow, delete op-
erations to data elements that map to that same filter entry can no
longer be refl ected; (2) CBF’s representation is not optimal as all
counters have the same bit length, thus resulting in memory waste.

Dharmapurikar et al. [5] addresses the problem of overfl owed coun-
ters. In their proposed approach, the CBF structure is rebuilt with a
larger size once the number of overfl owed counters passes a certain
threshold. As such, the refresh of the structure is very costly, as far
as all messages must be re-inserted again. Moreover, overfl owed
counters may be useless during a large period of time.

2.2 Spectral Bloom Filter (SBF)
Cohen and Matias [4] proposed the Spectral Bloom Filter (SBF),
which is a compact representation of the CBF. The main goal of
SBF is to achieve an optimal counter space allocation. It consists
of a compact base array of a sequence of C1,C2, ...,Cm counters,
which represents a set of M data elements using k hash functions
as with CBF. At any point in time, the goal of SBF is to keep the
size of the base array as close to N bits as possible, where N =

j= 1..m
dlo g Cje. Note that throughout this paper we assume lo g

to be lo g 2.

To achieve its goal, each counter Cj in the SBF structure, dynam-
ically varies its size such that it has the minimum necessary bits
needed to count the number of items hashed into position j. To
allow for this fl exibility, the counter space in SBF includes ε × m

slack bits that are placed among the counters. A slack bit is added
between every b 1

ε
c counters, where 0 < ε ≤ 1.

While the counter space in SBF is kept close to the optimal value,
in order to support the fl exibility of having counters with different
sizes, SBF requires complex index structures. In the context of our
paper, we identify the index structures described in [4] as:

• Coarse Vector (CV): a bit-vector index that provides offset
information for the beginning of a subgroup of counters. Off-
sets are provided using counters of a fixed-size length in bits.

• Offset Vector (OV): a bit-vector which provides straightfor-
ward representation of the offsets provided by the CV.

Figure 1 shows the data structures used by SBF. The first-level
Coarse Vector (CV1) contains m

lo g N
offsets of lo g N bits each,

thus, each offset represents a subgroup of counters (SC). As ex-
plained in detail in [4], for the subgroup of counters that fulfills

Cj∈S C
lo g dCje < lo g 3 N , a second-level coarse vector (CV2)

is required, providing a more detailed information about the offsets
for each counter Cj ∈ SC. In the case that a subgroup of coun-
ters

i∈S C
lo g dCje ≥ lo g 3 N , then, as indicated in [4], an Offset

Vector (OV) is used, that contains the exact offset for each counter.
For simplicity, without loss of generality, the analytical models pre-
sented in this paper assume the former case, where the CV2 is re-
quired. CV2 divides SC in chunks of lo g lo g N counters (SC

′

), and
holds a total of lo g N

lo g lo g N
offsets. Since offsets in CV2 are at most

lo g 3 N , each offset can be represented with 3 lo g lo g N bits, total-
ing 3 lo g N per each SC

′

. Finally, the information needed to locate
the exact position of the jt h counter is given by one offset vector
(OV), one per each subgroup SC

′

. The OV consists of lo g lo g N

offsets of 3 lo g lo g N bits each offset, totaling 3 (lo g lo g N)2 bits
per subgroup SC

′

.

The offset vector OV, can also be substituted by a lookup table de-
pending on a threshold based on the length of SC

′

. More details
about this approach can be found in [4].

logN

3 loglogN

B a s e A r r a y . C los e to N b its .

O ffs e t V e c tor , O V
(loglogN offs e ts)

SC’

C oa r s e V e c tor , C V 1

(m /logN offs e ts)

C oa r s e V e c tor , C V 2
(log N/loglogN offs e ts)

3 loglogN

SC

Figure 1: SBF data structures.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 27

3. DYNAMIC COUNT FILTERS (DCF)
Dynamic Count Filters (DCF) are composed of two different vec-
tors. The first vector is a basic CBF with each entry being a counter
of fixed size x = log M

n
, where M is the total number of data ele-

ments in the set and n is the number of distinct values in the set. If
we consider that the filter has m counters (Cj for j = 1..m), the
CBF vector, hereby named CBFV, accounts for a total of m × x

bits. The second vector is the Overflow Counter Vector (OFV),
which also has the same number of entries, each one including a
counter (OF j for j = 1..m) that keeps track of the number of
times that the corresponding entry in the CBFV suffered an over-
fl ow. The size of each counter in the OFV changes dynamically
depending on the distribution of the data elements in the data set.
At a certain point in time, the size of each counter is equal to the
number of bits required to represent the largest value stored in OFV
(y = blog(m a x (OF j))c + 1). As such, the size of the OFV ac-
counts for a total of m × y bits.

Figure 2 represents the data structure for the DCF approach. From
this Figure it is possible to observe that the DCF data structure is
composed of m entries with m counters split in pairs of counters,
〈C1, OF 1〉,...,〈Cm, OF m〉. All counters in the DCF have equal
size of x + y bits, where y varies dynamically its bit length.

The decision of having a fixed size for each counter implies that,
on the one hand many bits in the DCF structure will not be used
and, on the other hand, the access to both vectors is direct, hence,
fast. Therefore, DCF trades counter memory space for a fast access.
Overall, DCF’s fixed-sized counters result in time and space bene-
fits as it allows for a fast read/write mechanism that has an asymp-
totic cost of O(1), avoiding the use of complex indexing structures,
and saving memory space in most of the cases.

x bits

1 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 2

4 0 0 0 0 0 0 0 0 0 0 0 4

m− 1 0 0 0 0 0 0 0 0 0 0 0 m− 1

m 0 1 0 0 0 0 0 1 1 1 1 m

3 0 0 1 0 0 0 0 0 0 0 1 3

5 1 0 0 0 0 0 0 0 0 1 0 5

OFV CBFV Values

0

0

0

0

5 2 7

1 02 6

2 5 7

D CF struc tures

y bits

Figure 2: DCF data structure.

3.1 Querying a Data Element
Querying the filter for a certain data element s results, as with the
rest of Bloom-like filters, in checking k filter entries, using k differ-
ent hash functions, h1(s), h2(s), ..., hk(s). Checking a filter entry
is performed by accessing the corresponding entries of the CBFV
and OFV vectors. As counters in both vectors have the same num-
ber of bits, locating an entry is immediate and performed with sim-
ple shift and modulo operations. The counter bits are then extracted
from the vectors using fast bitwise masking operations (A ND and
OR). Both accesses are fast with an asymptotic cost of O(1).
Hence, for a certain entry j, once we get Cj and OF j , the com-

pound value Vj for the counter stored in position j of the DCF is
calculated as Vj = (2x × OF j + Cj).

This way, when querying a data element s, we end up having k
values Vhi(s):i=1..k with a cost of k × O(1) ' O(1). The values
associated to s are used depending on the application. For instance
if we want to determine the presence of the data element, it is nec-
essary to perform the simple operation of checking if one of the
Vhi(s):i=1..k values is zero. If so, then s is not in the data set, oth-
erwise s is in the data set with a probability of false positive as
explained in [1].

3.2 Updating the Data Set
Each time we insert or delete a data element s, we must update k fil-
ter entries (h1(s), h2(s), ..., hk(s)) in the CBFV and OFV. Updates
in the CBFV are fast and performed on each counter Chi(s):i=1..k

using simple increment and decrement operations, depending on
the operation, insert or delete, respectively. Updates in the OFV
are more infrequent but may be more expensive. In addition to up-
dating the OF hi(s):i=1..k counters when an overfl ow or underfl ow
occurs in the corresponding Chi(s) counter, the OFV may need to
be resized. In the next sections we explain in more detail the insert
and delete operations for a certain data element s.

Inserting a Data Element.
As mentioned before, when a data element s has to be inserted, k

counters Chi(s):i=1..k in the CBFV are incremented by one. In case
a counter Cj , for any of those incremented entries j = hi(s) : i =
1..k, overfl ows, i.e. its value increases from 2x − 1 to 2x, the value
of Cj is set to zero and the corresponding counter in OFV, OF j has
to be incremented by one. Thus, the data insertion requires at most
two read and write operations, which have an asymptotic cost of
O(1).

In the case that the overfl ow counter OF j is to be incremented from
2y − 1 to 2y , then, before the operation can be performed, one bit
must be added to all counters in the OFV in order to avoid counter
saturation. We name the action of changing the size of the OFV
Rebuild. Rebuild operations are expensive as they require the allo-
cation of a new vector, the copy of the contents from the old OFV
to the new extended OFV vector, and finally the deallocation of
the old OFV vector. Therefore, as the vectors have m entries, the
rebuild operation has an asymptotic cost of O(m). Notice that al-
though the rebuild operation is costly, the motivation for having
a OFV structure separately from the CBFV is that rebuilding the
OFV is cheaper than rebuilding the CBFV. This is because the OFV
is smaller than the CBFV and also because it is probable that many
more entries contain a zero in the OFV, which will not be the case
for CBFV, thus. Note that containing a zero implies no need to
copy the counter. Overall, although the asymptotic cost would be
the same, memory allocations and data copying for the new OFV
vector are cheaper than if we re-create the whole DCF structure.

Delete a Data Element.
Upon deletion of a data element s from the data set, k counters
Chi(s):i=1..k in the CBFV are decremented by one. Whenever one
of the counters suffers an underfl ow, i.e., Cj , for any of those decre-
mented entries j = hi(s) : i = 1..k, is to be decremented but
its original value is zero, then its value is set to 2x − 1 and its
corresponding counter in the OFV, OF j is decremented by one.
Therefore, as in the insert case, at most only two read and write op-
erations are needed, resulting in an asymptotic cost of O(1). No-
tice that when we decrement a counter, either Cj or OF j must be

28 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

greater than 0, as we do not delete data elements not belonging to
the data set.

Similarly to the insert-triggered OFV rebuild, delete operations may
also result in OFV rebuilds, in this case in order to save counter
memory space that is not needed any longer. Whenever a counter
OF j is decremented from 2y−1 to 2y−1 − 1 we may check all the
other OFV counters and if their values are all smaller than 2y−1

then we can reduce the OFV size by one bit per counter. While
in theory this operation requires to check all the counter values, in
practice this operation is simpler if a simple counter structure keeps
track of the bit-usage for the m counters. We show this optimiza-
tion in the next Section. Shrinking and enlarging the OFV result in
the same DCF rebuild operation with an asymptotic cost of O(m).

3.3 Delayed OFV Shrinking
The main difference between the rebuild due to insertion and the re-
build due to deletion is that while the former is required in order to
avoid counter saturation, the latter is optional and may be delayed
in order to avoid unstable situations of consecutive delete/insert op-
erations that could result in excessive OFV rebuilds.

Therefore, we introduce a threshold between values 2x+y−2 and
2x+y−1−1. We define such threshold as T = 2x+y−2+(2x+y−1−
2x+y−2)×λ, where λ ranges from 0 to 1. Hence, when decreasing
entry j in the DCF by one, and being Vj the associated value to the
counter 〈OFj , Cj〉, then, if Vj < T , we rebuild the OFV when all
the counters in the OFV ∀j : j = 1..m : Vj < T .

Threshold Maintenance
As mentioned in Section 3.2, in order to avoid checking all the
counter values for underfl ow, we perform an optimization and keep
an overfl ow counter structure. We name l, the overflow level of
any counter in the DCF structure. The overfl ow level represents the
number of bits used in the overfl ow counter and therefore, it may
have a value between 0 and y. Consequently, an entry j in the DCF
has overfl ow level l > 0 if its overfl ow counter OFj has a value
between 2l−1 < OFj ≤ 2l − 1. It has an overfl ow level l = 0 if
OFj = 0. We arrange the different overflow level counters into a
structure called the Counter Level (CL).

In order to use the threshold T as described before, we keep two
counters per level in the CL: (1) a counter for the number of OFj

counters with value less or equal than the threshold for the level
they belong, i.e. counters below 2x+y−2+(2x+y−1−2x+y−2)×λ
for values with a level greater than 0, and below (2x − 1) × λ
for counters in level 0; and (2) a counter for the number of OFj

counters with a value equal or larger than the threshold. The level l
of a counter stored in position j in the DCF structure, is calculated
as:

0 if OFj = 0;
blog(OFj)c + 1 otherwise.

Then, whenever a data element s is either inserted or deleted and
values Vhi(s):i=1..k either incremented or decremented, we must
update the corresponding level counters.

Note that the storage needed by the CL structure is negligible: we
only need 2× (y +1) counters. Also, the updating process is of as-
ymptotic cost O(1), we only perform simple additions subtractions
and comparisons.

Figure 3 shows an example of how the CL structure is used for
delayed OFV rebuilds resulting from data deletion operations. In
this example we show a DCF structure with eight counters, m = 8 ,
and λ = 0.5. CBFV has x = 4 bits per counter, and after several
inserts the OFV has y = 2 bits. The decimal values of each counter
are shown only for clarity of the example, as they have the same
information as their corresponding pair of counters. Initially, on the
left side, the values for each counter are {0, 2, 7, 31, 9, 28 , 17, 6 0},
thus, the counters in position 0, 1, 2, and 4 are of level l = 0
(with three counters below the threshold and one above), those in
positions 3, 5, and 6 are of level l = 1 (with one counter below the
threshold and two above), and the last counter is of level l = 2 (with
the counter above the threshold). In the central part of Figure 3, we
can see that, after several deletes, level 2 counters and the level 1
counter above the threshold reach zero. Therefore, as all counters
in the DCF are below the threshold, we can rebuild the OFV by
deleting one bit per position and consequently reducing the size of
the whole DCF structure.

0010

1100

0001

1000

1001

1111

0111

0010

 [1] [2]
Counter level

0 0

3 0

3 23 1

1 2

0 1

 [1] [2]
Counter level

 [1] [2]
Counter level

0 0

3 0

3 2level 0

level 1

level 2

level 0

level 1

level 2

level 0

level 1

level 2

Values

0

20

17

14

9

16

7

2

Values

0

20

17

14

9

16

7

2

Deletes

00

00

11

01

01

00

01

00

OF CBF Values

0

60

17

28

9

31

7

2

R eb u ild

00

00

01

01

00

01

00

OF

00

CBF

0000

0100

0001

1110

1001

0000

0111

0010

0

0

1

1

0

1

0

OF

0

CBF

0000

0100

0001

1110

1001

0000

0111

0000

Figure 3: Counter Level and OFV rebuild in DCF.

Choosing the Optimal Threshold λ.
Rebuilds are the most costly operations performed in the DCF struc-
ture. Thus, we define as the optimal threshold for DCF, the value
of λ which minimizes the number of rebuilds over time.

First, we must determine which are the situations worth to rebuild
the structure in case of deletions. For this, we define the ratio R =
ninse r ts/ nd e le te s, which is a metric that gives an indication of how
the number of insert operations evolve comparing to the number of
delete operations over time.

Figure 4 shows the evolution of DCF in terms of the number of re-
builds over time. The chart includes three lines, representing three
different scenarios, T1, T2, and T3, each one representing a differ-
ent ratio of R: T1 for R > 1, T2 for R ' 1, and T3 for R < 1.

The results in this chart represent the average number of rebuilds
for ten executions using different λ values ranging from 0.1 to 1.0.
The first time steps for all scenarios consist of insert operations for
the M data elements. After having populated the data set, each
time step is composed of both insert and delete operations. The
data inserted follows a Zipfian distribution, where the skew defined
by θ is randomly selected from a range between 0 and 2, i.e. 0 ≤
θ ≤ 2 [2]. Items inserted are also randomly selected for deletion
during the delete operations.

From Figure 4 we can identify the following behavior:

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 29

DCF - Number of rebuilds

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Time steps

R
eb

ui
ld

s

T1
T2
T3

Figure 4: Number of rebuilds in DCF.

• T1 shows, in average for any λ, the number of rebuilds oc-
curred when R grows as time passes. In this case, we are
always increasing the number of useless rebuilds caused by
deletions, i.e. in a short time, we may have a rebuild caused
by an insertion, because insertions are more frequent.

• T2 and T3 show that, in average for any λ, the number of
rebuilds does not increase when R ' 1 and R < 1 respec-
tively. Hence for T2 and T3 scenarios there may exist a value
of λ which minimizes the number of rebuilds, and improves
the memory usage of the DCF.

Figure 5 shows the results for different values of R < 1, that are the
values of λ that minimize the number of rebuilds. The plot shows
that for ratios R ≤ 0.6, where ndeletes À ninserts, independently
of the λ we choose, we always have a constant number of rebuilds.
However, for R > 0.6, the value set for λ becomes important,
and values of λ ' (1 − R) are those that minimize the number
of rebuilds. When the incoming data is highly skewed, i.e. inserts
and deletes often affect the same counters, the number of rebuilds
is more sensitive to the selected threshold value. We can see that
for λ = (1 − R) we have the least number of rebuilds.

DCF- Number of rebuilds - Zipf (0.0 - 2.0)

0

5

10

15

20

25

30

0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

Threshold (lambda)

R
eb

ui
ld

s

R=0.9
R=0.8
R=0.7
R=0.6
R=0.5

Figure 5: Number of rebuilds in DCF for different λ threshold
values and insert-to-delete ratio for Zipfian distributions with
θ between 0-2.

4. EXPERIMENTAL RESULTS
For the evaluation of our proposed DCF structures, we have imple-
mented the DCF and SBF representations of the Counting Bloom
filters in C language and compiled the programs using full opti-
mization (-O3). The implementation of the SBF has followed the
exact specifications given in [4] and detailed in Section 2. We
run our tests on a 750MHz IBM PowerPC RS64-IV processor with
16GB of main memory. The Operating System is AIX version 5.1.

The data we use is based on a total of n distinct values with mul-
tiplicities that are inserted and deleted from a data structure. The
total number of data elements is M = a v ∗ n, where a v is the
average number of operation multiplicities per distinct value. Our
experiments consist of performing M consecutive data insert oper-
ations, followed by M consecutive data delete operations, picked
from the n distinct values in the data set following a Zipfian distri-
bution [2], where the skew is defined by the parameter θ that ranges
from 0 to 2. Values for θ ' 0 represent uniformly distributed data,
while values θ ' 2 represent highly skewed data. We use integers
as data values.

In order to analyze the behavior of DCF in detail, we focused on
a set of experiments aimed at evaluating the performance in terms
of access time, memory usage and impact of rebuild operations for
the DCF structure, in comparison to the SBF approach.

The number of counters m both for DCF and SBF depends on the
fraction of false positives Fp, the number of distinct values n, and
the number of hash functions used k. We set by default Fp = 0.05
and k = 3. The number of distinct values n may change, and is
specified for each experiment we describe. Also, the total amount
of values M may vary for the different tests.

One metric used to measure the accuracy of the filter is the accu-
rate representation of a data element. This is defined as follows:
a data element s has an accurate representation if the minimum
value stored in the k counters matches the real number of times s
has been inserted in the data set.

Read, Write, and Rebuild Time
Figure 6 shows the average time to perform a read, a write, and a re-
build operation for both SBF and DCF structures for different data
set sizes. The results are shown for four different setups where the
number of distinct values n is 1000, 10000, 100000, and 1000000,
respectively. For each test, we consider uniform data and a total
amount of M = 100 × n values were first randomly inserted, and
then, randomly deleted. The results are expressed in µseconds and
the y-axis is represented using a logarithmic scale. Each value in
the chart represents the average, for each different operation, over
all the instances of each operation during the complete execution
of the test.

From the results in Figure 6 it is possible to conclude that DCF is
more efficient in terms of the time to access the structure, either
read or write operations, compared to the SBF structure. The cost
to locate a counter in the DCF is very efficient compared to the SBF
lookup that requires traversing the index structures.

Note that as the number of distinct values increases, both tech-
niques keep the read and write times constant. Another important
fact is that the rebuild operations, as expected, prove to be the most
costly operations. DCF is, in average, slightly faster than SBF and
its execution time shows to grow with a similar rate as SBF. How-

30 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Timings

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1000 10000 100000 1000000
Distinct Values

M
ic

ro
se

c.
 (l

og
. s

ca
le

)

SBF_Read
DCF_Read
SBF_Write
DCF_Write
SBF_Rebuild
DCF_Rebuild

Figure 6: Average time for read, write and rebuild operations
for SBF and DCF.

ever, note that DCF requires a total number of rebuilds which is
orders of magnitude smaller than SBF. For instance, for n = 10K
the number of rebuilds for DCF is 8 while that for SBF is more than
45000, and for n = 1M the number of rebuilds for DCF just grows
to 9 while that for SBF grows to more than 4.5 million rebuilds.
This comes from the fact that a DCF rebuild for one counter, auto-
matically rebuilds the rest of the counters, growing the OFV data
structure by one bit vector of size m. On the other hand, each SBF
rebuild involves only one counter at a time.

Memory Usage
Figure 7 shows results obtained through several static executions
varying the skew (Zipfian with 0 ≤ θ ≤ 2) and the total amount of
values M . Values are first randomly inserted, and then, randomly
deleted. In that chart we show the ratio R = MemSBF

MemD C F
. Notice

that while MemD CF varies dynamically, during the execution of
the test, for this static analysis we show only the maximum memory
size that DCF requested for the complete execution.

Memory Usage (M_SBF/M_DCF)

0

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Skew - Zipf (0.0 - 2.0)

R
at

io

M=100*n
M=1000*n
M=10000*n
M=100000*n

Figure 7: SBF-to-DCF memory ratio for different data distrib-
utions and data set sizes.

The chart in Figure 7 shows that, as expected, in the most usual sit-
uations DCF needs less memory than SBF. There are two extreme
cases: one for non-skewed, almost uniform, data distributions (Zip-

Memory Accuracy Access Time
(bytes) (%) (µse c)

SBF 17280 90.1 1.3
DCF 20125 90.1 0.5
DCF bounded 16950 87.6 0.5

Table 2: SBF and DCF for large number of repeated values.

fian with θ = 0.1), where DCF uses less than the half of the space
used by SBF; and another one for highly skewed data or when there
is an extremely large multiplicity of elements for a single value,
where SBF consumes less memory than DCF.

For those cases where DCF does not behave better in terms of mem-
ory usage, we want to understand how the DCF approach would
behave if we limited its memory to the maximum memory used by
SBF.

Large number of repeated values with limited
memory
Table 2 shows the results of the execution for n = 1000 distinct
values and M = 109 = 106 × n uniformly distributed data el-
ements. On the one hand, we observe that without memory lim-
itations, DCF would use 14% more memory than SBF, achieving
the same accuracy and being more than two times faster than SBF
in access time. On the other hand, if we have a limited amount of
memory, forcing DCF to use the same memory as SBF only de-
creases its accuracy in 2.5%. However, the access time in this case
is still more than two times faster than that of SBF.

Execution Time
Figure 8 shows execution time and number of rebuilds (logarithmic
scale) for executions where we vary the degree of skewed data from
0 ≤ θ ≤ 2. Each execution consists of the insertion and later
deletion of M = 100 × n items for n = 1000 distinct values. All
values are inserted first, filling the structure, and then, randomly
deleted until the structure becomes empty.

As it is possible to observe from the results in Figure 8, DCF clearly
outperforms SBF independently of the incoming data distribution.
The gap between both approaches is smaller as the data are more
skewed. This fact is expected as for skewed data, the number of re-
builds performed by the SBF decreases, while at the same time the
opposite effect happens for CBF. In Figure 9 we show the percent-
age of the total execution time spent in rebuilding the structure. It
is possible to observe for SBF most of the time is spent rebuilding
the structure, due to the high number of rebuilds. In contrast, the
time that DCF spends in rebuilds is minimum. Although a rebuild
for DCF is costly, this approach performs fewer rebuilds during the
complete execution. Consequently, even for highly skewed data,
DCF spends almost all of its execution time in the read and write
operations.

Overall, DCF is faster for the read and write operations. Moreover,
although the rebuild operation is costly, it is only performed a few
times during the complete execution which results in a clear benefit
compared with SBF.

5. CONCLUSIONS
In this paper we propose a new representation of the Counting
Bloom Filters to cope with inserts and deletes in multisets over

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 31

Execution Time and Rebuilds

0.1

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Skew - Zipf (0.0 - 2.0)

Lo
ga

ri
th

m
ic

 s
ca

le

#Rebuilds(SBF)
#Rebuilds(DCF)
ExecTime(SBF)
ExecTime(DCF)

Figure 8: Total execution time.

% of time spent in rebuilds

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Skew - Zipf (0.0 - 2.0)

%
 P

er
ce

nt
ag

e

SBF
DCF

Figure 9: Percentage of time spent in rebuilding the structure.

time: the Dynamic Count Filters (DCF). Our data structure bor-
rows the qualities of previous proposals. On the one hand, it has
the fast access times of the Counting Bloom Filters (CBF). On the
other hand, it has the adaptivity to changing data patterns of the
Spectral Bloom Filters (SBF).

Dynamic Count Filters also show other interesting properties. First,
in general, DCF uses a smaller amount of memory than SBF for
a fixed amount of counters. However, although in extreme cases
(very large number of replicated values) DCF uses a larger amount
of memory than SBF, the gains obtained in execution time (about
2 times faster than SBF), make Dynamic Count Filters worth the
small additional cost. Second, for a fixed amount of memory, DCF
may include more counters and is faster. Third, the total cost for
rebuilding DCF is significantly lower than that for SBF.

Overall, we can claim that Dynamic Count Filters are a data struc-
ture to be taken into account in many practical situations for their
fast access times and for their ability to adapt to the dynamic evolu-
tion of data and to situations with small amounts of memory avail-
able.

6. ACKNOWLEDGEMENTS
UPC authors thank the Computer Architecture Department, and
IBM for the continuous support to our research through CAS grants
and fellowships. All the authors thank the HPC-Europa programme,
funded by the European Commission’s Research Infrastructures ac-
tivity under contract RII3-CT-2003-506079.

7. REFERENCES
[1] Burton H. Bloom. Space/Time Trade-offs in Hash Coding

with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: Evidence and
implications. In Proceedings of the IEEE Infocom
Conference, 1999.

[3] Andrei Broder and Michael Mitzenmacher. Network
Applications of Bloom Filters: A survey. A survey. In Proc.
of Allerton Conference, 2002.

[4] Saar Cohen and Yossi Matias. Spectral bloom filters.
SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages
241–252, 2003.

[5] Sarang Dharmapurikar, Praveen Krishnamurthy, and
David E. Taylor. Longest prefix matching using bloom
filters. SIGCOMM ’03: Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols
for computer communications, pages 201–212, 2003.

[6] L. Fan, , P. Cao, J. Almeida, and A. Z. Broder. Summary
cache: a scalable wide-area web cache sharing protocol.
IEEE Trans on Networking, 8(3):281–293, 2000.

[7] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina,
Rajeev Motwani, and Jeffrey D. Ullman. Computing Iceberg
Queries Efficiently. VLDB ’98: Proceedings of the 24rd
International Conference on Very Large Data Bases, pages
299–310, 1998.

[8] Jonathan Ledlie, Laura Serban, and Dafina Toncheva.
Scaling filename queries in a large-scale distributed file
systems. Research Report TR-03-02, Harvard University,
January 2002.

[9] G. Manku and R. Motwani. Approximate frequency counts
over data streams. In Proceedings of the 28th International
Conference on Very Large Data Bases, 2002.

[10] James K. Mullin. A second look at bloom filters. Commun.
ACM, 26(8):570–571, 1983.

[11] M. V. Ramakrishna. Practical performance of Bloom filters
and parallel free-text searching. Commun. ACM,
32(10):1237–1239, 1989.

[12] Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu.
Bloom histogram: Path selectivity estimation for xml data
with updates. VLDB’04: Proceedings of the Thirtieth
International Conference on Very Large Data Bases, pages
240–251, 2004.

32 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Towards a Dynamic Multi-Policy Dissemination
Control Model (DMDCON)

Zude Li, Xiaojun Ye
Institute of Information System and Engineering,

School of Software, Tsinghua University, Beijing, China 100084
li-zd04@mails.tsinghua.edu.cn, yexj@tsinghua.edu.cn

Abstract

Dissemination control (DCON) is a security policy of controlling
digital resource access before and after distribution. It is an exten-
sion of traditional access control within client-side domain, digi-
tal rights management by payment-free applications, and originator
control on recipients’ re-dissemination rights allowance. Different
application domains may adopt dynamically different resource dis-
semination policies, but current DCON models cannot solve the
multi-policy coexistence and compatibility problems. A dynamic
multi-policy dissemination control model (DMDCON) is proposed
to express the dynamic and multi-policy nature existing in real-
ity, which are indispensable for well formed resource dissemination
control application. The goal of this paper is to de�ne and extend
formally some basic concepts related with resource dissemination
(such as dissemination policy, chain, tree, etc.) and further, pro-
pose a comprehensive DMDCON model to describe universal re-
source dissemination applications through specifying temporal dis-
semination features, restrictions, and policy revocation (cascade or
non-cascade). Finally, we brie�y discuss the importance of DCON
within the usage control domain.

Keywords

dissemination control, dissemination tree, active time range

1 Introduction

Dissemination control (DCON) is one of the most important and
challenging goals for information security, which is concerned with
controlling digital resource even after it has been delivered to a le-
gitimate recipient [5].

DCON is formed beyond some well-known resource access, dis-
semination, and usage protection policies.

• DCON is an extension of traditional access control from the
single server-side resource control to continuous resource ac-
cess authentication, authorization and propagation along the
dissemination path scatted over the decentralized and hetero-
geneous Internet environment [4, 15, 1, 9];

• DCON is an expansion of commercial digital rights manage-
ment (DRM) that focuses on commercial copyrighted digi-
tal resource distribution by charging payment from recipients
based on contracts subscribed in advance [6, 13]. Commercial
DRM applications mostly concern the payment-based type
(PBT) of resource dissemination but ignore the payment-free
type (PFT). Our generic DCON model integrates the PBT

and PFT type, and the new zero-payment type (ZPT) for uni-
versal resource dissemination applications.

• DCON is an enlargement of originator control (ORCON).
ORCON is an access control policy that requires recipients to
gain originators approval for resource re-dissemination [1, 9],
but DCON breaks out this constraint and further, enriches the
re-dissemination policies in dissemination chain context with-
out security losing.

Based on the above discussion, DCON can be formally de�ned as
a security policy of controlling both digital resource access before
distribution and resource usage even after distribution. The control
scope of DCON described in the de�nition indicates the physical
resource distribution, and the continuous resource control along the
dissemination chain.

Our contributions of this paper mainly focus on a formal analysis
of DCON within the dynamic dissemination tree context, includ-
ing (1) specifying rule-based automatic re-dissemination rights as-
signment and revocation (cascade or non-cascade); (2) supporting
dynamic dissemination modelling with temporal activation and in-
activation of dissemination policy; (3) purchasing a dynamic multi-
policy UCON model based on the policy-compatible analysis and
policy-con�ict solutions.

Basic concepts related to resource dissemination are presented in
session 2. Two taxonomies of dissemination policy are described
in session 3. Multi-policy DCON and dynamic multi-policy DCON
are proposed in session 4 and session 5 respectively. Finally, the
importance of DMDCON within the usage control domain is dis-
cussed as a conclusion of the whole paper.

2 Basic Concepts

In most literature on resource dissemination (access, distribution,
propagation, etc) [12, 13, 6, 5, 9, 3], some basic concepts such as
dissemination certi�cate, policy, chain, and resource dissemination
decision, are introduced. For example, DCON means that the dis-
tributor or rights holder can control recipients’ access to the digi-
tal information [12]. But there are no formal de�nitions of these
concepts to express their control domain boundaries and dynamical
features. For the convenience of the latter extensive discussion, we
need to formally de�ne and extend those elements.

Firstly, the basic concept, dissemination chain can be identi�ed
as a dissemination path consisting of a sequential list of resource
dissemination relations from an originator (or agent) to recipients,
denoted as a sequence N1-N2-· · ·-Nk, where any pair, i.e. Ni-Ni+1
(i<k) is a dissemination relation indicating recipient Ni dissemi-

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 33

O

A1 A2

B1 B2 B3

Figure 1. A dissemination tree T on resource o1

nates a resource to Ni+1. Mostly, a dissemination chain can form a
linear-order lattice. Since the dissemination relation can be prede-
�ned by host organizations, or existed after the resource has been
disseminated, we can identify that there are two types of dissemina-
tion chain: prede�ned chain and existed chain. The former indicates
a chain is based on prede�ned dissemination relations, which may
not exist currently; The latter indicates all dissemination relations
along a dissemination chain have been existed. Here we just con-
cern the prede�ned chain type from the view of modelling DCON.

Another, we introduce some new concepts elaborately for de-
scribing the detail dissemination control process. We de�ne re-
dissemination certi�cate as a label indicating whether a subject 1

has capability of re-disseminating resource to others. The resource
re-dissemination allowance (SRA) function is a mapping that in-
dicates whether a subject can re-disseminate speci�c resource to
another one. This function can be formalized as, SRA: C × S ×
S × O → {true, false}, where C is a boolean parameter denotes
whether a re-dissemination certi�cate is contained in the resource
owner node or not by true or f alse value, S denotes subject set, O
denotes object set (resource) and the return of the SRA function is a
boolean value.

For example, SRA(true, A1, B1, o1) = true denotes A1 has a re-
dissemination certi�cate and disseminates o1 to B1. If the param-
eter C in the SRA function is false, then SRA always returns false
no matter of other independent variables. Another, the resource re-
dissemination rights allowance(SRRA) function is a mapping that
returns a boolean value indicating whether a subject can grant the
re-dissemination right on a speci�c resource to another subject. It
can be formalized as, SRRA: SRA → true, false}, where SRA de-
notes the return value of a SRA function. In the above example,
SRRA(SRA(true, A1, B1, o1)) = true denotes A1 can grant B1 the
re-dissemination right on o1. It should be noted that SRRA(f alse)
is always false.

Dissemination relation in the above dissemination chain de�nition
is from a single subject to another one (one-to-one for short). For
describing the one-to-many dissemination relation, we introduce
the notion of dissemination tree, an extended version of dissemi-
nation chain. Informally, we can see a dissemination tree as the
integration of several relative dissemination chains.

DEFINITION 1. Dissemination tree is a tree-shape resource dis-
semination structure integrated by several relative dissemination
chains, where a node represents a subject and an edge between two
related nodes represents a dissemination relation.

The root node of a dissemination tree always represents a re-
source originator (or agent), a dissemination path means a list of
partial-order dissemination relations (represented as node pairs,

1In this paper, subjects include originators and recipients.

said above) from the root to a speci�c node. A node is called
the parent node if it disseminates a resource(or its re-dissemination
right) to other nodes (called son nodes). The function Parent: S→
{S}, returns all parents of a node. In addition, we de�ne a node’s
ancestors as all senior nodes from its parents up to the root node.

In Fig.1, root O is the ancestor of all nodes, A1 is the parent of
both B1 and B2, A2 is the parent of both B2 and B3. In gen-
eral, a dissemination tree expresses several dissemination chains
or paths with different resource and different dissemination poli-
cies. Even, a dissemination tree can have more than one root,
which can be called dissemination network(direct acyclic graph)
or multi-root tree. Above all, the essence of a dissemination tree is
to integrate various dissemination chains with some shared nodes
(as node O and B2 in Fig.1), and to offer a larger environment for
extended dissemination analysis than a single dissemination chain.
Within dissemination tree environment, we can expose and solve
the policy-con�ict problems such as the multi-parent one, which is
not discovered within single dissemination path but is real existed
in many applications.

Similar to the dissemination chain category as described above,
there are also two types of dissemination tree: prede�ned and
existed (dissemination) tree. (1) Prede�ned tree is built on several
related prede�ned dissemination chains; (2) existed tree is built on
related existed dissemination chains.

On scope, prede�ned tree contains existed tree, because existing
dissemination should have satis�ed prede�ned dissemination rela-
tions. A prede�ned tree frames and restricts the resource (with re-
dissemination rights) dissemination �ow, but a existed tree only de-
scribes the current status. In this paper, all dissemination trees pro-
posed are prede�ned ones, since they help to analyze possible re-
source dissemination �ows in an integrated way, and policy-con�ict
problems much fully than any other dissemination tree.

Given a dissemination tree T (Fig.1), node A1 requires node O for
disseminating resource o1 and its re-dissemination right, the policy
of dealing such a request is as follows:

• for the resource re-dissemination: if O has the re-dissemi-
nation certi�cate and SRA(true, O, A1, o1) = true, then A1
can acquire o1;

• for the resource re-dissemination right: if A1 can acquire o1
and SRRA(SRA(true, O, A1, o1)) = true, then A1 can acquire
the re-dissemination right on o1.

In the above, resource (with its re-dissemination rights) dissem-
ination decision on a node can be performed only by its single
parent node 2. This policy is called parent-priority, which indi-
cates that the parent node decides whether its son node can obtain
a resource(with its re-dissemination rights). As the decision made
above, the single node, O can decide whether A1 acquire the re-
dissemination right on resource o1. More generally, if there is a
node B1, the son of A1, which wants to require the re-dissemination
right on o1 from A1, the formal decision expression is like:
SRRA(SRA(true, A1, B1, o1)) = true → SRRA(SRA(true, O, A1,
o1)) = true ∩ SRA(true, A1, B1, o1) = true.
If B1 obtains re-dissemination right on o1, A1 must own o1 and its
corresponding re-dissemination right �rstly.

2There is no consideration of payment or identi�cation require-
ment for the resource dissemination charged by the senior nodes.

34 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

3 Policy

Different applications may adopt dynamically different resource
dissemination policies. There may be many parent nodes of A1,
or B1 in the above, which means that there may be some con�icts
existing in the dissemination tree. For example, supposing A1, A2
are two parent nodes of B2 (Fig.1), SRRA(SRA(true, A1, B2, o1))
= true and SRRA(SRA(true, A2, B2, o1)) = f alse hold, now how to
judge whether B2 should have the re-dissemination right on o1? For
answering this kind of multi-parent con�ict problems, we propose
three policy types of con�ict-solution as follows.

• Positive policy. if ∃ Ai ∈ Parent(B2), satis�es SRA(true,
Ai, B2, o1) = true, then B2 can acquire o1 from Ai; if
SRRA(SRA(true, Ai, B2, o1))=true, then B2 can acquire the
re-dissemination right on o1 from Ai;

• Negative policy. if ∃ Ai ∈ Parent(B2), satis�es SRA(true, Ai,
B2, o1) = f alse, then B2 can not acquire o1 from any parent; if
SRRA(SRA(true, Ai, B2, o1))= f alse, then B2 can not acquire
the re-dissemination right on o1 from any parent;

• Majority-voting policy. if ∃ Ai ∈ Parent(B2), i = 1, 2, · · ·,
m, and m ≥ major(|Parent(B2)|) 3, satis�es SRA(true, Ai, B2,
o1) = true, then B2 can acquire o1 from any positive parent
4; if SRRA(SRA(true, Ai, B2, o1)) = true, then B2 can acquire
re-dissemination rights on o1 from any positive parent.

Beside, dissemination policy can be divided into three types based
on the dissemination purpose of the host node that deploys it: Zero-
Payment Type (ZPT), Payment-Based Type (PBT) and Payment-
Free Type (PFT). The purpose of ZPT (deployed by the host node)
is to set no control over resource dissemination, and consequently
any subject can acquire the resource no matter payment, identi�-
cation and any other conditions; The purpose of PBT is to make
pro�t for the host node through resource dissemination transactions,
and consequently, a payment function is required for monitoring
the payment charging process; The purpose of PFT is to control
the resource dissemination within limited domains, and no payment
contact (and payment function) is required but dissemination of re-
source should be appropriately restricted by using special access
mechanisms. Here it should be noted that payment represents more
than the notion of money. It can include money (mostly), contracts,
agreements, etc. And also the e-payment mechanisms are various
within different applications.

In conclusion, the taxonomies of dissemination policy on its prior-
ity and on its purpose are connected with each other. For exam-
ple, PBT often takes the positive policy but PFT always takes the
negative policy. These elaborate connections should be described
system-speci�cally.

4 Multi-policy DCON

4.1 De�nition

In reality, subjects who require a resource may have different pur-
poses and different ways on its usage and re-dissemination. It re-
sults in the complexity of resource dissemination policy manage-
ment. A multi-policy DCON model (MDCON) is proposed for
solving this problem with convenience.

3ma jor(|Parent(B2)|) returns a number that indexes the major
part of the whole one.

4positive parent denotes a parent node with a policy of allowing
resource dissemination.

ACM

Library of TU

students

PBT

PFT

with re-dissemination rights

without re-dissemination rights

Figure 2. MDCON of PBT-PFT

DEFINITION 2. MDCON is a dissemination control model inte-
grating multiple (more than one) dissemination policies within a
dissemination tree (chain).

For example, as in the above Fig.2, the library of T singhua Uni-
versity (TSU) has brought ACM’s digital resource download ser-
vice by money, and built a mirror site to store these resources, then
legally, allows students on campus to share this service of access-
ing and downloading resource from the mirror site by the authenti-
cation on student-card ID. But students cannot share their acquired
resource with any others. In this example, ACM is the originator
and uses the PBT policy on resource dissemination. The library
of TSU is a recipient that receives resources and corresponding re-
dissemination rights from the originator by monetary contribution,
and then takes the PFT policy on the resource sharing service ori-
ented to students. But students can not propagate their owner re-
source any more since they have not re-dissemination rights from
the library of T SU . In conclusion, there are two policies along the
dissemination chain, PBT (with re-dissemination rights) and PFT
(without re-dissemination rights).

4.2 Compatible vs. Conflicting

Dissemination policies included in a dissemination tree are policy-
compatible only if they can be real coexisted with reasonable ap-
plication functions. For example, PBT -PFT is policy-compatible,
since existing real applications (as the above example) that use PBT
in a senior node and PFT in a junior node. Another, ZPT -PFT is
not policy-compatible, since the second policy is meaningless and
unnecessary, even illegally.

The policy-compatible analysis can introduce two kinds of com-
patibility relations: before and after relation, denoted by be f oreC
and a f terC respectively, which are identi�ed to describe the order-
depended feature. Further, if A1 ∈ be f oreC(B1) holds, the dissem-
ination relation A1-B1 is upward-compatible; if B1 ∈ a f terC(A1)
holds, A1-B1 is downward-compatible; if both A1 ∈ be f oreC(B1)
and B1 ∈ a f terC(A1) hold, A1-B1 is f ull-compatible. Mostly we
only consider the full-compatible type and use the following con-
straint for normalizing be f oreC and a f terC relations :

• If existing two policies, P, Q, and P ∈ be f orC(Q), then Q ∈
a f terC(P), and vice versa.

From this point, we can de�ne the following policy-compatible sets
among the dissemination policies of different purposes (without in-
terpretation) and conclude the dissemination policy compatibility
theorem naturally. In reality, the general principles for normalizing
its compatibility are as follows:
be f oreC(ZPT) = {ZPT,PBT,PFT};
be f oreC(PBT) = {PBT,PFT};

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 35

be f oreC(PFT) = {PFT,PBT};
a f terC(ZPT) = {ZPT};
a f terC(PBT) = {PBT,PFT,ZPT};
a f terC(PFT) = {PFT,PBT,ZPT}.

THEOREM 1. In MDCON, two dissemination policies can coexist
in a dissemination chain iff they are full-compatible.

[Proof Sketch]
(1) for the→ direction, if two policies can coexisted in a dissemi-
nation chain, it indicates that this integration is meaningful for real
MDCON application, so they are full-compatible according to the
above interpretation;
(2) for the ← direction, if two policies are full-compatible, it in-
dicates that no con�ict between them and so they can coexist in a
dissemination chain.

In reality, building a dissemination model should consider the
policy-con�ict5 solutions for administration convenience, since
some newly inserted policies may be con�icted with existing poli-
cies in a dissemination chain. We propose three policy-con�ict so-
lutions based on the policy priority.

• senior-priority, which indicates if two policies are con�ict,
then change the junior to be compatible with the senior;

• junior-priority, which indicates if two policies are con�ict,
then change the senior to be compatible with the junior;

• senior-junior-priority, which indicates the in-between policy
should be changed to be compatible with both the senior and
the junior policies.

4.3 Rule-based speci�cation

The resource dissemination decision making in DCON and MD-
CON is complex and complicated. For easing this process, we
build a set of rules for automatically making resource dissemina-
tion decisions. Now we use rules to specify dissemination policies,
chains, trees, formally. For convenience, we don’t consider the re-
dissemination time point, policy taxonomy on priority.
-S: Subject set;
-O: Object set;
-P: Policy set, supposing P = {ZPT,PBT,PFT};
-PF: O×S×S→ P, returns a policy over an object dissemination
from a senior node to a junior one;
-PBT DF : O× S× S×Pay→ {true, f alse}, denotes a dissemina-
tion allowance from a senior node to a junior one over a resource in
PBT . Pay denotes a payment contract;
-PBT DRF : O× S× S×Pay→ {true, f alse}, denotes a dissemi-
nation right allowance from a senior node to a junior one over a
resource in PBT ;
-PFT DF : O × S × S→ {true, f alse}, denotes a dissemination al-
lowance from a senior node to a junior one over a resource in PFT ;
-PFT DRF : O× S× S → {true, f alse}, denotes a dissemination
right allowance from a senior node to a junior one over a resource
in PFT .

Now we take the above de�nitions to describe the dissemination
policies formally.

• For ZPT policy, ∀ s, r ∈ S, o ∈ O, PF(o, s, r) = ZPT →
SRA(true, s, r, o) = true, SSRA(SRA(true, s, r, o)) = true;

5policy-con�ict denotes two policies are not full policy-
compatible.

PBT PBTPBT

PFT PFT

A1 A2 A3

B1 B2

C

Figure 3. A dissemination tree

• For PBT policy, ∀ s, r ∈ S, o ∈ O, PF(o, s, r) = PBT ,
PBT DF(o, s, r, 4) 6 = true, PBT DRF(o, s, r, 4) = f alse
(true)→ SRA(true, s, r, o) = true, SSRA(SRA(true, s,r, o)) =
f alse (true);

• For PFT policy, ∀ s, r ∈ S, o ∈ O, PF(o, s, r) = PFT ,
PFT DF(o, s, r) = true, PFT DRF(o, s, r) = f alse (true)→
SRA(true, s, r, o) = true, SSRA(SRA(true, s, r, o)) = f alse
(true).

Any dissemination chain can be speci�ed by combining the above
rules. For example, A(PBT with re-dissemination rights according
to contract c) - B(PFT without re-dissemination rights) - C can be
speci�ed as follows:

• On node pair A(PBT)-B, PF(o, A, B) = PBT , PBT DF (o, A,
B, c)=true, PBT DRF(o, A, B, c)=true→ SRA(true, A, B, o)
= true, SSRA(SRA(true, A,B,o)) = true;

• On node pair B(PFT)-C, PF(o,B,C)=PFT , PFT DF(o, B, C)
= true, PFT DRF(o, B, C) = f alse→ SRA(true,B,C, o)=true,
SSRA(SRA(true, B, C, o)) = f alse.

Now we take another instance to demonstrate the dissemination tree
speci�cation. Supposing {A1,A2,A3}(PBT with re-dissemination
rights propagation according to contract c) - {B1,B2}(PFT without
re-dissemination rights propagation) - {C} is a dissemination tree
(Fig.3) for resource o, and the PBT policy uses the positive policy
and the PFT policy uses the negative policy against the dissemi-
nation policy con�ict. The dissemination �ow of resource o in the
whole dissemination tree can be speci�ed as follows:

• On node pair {A1, A2, A3}(PBT & positive policy)-B1, If ∃
Ai, i ∈ {1, 2, 3}, PF(o, Ai, B1) = PBT , PBT DF(o, Ai, B1, c)
= true, PBT DRF(o, Ai, B1, c) = true→ SRA(true, Ai, B1, o)
= true, SSRA(SRA(true, Ai, B1, o)) = true;

• On node pair A3(PBT)-B2, PF(o, A3, B2) = PBT , PBT DF(o,
A3, B2, c) = true, PBT DRF(o, A3, B2, c) = true→ SRA(true,
A3, B2, o) = true, SSRA(SRA(true, A3, B2, o)) = true;

• On node pair {B1, B2}(PFT & negative policy)-C, If ∀ Bi, i
= 1, 2; PF(o, Bi, C) = PFT , PFT DF(o, Bi, C) = f alse→ ∀
Bi, i = 1, 2; SRA (true, Bi, C, o) = f alse, SSRA(SRA(true, Bi,
C, o)) = f alse;

64 denote a concrete contract value of the corresponding pa-
rameter.

36 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

ZPT||PFT PBT||PBT

ZPT||PBT PFT||PFT

ZPT||PFT PFT||PFT

A1 A2

B1 B2

C1 C2

Figure 4. An instance of DMDCON

5 Dynamic Multi-policy DCON

5.1 De�nition

In the above section, the dissemination structures (chains and trees)
are all static and can not describe dynamical policy mutability,
which is necessary and indispensable in real applications. So we
propose the dynamic multi-policy DCON model (DMDCON) to
specify continuous policy mutability.

Firstly, we de�ne dynamic dissemination modelling as the dynamic
process of updating the dissemination structure by some operations.
From this de�nition, some operations can be listed as dynamic dis-
semination modelling factors, which include inserting, appending a
new node, removing an existing node, implementing new policies
on existing or new nodes, updating or removing existed dissemina-
tion policies on existing nodes etc.

DEFINITION 3. DMDCON is an DCON model with the follow-
ing features: (1) Allowing dynamic dissemination modelling; (2)
Allowing more than one policy coexisted and activated in the same
dissemination chain; (3) Using active time range constraints to ex-
press the dynamic features; (4) Using rules to specify the whole
resource dissemination process.

The main purpose of DMDCON is to describe the dynamic and
multi-policy nature of real DCON environment. Two attractive fea-
tures of DMDCON are the dissemination decision continuity and
dynamic resource dissemination by the activation and inactivation
of relative dissemination policies.

5.2 Dynamic features of DMDCON

The dynamic features in our DMDCON context refer to the regular
activation mutability of dissemination nodes. Factors resulting in
this feature include temporal features and special attributes of re-
cipients. For example, in some applications, a dissemination site is
active just for some recipients who have special certi�cates. Here
we take the former factor to demonstrate the dynamic features.

Temporal features of DMDCON are expressed mainly by the no-
tion of active time range, which is a period of time denoting policy
activation and inactivation.

In a dissemination tree, a node is available if there is no se-
nior/junior node that is policy-con�ict with it. Formally, for node
n, its parent node set S and son node set J, possible dissemination
chain set Ch including node n. Node n is available only if, ∀ s ∈ S, j
∈ J, ∃ ch ∈Ch, < s,n > ∈ ch→ s ∈ be f oreC(n) ∩ n ∈ a f terC(s); ∀
j ∈ J, ∃ ch ∈Ch, < n, j > ∈ ch→ j ∈ a f terC(n) ∩ n ∈ be f oreC(j).

A policy p on node n is active if there exist a junior node j, the dis-
semination of resource o from n to j is available in the current time
range tr. Supposing T R denotes time range, and T (T R, S, S, O,
P)→ {true, f alse} denotes an activation test function, T (tr, A, B,
o, p) = true denotes node A can disseminate resource o to node B
within the time range tr through the active policy p. A node n is
active only if existing a senior node s and a junior node j are both
available, and in the current time range tr, T (tr, s, n, o, p) = true
∩ T (tr, n, j, o, p) = true holds. So that function T returns true
should be a precondition for resource dissemination. Such as in the
above example (Fig.1), given a dissemination tree T , node O(p)-
A1 is a two-tier model for disseminating resource o1 (p is a policy
on O). A1 can acquire o1 iff O has re-dissemination certi�cate and
SRA(true, O, A1, o1) = true ∩ T (tr, O, A1, o1, p) 7 = true; A1 can
acquire the re-disseminate right on o1 iff SRRA(SRA(true, O, A1,
o1)) = true ∩ T (tr, O, A1, o1, p) = true.

Furthermore, we take a typical DMDCON instance, which contains
four multi-policy dissemination chains (Fig.4), to demonstrate the
above feature.
A1(ZPT) - B1(ZPT) - C1(ZPT);
A1(PFT) - B2(PFT) - C1(PFT);
A2(PBT) - B1(PBT) - C2(PFT);
A2(PBT) - B2(PFT) - C2(PFT).

We de�ne that the active time range of an available dissemination
chain is the intersection of all of policies within the chain. Sup-
posing the active time range of the ZPT policy on node A1 to all
junior nodes is (6:00-24:00), it of the PFT policy on B2 to C1 is
(9:00-15:00), and it of the PFT policy on C1 to a junior node is
(8:00-14:00), So we can calculate easily the active time range of the
dissemination chain A1(PFT)-B2(PFT)-C1(PFT) is (9:00-14:00).

5.3 Revocation: cascade vs. non-cascade

A policy is revoked or in the status of revocation if it is inactive.
Considering the in�uence by the revocation of an active policy in a
dissemination tree, we divide it into two types:

• Non-cascade, which indicates the revocation of a policy just
in�uences the stand-alone node in a dissemination tree, but
not all junior nodes;

• Cascade, which indicates the revocation of a policy results in
all revocations of junior policies (nodes) in a dissemination
tree, which have obtained resource from that node with that
policy.

In another way, considering what should be in�uenced by a pol-
icy revocation, there are two situations: on resource or on re-
dissemination rights. The former indicates that if a policy is re-
voked, dissemination of both resource and re-dissemination rights
8 should be stopped immediately; the latter indicates what a re-
voked policy can in�uence is re-dissemination rights granting but
not resource propagation. In short, there are four types of policy
revocation by the combination of the above two taxonomies:
(1) non-cascade revocation on re-dissemination rights;
(2) non-cascade revocation on resource dissemination;
(3) cascade revocation on re-dissemination rights;
(4) cascade revocation on resource dissemination.

7 p is a speci�c policy on O used in this example.
8since re-dissemination rights should based on resource dissem-

ination. There are no re-dissemination rights can be granted without
resource itself.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 37

Every type has its application domains. For example, Intelligence
community needs cascade revocation on resource dissemination: if
a �le among the community has some error, its copies should not be
propagated again. B2C e-commerce needs non-cascade revocation
on resource: if a senior sale agency has no store of a brand of goods,
but a junior has, the senior should not prevent the junior’s selling.

5.4 DCON within usage control

Recently, the notion of usage control (UCON) is proposed as a
comprehensive security service of encompassing traditional access
control, trust management, and digital rights management [10, 14].
UCONABC model family is seen as a new approach for next gener-
ation information security solutions [11].

DCON is one of the generic and key concerns of UCON, which en-
ables dissemination and re-dissemination outside of a closed system
environment where central control authority such as central refer-
ence monitor is hard to control.

The DMDCON model greatly integrates and expresses the dynamic
dissemination conditions in UCON with the special mechanisms
of the temporal restrictions on dissemination based on active time
range, and continuous dissemination management within prede-
�ned dissemination tree existed in real applications generally. In
addition, the DMDCON model take a set of rules to describe the
complex dissemination decision, which sets a good example for au-
tomatized dissemination management within UCON model.

6 Conclusion

In this paper, we �rstly de�ne and extend some basic concepts re-
lated with resource dissemination, including dissemination chain,
tree. Then, we propose dynamic dissemination modelling and
based on this notion, we build the comprehensive DMDCON
model, which has two attractive features, dissemination decision
continuity and dynamic resource dissemination. Finally, we brie�y
discuss the importance of DCON within the usage control domain.

Further research of DMDCON, integrating the secure resource ini-
tiation and transmission mechanisms, can form our ongoing dis-
tributed security model, Secure Resource Management (SRM),
which elaborately considers trust management [2, 8, 16] and pri-
vacy protection [17, 7] as well as the all above mechanisms for
achieving a secure resource control (including dissemination and
usage separately) lifecycle in open system.

7 References

[1] Abrams, Marshall, and etc. Generalized framework for access
control: Towards prototyping the orcon policy. Proceedings of
the 14th National Computer Security Conference, pages 257�
266, 1991.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. Proceeding of IEEE Conference on Security
and Privacy. Oakland, CA., 1996.

[3] Dwork, Cynthia, and etc. The mathematics of information
coding, extraction, and distribution. The IMA Volumes in
Mathematics and its applications, 107:31�47, 1999.

[4] D. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli. Proposed nist standard for role-based accesscon-

trol. ACM Transactions on Information and System Security,
4(3):224�274, 2001.

[5] R. K.Thomas and R. Sandhu. Towards a multi-dimensional
characterization of dissemination control. Proceedings of the
5th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY’04), 2004.

[6] R. Lannella and P. Higgs. Driving content management with
digital rights management. IPR systems whitepaper series,
2003.

[7] K. Lefevre, R. Agrawal, V. Ercegovac, and R. Ramakrishnan.
Limiting disclosure in hippocratic databases. Proceedings of
the 30th VLDB conference, Toronto, Canada, 2004.

[8] N. Li and J. C. Mitchell. Rt: a role-based trust-management
framework. In DARPA Information Survivability Conference
and Exposition (DISCEX), Washington, D.C., 2003.

[9] J. Park and R. Sandhu. Originator control in usage control.
Proc. 3rd IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, Monterey,California, pages
60�66, 2002.

[10] J. Park and R. Sandhu. Towards usage control models:
Beyond traditional access control. In Proceedings of 7th
ACM Symposium on Access Control Models and Technolo-
gies, 2002.

[11] J. Park and R. Sandhu. The uconABC usage control model.
ACM Transactions on Information and System Security,
7(1):128�174, 2004.

[12] J. Park, R. Sandhu, and J. Schifalacqua. Security architectures
for controlled digital information dissemination. IEEE, 2000.

[13] Ryotuv and T. Neuman. The set and function approach to
modeling authorization in distributed systems. Proceedings
of the Workshop on Mathematical Methods and Models and
Architecture for Computer Networks Security, 2001.

[14] R. Sandhu and J. Park. Usage control: A version for next gen-
eration access control. Proc. Mathematical Methods, Models
and Architectures for Computer Networks Security, Saint Pe-
tersburg, Russia, 2003.

[15] R. Sandhu, R. S., and etc. Role-based access control models.
IEEE Computer, 29(2):38�47, 1996.

[16] J.-M. Seigneur and C. D. Jensen. Trading privacy for trust.
iTrust2004, LNCS2995, pages 93�107.

[17] J. won Byun, E. Bertino, and N. Li. Purpose-based access
control of complex data for privacy protection. SACMAT’05,
Stockholm, Sweden, Jun.

38 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

B-tree indexes for high update rates
Goetz Graefe

1 Abstract
In some applications, data capture domi-

nates query processing. For example, moni-
toring moving objects often requires more in-
sertions and updates than queries. Data gath-
ering using automated sensors often exhibits
this imbalance. More generally, indexing
streams is considered an unsolved problem.

For those applications, B-tree indexes are
good choices if some trade-off decisions are
tilted towards optimization of updates rather
than towards optimization of queries. This
paper surveys some techniques that let B-
trees sustain very high update rates, up to
multiple orders of magnitude higher than tradi-
tional B-trees, at the expense of query proc-
essing performance. Not surprisingly, some of
these techniques are reminiscent of those
employed during index creation, index rebuild,
etc., while other techniques are derived from
well known technologies such as differential
files and log-structured file systems.

2 Introduction
Some applications capture more data than

they query them. For example, a fleet man-
agement system for a trucking or taxi com-
pany might record each vehicle’s latest posi-
tion more often than the vehicles’ positions
are queried by a fleet supervisor. In those
cases, index and B-tree organization should
be optimized for insertion and update per-
formance rather than for query performance,
as has been the traditional objective.

Another application domain for the tech-
niques discussed in this survey is indexing of
continuous data streams. Filtering streams on
the fly is reasonably well understood, but
streams that contain identifiers of real-world
objects often need to be matched by identifier
and descriptive attribute against static data as
well as other streams. Thus, it is imperative
that streams can be captured, typically in the
order of data arrival, as well as indexed by
attributes other than arrival time, sometimes in
multiple indexes with multiple orders. For ex-
ample, an incoming stream of credit card
transactions might require, for efficient and

near-instantaneous fraud detection, indexing
by card number, customer identity or house-
hold (a customer might have lost multiple
credit cards at the same time), and merchant
(a dishonest employee might fraudulently
charge credit cards from many customers).

In the following, we assume that update
and insertion performance are more important
than query performance. If the reader is not
concerned about such applications, traditional
B-tree optimizations should be applied rather
than the techniques surveyed here. Moreover,
we assume that any throttling of the workload,
e.g., “best effort” recording of current vehicle
locations, has already been applied, such that
the remaining update requests indeed must
be captured in all indexes under considera-
tion. Finally, we assume that hardware assis-
tance has been considered and exploited to
the extent possible and appropriate, e.g., disk
striping and solid-state disks or disk buffers.

3 I/O optimizations
As with most database operations, focus-

ing on the efficiency of disk I/O is an effective
means for improving performance and scal-
ability. However, one must separate between
improvements to the overall system through-
put and improvements to the response time of
individual transactions, which may or may not
be tremendously interesting here.

There are several very generic perform-
ance improvement technologies, e.g., data
compression [WKH 00]. In update-intensive
workloads, relevant compression applies not
only to the data but also to the transaction log.
Suffice it here to point out that some com-
pression techniques are surprisingly simple,
e.g., truncating leading and trailing zeroes or
blanks, and aggregating multiple log records
from the same transaction into a single log
record in order to save the overhead of many
record headers in the transaction log.

3.1 Prefetch, read-ahead, and
write-behind

Write-behind of log pages and of data
pages are well known techniques. By itself,

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 39

write-behind does not improve system
throughput, because the amount of writing
does not decrease. However, write-behind
often enables large writes, which is even more
efficient that queued I/O. Moreover, they are
helpful in the case of spikes in the workload
and they permit additional optimizations. For
example, modern disk drives support native
command queuing and thus perform better if
there are tens of I/O operations pending at all
times [ADR 03].

Read-ahead (as commonly used in scans)
does not apply to append operations, but it
applies to merging an entire batch of modifica-
tions into an existing B-tree. When merging
multiple B-tree partitions (discussed below)
into one, read-ahead with forecasting can im-
prove performance, as merging partitions is
essentially the same problem as merging runs
in an external merge sort [G 03a].

Prefetch based on individual keys apply
not only to retrieval operations, e.g., naviga-
tion from a non-clustered index into a clus-
tered index, but also to update operations.
However, like read-ahead and write-behind,
prefetch also does not directly improve sys-
tem throughput or bandwidth, only response
time or latency of individual operations, which
might improve system throughput indirectly by
reducing concurrency control contention.

3.2 Write-optimized B-trees
In addition to asynchronous I/O, dynamic

placement of contents on disk can improve
write performance [G 04]. This effect is well
known and has been extensively studied for
log-structured file systems [OD 89], in particu-
lar in the context of RAID storage [PGK 88].
The principal idea of write-optimized B-trees is
to allocate a new location on disk each time a
page is written to disk, and to do so as part of
the write operation, i.e., subsequent to the
buffer manager’s replacement decision, and
to allocate a page’s new location in such a
way that multiple concurrent write operations
all target the same area on disk.

In order to avoid subsequent updates of
neighboring pages, the traditional page chain
using physical page identifiers is replaced by
a logical page chain using separator keys, i.e.,
each page carries as lower and upper fences
the separator key propagated to the page’s
parent node when the page was split from its
neighbors. In addition to supporting the same
consistency checks and other maintenance

operations supported by traditional physical
page chains, fence keys simplify and improve
key range locking, because it is never re-
quired to navigate to a neighboring leaf page
in order to find the right key to lock. After
physical page chains have been replaced by
logical fence keys, the only role for physical
page identifiers is in child pointers, and only
those have to be updated when a node moves
to a new location on disk.

In traditional B-tree algorithms, a new loca-
tion is allocated as part of the B-tree man-
ager’s decision to split a node, such that sub-
sequent log records can refer to the page
identifier. In write-optimized B-trees, a new
page is given a temporary identifier that log
records may refer to, and the page is moved
as part of the write operation in a way very
similar to a page move during B-tree defrag-
mentation. Thus, proven concurrency control
and recovery mechanisms apply.

The performance effect of write-optimized
B-trees is such that random write operations
are converted to large sequential write opera-
tions, with a bandwidth advantage of factor 10
or more, at the expense of added mainte-
nance of each node’s parent each time a
node is written to a new location on disk.

4 Buffering insertions
There are multiple ways to buffer and

group new insertions in order to modify each
B-tree node less often, with the advantage of
less disk I/O, fewer faults in the CPU cache,
etc. Query operations either need to search
the buffer structure in addition to the B-tree
index or they force some or all buffered re-
cords into the B-tree index.

For correct transactional execution, both
insertion and deletion in the buffer must be
logged; thus the log volume in these methods
may exceed the traditional log volume by a
factor of three or more. However, only the
initial insertion into the first buffer is a user
transaction, whereas all subsequent move-
ments of a record can be system transactions
that can commit inexpensively without forcing
the tail of the transaction log to stable storage.

4.1 Buffering within tree
nodes

Several researchers have explored data
structures and algorithms that add a large
buffer to each interior tree node [A 96,

40 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

AHV 02, VSW 97]. Often the size of this buffer
exceeds the size of the area dedicated to tra-
ditional key-pointer pairs, not only because
each buffered new record is larger than a key-
pointer pair but also because the number of
retained records should be larger than the
number of key-pointer pairs. When the buffer
fills up, appropriate records are pushed down
to the child with the most retained records.

It seems that records should be retained
only for those children not immediately avail-
able in the I/O buffer. Given that most B-trees
have a fan-out of 100 or more, and given that
in most database servers the memory size
exceeds 1% of the disk size, and given that
the B-trees discussed here are among the
most active and performance-critical indexes
within the database, one may infer that such
buffering applies only at the nodes immedi-
ately above the leaves. In other words, there
may be additional improvement possible be-
yond published methods that permit buffering
in nodes of all B-tree levels.

4.2 Buffering in separate
structures

An alternative to buffering insertions in tree
nodes is to create a separate data structure to
buffer new insertions [LJB 95, MOP 00,
OCG 96]. This data structure can be another
B-tree or it can be a different type of in-
memory data structure, e.g., a hash table. In
fact, it can also be a collection of data struc-
tures, forming a hierarchy or cascade of stag-
ing areas. Interestingly, this organization is
reminiscent both of generational garbage col-
lection [U 84].

New structures imply new mechanisms for
concurrency control and recovery. Thus, a
standard index structure that is already im-
plemented might be the preferred mechanism.
Otherwise, new locking modes or protocols
require correctness arguments, implementa-
tion, testing, etc. Perhaps the most desirable
implementation avoids both separate struc-
tures and modifications of existing structures,
and instead only uses existing mechanisms in
different ways.

4.3 Buffering in B-tree parti-
tions

One design motivated by the desire to
avoid special-case code employs the main B-
tree as its own buffer data structure by intro-

ducing partitions within each B-tree [G 03a].
By introducing an artificial leading key column,
the traditional B-tree structure is retained. The
“main” B-tree is defined by a common value
for the artificial leading key column, say 0 or
null, and one or more “buffers” are defined by
different values in that column, say 1, 2, etc.

Traditional buffer management together
with a size limit on newly added partitions can
ensure that data insertions by user transac-
tions can be absorbed entirely in memory. In
the extreme case, partitions of new insertions
can be as small as a single record, i.e., each
new insertion defines a new partition and can
thus proceed with hardly any search or page
reorganization within the B-tree. Thus, inser-
tion rates and throughput by user transactions
are maximized, at the expense of more effort
for index optimization and reorganization.

Queries have to search in each partition,
using traditional methods for queries that re-
strict some index columns but not the leading
one [LJB 95], possibly augmented with op-
timizations to exploit the fact that successive
integer values are used as partition identifiers.
Alternatively, query activities may force some
merge activities, executed prior to actual data
retrieval and implemented using system
transactions. Thus, B-tree maintenance work
that traditionally is part of update operations is
shifted to query operations or reorganization
that may happen any time between insertion
and query. In the extreme case, a query may
force complete merging and optimization of all
partitions, maybe excepting one partition tar-
geted by current insertions.

Some interesting aspects of such B-trees
are (i) that the reorganization operation that
combines multiple partitions into one is very
similar to a merge step in a traditional external
merge sort, (ii) that such merge operations
can execute as system transactions and
commit a very small key range at a time, (iii)
that merge and reorganization operations can
pause and resume at any time in response to
load spikes etc., and (iv) the same technique
can aid bulk deletions, i.e., B-tree entries to
be deleted are moved by small system trans-
actions into one dedicated partition and then
deleted in one fast user transaction that cuts
multiple full pages from the B-tree.

4.4 Graceful degradation
In addition to raw performance improve-

ments, buffering insertions also enables

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 41

graceful degradation after errors in cardinality
estimation during query optimization. Today,
query optimization can choose between row-
by-row update processing and index-by-index
update processing. Updating row-by-row im-
plies maintenance of all appropriate indexes
immediately for each row. Updating index-by-
index means that all changes are applied to
one index at a time, possibly after splitting
each update into a deletion and an insertion,
sorting the changes on the index key, and re-
combining changes if appropriate; a general-
ized version of techniques described in
[GKK 01] implemented in Microsoft SQL
Server since release 7.0. Row-by-row updates
are most appropriate for small changes, e.g.,
in online transaction processing, whereas in-
dex-by-index updates are more efficient for
large updates, in particular if there are more
individual changes than leaf pages in an in-
dex, e.g., in bulk insertion or bulk deletion. For
graceful degradation, a query execution plan
may prescribe row-by-row update processing
due to an anticipated small update set, yet the
actual execution may determine that the up-
date set is rather large and switch to index-by-
index updates.

Buffering insertions as described above
using partitioned B-trees is a third way to ap-
ply updates to a B-tree index, and it thus
opens up another option for graceful degrada-
tion. Row-by-row processing targeting a new
partition promises I/O pattern and efficiency
better than index-by-index processing, albeit
with the disadvantage of non-optimal indexes
left behind. For graceful degradation, an up-
date plan may apply updates row-by-row in
the main partition until the actual size of the
update set becomes apparent and then switch
to buffered or partitioned updates. While it is
possible to implement graceful degradation
from row-by-row to index-by-index updates
using conditional execution in a traditional
query execution plan, assigning a new parti-
tion identifier (artificial leading key column) to
index changes is much simpler and it prom-
ises even faster update performance.

5 Differential files and in-
dexes

While the designs discussed in the prior
section are able to buffer insertions, they can-
not buffer other update operations, i.e., modi-
fications or deletions. However, they can be

extended to do so, by adapting ideas from
differential files [SL 76] to B-tree indexes. In-
terestingly, some B-tree adaptations for multi-
version concurrency control and for historical
indexes are very similar, including the logic
required during query processing.

The basic approach is to append records
that invalidate prior records without actually
modifying those prior records. In an update, a
new record supersedes the prior B-tree entry
with the same key. In a deletion, the newly
appended record simply indicates the end of
the history for a particular key, or at least the
end of the history until a subsequent new in-
sertion with the same key.

Query evaluation needs to search the his-
tory for each particular key, either for the most
current state (for traditional query semantics)
or for the state at a particular time (for point-
in-time historical queries). Merge operations
may condense the history of keys depending
on the desired future query capabilities.

In other words, like buffering insertions,
buffering updates and deletions in differential
B-trees trades query performance in favor of
update performance. Turning random single-
record insertions, deletions, and updates into
append operations with large sequential write
operations promises to improve the sustained
update throughput by two orders of magni-
tude.

Of course, there is also a relationship be-
tween differential files and the implementation
of multi-version snapshot isolation. The main
difference, however, is that differential files
retain the oldest version plus the deltas for-
ward in time, whereas implementations of
multi-version snapshot isolation are typically
tuned for access to the most recent versions,
i.e., they usually retain the most recent ver-
sion plus deltas backward in time.

6 Transaction guarantees
Another opportunity for performance im-

provement may be to weaken transactional
guarantees for some indexes, in particular for
redundant non-clustered indexes. We con-
sider three techniques that do so, one that
dilutes the separation of individual transac-
tions by batching, one that weakens guaran-
tees in case of system failures, and one that
records changes only in the transaction log
without even attempting to apply them to the
index, with the implicit danger that the attempt
to apply such changes later might fail. Obvi-

42 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

ously, these techniques apply only if the re-
maining transactional guarantees are still
strong enough for the application at hand.

6.1 Log-only operations
If the index maintenance cannot keep up

with the update stream, maybe at least the
transaction log can. In that case, one could
write logical redo records to the transaction
log and apply them later, essentially using
redo recovery. Of course, this process vio-
lates multiple traditional assumptions about
logging, e.g., that redo operations are always
physical operations that already happened,
that redo operations cannot fail, etc. However,
depending on the application, such failures
might not be total disasters and could be ig-
nored, for example, when some individual
location reports in a vehicle tracking applica-
tion cannot be recorded in the historical index.
Clearly, this idea might apply, but details need
to be worked out, e.g., what transaction com-
mit truly promises and what it guarantees,
how checkpoints work and what they guaran-
tee, etc.

6.2 Non-logged B-trees
Some database systems employ special

techniques during index creation such that the
contents of the new index do not appear in the
transaction log. Instead, only catalog changes
and page allocation are logged. Failure during
index creation results in deallocation of those
pages and erasure of the new index in the
catalogs. Index creation ends with flushing all
newly allocated and filled pages to disk, and
subsequent backup operations of the data-
base or even of the transaction log capture
those new pages. Subsequent user transac-
tions log their changes to the new index in the
usual way.

This idea can be extended in the following
way. If an index is truly redundant similar to a
traditional cache, and if erasing the index dur-
ing media or system recovery is acceptable,
then all operations on this index may be non-
logged, i.e., only space allocation is logged.
This specifically includes user transactions
running after index creation is complete. Roll-
back of a user transaction is driven by virtual
log records attached to the transaction de-
scriptor in memory, similar to virtual log re-
cords used in other transaction processing
designs [G 04, GK 85]. Details of this tech-

nique have not been published at this point,
but the technique seems promising for some
applications, in particular for temporary
caches and for indexes that exist only in
memory.

6.3 Batching updates
Finally, one may group multiple update

operations and transactions into a single
transaction. However, it seems important to
separate the transaction semantics from the
data structure. For example, many small user
transactions may all insert into a single buffer
as described above, leaving it to a subse-
quent system transaction (or series of small
system transactions) to merge such insertions
into the main B-tree. In other words, it might
not be necessary or advantageous to modify
or weaken the boundaries and semantics of
user transactions in order to achieve the de-
sired advantages in performance and scalabil-
ity.

7 Summary and conclu-
sions

In summary, if one is willing to accept de-
terioration of query performance by an order
of magnitude, e.g., due to searching multiple
partitions, update and insertion performance
can be improved by two orders of magnitude
or more, e.g., by turning insertions into ap-
pend operations and by turning random in-
place writes into large sequential writes to
newly allocated disk space. Less dramatic
tradeoffs also exist. While most applications
issue more queries than update requests and
thus demand a query-optimized database or-
ganization, some applications (e.g., tracking
moving objects) record more data changes
than they answer queries (e.g., about current
object location). For those applications, nu-
merous techniques are readily available for
implementation by database vendors. Some
are even available to database users, e.g., by
introducing an artificial leading key column in
the visible database schema and exploiting it
for index creation and possibly for index main-
tenance during bulk operations [G 03b].

This survey attempts to list a variety of
possible techniques. New techniques include
write-optimized B-trees, partitioned B-trees
using partitions to buffer insertions or all modi-
fications in the manner of differential files, and
non-logged B-trees. However, this intuitive

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 43

appraisal requires validation using prototyping
or even product implementations.

Numerous open questions present them-
selves, including the question for additional or
better trade-offs between update and query
performance, a comparative performance
evaluation of the methods described above
based on an appropriate benchmark, adapta-
tion of the techniques discussed above to
other index structures, in particular to multi-
dimensional indexes such as UB-trees and R-
trees and to materialized and indexed views,
and integration of query and update process-
ing with database maintenance operations
such as consistency checks, defragmentation,
and statistics refresh for query optimization.
Maybe the present survey will stimulate and
structure such research.

8 Acknowledgments
Theo Härder and Bernhard Mitschang read

earlier incomplete drafts and contributed mul-
tiple very helpful suggestions.

9 References
[A 96] Lars Arge: Efficient External-Memory

Data Structures and Applications. Univer-
sity of Aarhus (Denmark), 1996.

[ADR 03] Dave Anderson, Jim Dykes, Erik
Riedel: More Than an Interface - SCSI vs.
ATA. Conference on File and Storage
Technology (FAST), March 2003.

[AHV 02] Lars Arge, Klaus Hinrichs, Jan
Vahrenhold, Jeffrey Scott Vitter: Efficient
Bulk Operations on Dynamic R-Trees. Al-
gorithmica 33(1): 104-128 (2002).

[G 03a] Goetz Graefe: Sorting and Indexing
with Partitioned B-Trees. Conference on
Innovative Data Systems Research, 2003.

[G 03b] Goetz Graefe: Partitioned B-trees - a
user's guide. Datenbanksysteme für
Business, Technologie und Web (BTW)
2003: 668-671.

[G 04] Goetz Graefe: Write-Optimized B-
Trees. VLDB Conference 2004: 672-683.

[GK 85] Dieter Gawlick, David Kinkade: Varie-
ties of Concurrency Control in IMS/VS Fast
Path. IEEE Data Eng. Bulletin 8(2): 3-10
(1985).

[GKK 01] Andreas Gärtner, Alfons Kemper,
Donald Kossmann, Bernhard Zeller: Effi-
cient Bulk Deletes in Relational Data-
bases. IEEE ICDE 2001: 183-192.

[JNS 97] H. V. Jagadish, P. P. S. Narayan, S.
Seshadri, S. Sudarshan, Rama Kanne-
ganti: Incremental Organization for Data
Recording and Warehousing. VLDB Con-
ference 1997: 16-25

[LJB 95] Harry Leslie, Rohit Jain, Dave Bird-
sall, Hedieh Yaghmai: Efficient Search of
Multi-Dimensional B-Trees. VLDB Confer-
ence 1995: 710-719.

[MOP 00] Peter Muth, Patrick E. O'Neil,
Achim Pick, Gerhard Weikum: The LHAM
Log-Structured History Data Access
Method. VLDB J. 8(3-4): 199-221 (2000).

[OCG 96] Patrick E. O'Neil, Edward Cheng,
Dieter Gawlick, Elizabeth J. O'Neil: The
Log-Structured Merge-Tree (LSM-Tree).
Acta Inf. 33(4): 351-385 (1996).

[OD 89] John K. Ousterhout, Fred Douglis:
Beating the I/O Bottleneck: A Case for
Log-Structured File Systems. Operating
Systems Review 23(1): 11-28 (1989).

[PGK 88] David A. Patterson, Garth A. Gib-
son, Randy H. Katz: A Case for Redundant
Arrays of Inexpensive Disks (RAID). ACM
SIGMOD Conference 1988: 109-116.

[SL 76] Dennis G. Severance, Guy M. Loh-
man: Differential Files: Their Application to
the Maintenance of Large Databases.
ACM Trans. Database Syst. 1(3): 256-267
(1976).

[U 84] David Ungar: Generation Scavenging:
A Non-Disruptive High Performance Stor-
age Reclamation Algorithm. Software De-
velopment Environments (SDE), ACM
SIGPLAN Notices 19(5): 157-167 (1984).

[VSW 97] Jochen Van den Bercken, Bernhard
Seeger, Peter Widmayer: A Generic Ap-
proach to Bulk Loading Multidimensional
Index Structures. VLDB Conference 1997:
406-415.

[WKH 00] Till Westmann, Donald Kossmann,
Sven Helmer, Guido Moerkotte: The Im-
plementation and Performance of Com-
pressed Databases. ACM SIGMOD Re-
cord 29(3): 55-67 (2000).

44 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Report on the 10th International Symposium on

Database Programming Languages (DBPL 2005)

Gavin Bierman
Microsoft Research Cambridge, UK

Christoph Koch
Saarland University, Germany

DBPL 2005 was held on August 28–29, 2005,
in the charming surroundings of Trondheim,
Norway, and was one of the eleven meetings
that were co-located with VLDB. DBPL meets
every two years and presents the very best work
at the intersection of database and program-
ming language research. DBPL 2005 is the
tenth symposium in the series.

The program committee selected 17 papers
from a total of 63 submissions—an acceptance
rate of 27%—and invited Giuseppe Castagna
to open the symposium with a lecture. The 18
talks were given over two days, and informal
proceedings were distributed at the meeting. In
DBPL tradition, the authors of accepted papers
were able to improve their papers following dis-
cussions and feedback at the symposium, and
these papers have been collected and are pub-
lished by Springer in volume 3774 of the LNCS
series.

Invited lecture Giuseppe Castagna opened
DBPL 2005 with an invited lecture entitled
Patterns and Types for Querying XML Docu-
ments. During this lecture he surveyed the var-
ious approaches for deconstructing XML data
from both the database and programming lan-
guage communities. He identified two main
categories: the vertical approach embodied in
database query languages such as XPath; and
the horizontal approach as found in program-
ming languages such as CDuce (a language
which he helped design). As the latter is less
well-known to the database community, he gave
a concise but detailed tutorial on regular ex-
pression patterns; a key feature of CDuce. His
conclusion was that future research should be

directed towards developing languages with a
unification, or tight integration, of both ap-
proaches.

Research papers
The first paper by Claus Brabrand, Anders

Møller and Michael Schwartzbach, Dual Syntax
for XML Languages, describes XSugar which is
a system for managing dual syntax for XML
languages. Given a specification, the system
can both translate between the syntactic alter-
natives, and check that the transformations are
reversible and valid.

The second paper by J. Nathan Fos-
ter, Michael Greenwald, Christian Kirkegaard,
Benjamin Pierce and Alan Schmitt, Exploiting
Schemas in Data Synchronization, concerns the
authors’ synchronization framework, Harmony,
which can generate state-based synchronizers
for a variety of tree-structured data formats.
The authors formalize the synchronization al-
gorithm and show how the synchronization pro-
cess is driven by the schema of the structures
involved.

The third paper by Benny Kimelfeld and
Yehoshua Sagiv, Efficiently Enumerating Re-
sults of Keyword Search, considers the keyword
search problem. The authors identify a com-
mon class of algorithms and show that they are
provably efficient, i.e. they run with polynomial
delay.

The next paper by Dario Colazzo and Carlo
Sartiani, Mapping Maintenance in XML P2P
Databases, considers P2P systems where peers
manage their own data and where schema map-
pings exist between peers. The authors con-
sider the problem of corrupted mappings and

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 45

provide a technique for maintaining schema
mappings based on a semantic notion of cor-
rectness.

The paper by Diego Calvanese, Giuseppe de
Giacomo, Domenico Lembo, Maurizion Lenz-
erini and Riccardo Rosati, Inconsitency Toler-
ance in P2P Data Integration: an Epistemic
Logic Approach, also considers unstructured
P2P systems. The authors extend their previ-
ously introduced multimodal epistemic seman-
tics for such systems and study the problem of
dealing with inconsistencies in such P2P data
integration scenarios.

XML Data Integration with Identification by
Antonella Poggi and Serge Abiteboul consid-
ers the problem of data integration of XML
data where two major issues arise: first, that
the global schema can be expressed as a con-
straint set, and secondly, the complications of
node identity. The authors provide a formal
framework and consider various problems in-
cluding globally identifying nodes and answer-
ing queries under different mapping assump-
tions.

The paper by Floris Geerts and Wenfei Fan,
Satisfiability of XPath Queries with Sibling
Axes, considers the impact of sibling axes to
the satisfiability problem for XPath fragments.
The authors show that in many cases the pres-
ence of sibling axes significantly complicates
the satisfiability analyses and give bounds for a
number of XPath fragments with and without
axes.

XML Subtree Queries: Specification and
Composition by Michael Benedikt and Irini
Fundulaki considers the problem of queries that
filter an input document and return a subdoc-
ument. Such queries are useful but cannot be
naturally specified in either XPath or XQuery.
The authors identify a fragment of XPath with
an alternative subtree selection semantics and
study the query composition problem.

The paper by Jan Hidders, Stefania Marrara,
Jan Paredaens and Roel Vercammen, On the
Expressive Power of XQuery Fragments, pro-
vides a broad analysis of the expressive power
of various fragments of XQuery. The authors
identify 64 different XQuery fragments and

classify them into 17 equivalence classes such
that two fragments can express the same frag-
ments iff they are in the same equivalence class.

Peter Thiemann’s paper, A Type Safe DOM
API, considers the W3C recommended, lan-
guage neutral, API for XML document manip-
ulation, DOM. The assumed type system for
DOM is quite simple and a number of con-
straints are not made explicit at the type level.
The author proposes a refinement of the Java
type system that makes these constraints ex-
plicit and subject to compile-time checking.

The paper by Michael Levin and Benjamin
Pierce, Type-based Optimization for Regular
Patterns, considers pattern matching mecha-
nisms based on regular expressions (such as
those described in the invited lecture). The au-
thors consider the problem of compiling pattern
matching and propose a method that utilizes
the schema of the input value to generate effi-
cient code. They show that generating optimal
code is decidable for finite patterns.

The paper by Giorgio Busatto, Markus
Lohrey and Sebastian Maneth, Efficient Mem-
ory Representation of XML Documents, ad-
dresses the problem that many query proces-
sors use memory to represent XML data whose
size far exceeds the size of the XML document
itself. The authors present a way of compress-
ing XML trees such that basic tree operations,
such as edge traversal, are preserved in the com-
pressed representation.

The paper by Joachim Niehren, Laurent
Planque, Jean-Marc Talbot and Sophie Tison,
N-ary Queries by Tree Automata, generalizes
previous work on node-selecting tree automata,
and proposes and studies notions of tree au-
tomata that select tuples of nodes from trees
and their power to express n-ary queries, for
both ranked and unranked trees.

The paper by Wim Martens and Joachim
Niehren, Minimizing Tree Automata for Un-
ranked Trees, considers the problem of effi-
ciently minimizing automata for unranked trees
(such as those that form a foundation of XML
schema and various query and pattern lan-
guages). They show that, surprisingly, un-
ranked tree automata contribute an additional

46 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

form of nondeterminism that renders minimial
unranked tree automata in general not unique.
The paper studies the complexity of minimiza-
tion and introduces a new model of tree au-
tomata that may be of interest in its own right.

Solmaz Kolahi’s paper, Dependency-
Preserving Normalization of Relational and
XML Data, considers the familiar problem of
normalization for both relational and XML
data. First, techniques from information the-
ory are introduced to characterize the amount
of redundancy present in 3NF schemas. Then
the problem of preserving dependencies while
eliminating redundancies is studied for XML
and a new normal form is introduced.

The final two papers, Complexity and Ap-
proximation of Fixing Numerical Attributes
in Databases Under Integrity Constraints by
Leopoldo Bertossi, Loreto Bravo, Enrico Fran-
coni and Andrei Lopatenko and Consistent
Query Answers on Numerical Databases under
Aggregate Constraints by Sergio Flesca, Filippo
Furfaro and Francesco Parisi, both address the
consistent query answering problem, i.e., the
problem of extracting all consistent answers
(w.r.t. a set of integrity constraints) from a
database possibly violating these integrity con-
straints. The first paper provides several inter-
esting complexity results for the general prob-

lem while the second introduces and studies the
problem under aggregate constraints which are
inequalities of queries involving aggregate-sum
constructs.

Panel discussion DBPL 2005 closed with a
panel discussion that was jointly organized with
the co-chairs of The Third International XML
Database Symposium (XSym 2005), Ela Hunt
and Zachary Ives; and to which the attendees of
both symposia were invited. The invited panel
discussed Whither XML, c. 2005?, and con-
sisted of experts on various aspects of XML:
Gavin Bierman (Microsoft Research), Peter
Buneman (University of Edinburgh), Dana
Florescu (Oracle), H.V. Jagadish (University
of Michigan) and Jayavel Shanmugasundaram
(Cornell University).

Acknowledgements We owe thanks to a large
number of people for making DBPL 2005 such
a great success. We are grateful to the hard
work and diligence of the 21 distinguished re-
searchers who served on the program commit-
tee. We also thank Peter Buneman, Georg
Lausen and Dan Suciu, who offered us much as-
sistance and sound counsel. Svein Erik Brats-
berg provided flawless local organization. Fi-
nally, DBPL 2005 was generously supported by
Microsoft Research.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 47

The WS-DAI Family of Specifications for

Web Service Data Access and Integration

Mario Antonioletti,

Amy Krause
EPCC, University of Edinburgh,

Edinburgh EH9 3JZ, UK

(mario, amrey)@epcc.ed.ac.uk

Simon Laws
IBM, Hursley Park

Winchester, SO21 2JN, UK

simon_laws@uk.ibm.com

Norman W. Paton
School of Computer Science,

University of Manchester,

Manchester M13 9PL, UK

norm@cs.manchester.ac.uk

Susan Malaika
IBM, San Jose, CA 95141, USA

malaika@us.ibm.com

Dave Pearson
Oracle Corp,Thames Valley Park,

Reading, RG6 1RA, UK

Dave.Pearson@oracle.com

Andrew Eisenberg

IBM, Westford, MA 01886

andrew.eisenberg@us.ibm.com

Jim Melton

Oracle Corp., Sandy, UT 84093

jim.melton@acm.org

Guest Column Introduction
This month, we are pleased to provide to our readers

a column that addresses an important aspect of grid

computing: data access.

Grid computing is important and relevant

because it provides middleware that supports secure

and managed sharing of networked computational

resources. This is valuable because many activities

involve collaborations that stand to benefit from more

efficient and systematic access to computational and

data resources across management domains. The

GGF is important because the development of grids

depends on shared abstractions and consistent

interfaces; the GGF is the principal standards body

for grid computing. For the most part, the GGF is

developing web service standards for resource

management and use that can be used relatively

independently or as part of a wider service-based

architecture.

The authors of the note belong to two

overlapping groups: the chairs of the GGF Data

Access and Integration Services Working Group, and

the members of the Design Team that was

responsible for writing the specifications, and for

evolving them in the light of input from other

members of the working group and the wider

community.

Introduction
The WS-DAI (Web Service Data Access and

Integration) family of specifications defines web

service interfaces to data resources, such as relational

or XML databases. The specifications have been

developed by the Database Access and Integration

Services Working Group [1] of the Global Grid

Forum [2], and can be used independently, or as part

of a wider service-based grid architecture. The

specifications include properties that can be used to

describe a data service or the resource to which

access is being provided, and define message patterns

that support access to (query and update) data

resources. The specifications include a data model-

independent specification (WS-DAI), which is

extended in two realizations to include model-

dependent properties and operations in relational

(WS-DAIR) and XML (WS-DAIX) specifications. It

is anticipated that further realizations will be

developed in due course, for example to support

access to RDF and object databases.

The specifications do not provide fully

transparent access to existing resources; various

messages convey requests written using existing

query languages, and the specifications do not

impose any requirements for implementers to parse

such language statements. Thus, for example, the

WS-DAIR and WS-DAIX specifications implement

similar message patterns and share the properties

defined in WS-DAI, but users of the relational

specification express requests in SQL and users of

the XML specifications express requests in XPath,

XQuery (http://ww.w3.org/CR/) or XUpdate

(http://xmldb.org.sourceforge.net/xupdate).

The WS-DAI specifications define web

services; as such, they are described using WSDL,

and messages are sent to WS-DAI services using

SOAP. The specifications have few additional

dependencies on web service standards, although

they have been designed to be able to be used in

 48 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

mailto:simon_laws@uk.ibm.com
mailto:norm@cs.manchester.ac.uk
mailto:jim.melton@acm.org

conjunction with emerging standards from the grid

and web services communities. In particular, the WS-

DAI specifications are part of a wide ranging activity

to develop the Open Grid Services Architecture

(OGSA) [3] within the GGF. Data can be expected to

exist in many forms in grids [4]; file access,

movement and replication are central to many grid

applications, and database systems are widely

deployed in grids both for managing application data

and for storing information of relevance to the

middleware itself [5].

Many of the other web service specifications

for security (e.g. WS-Security [6]), resource

description and identification (e.g. the WS-Resource

Framework [7]), and transactions (e.g. WS-

AtomicTransaction [8]) are likely to be used

extensively within service-oriented grids. The current

state of play with OGSA is that the first version of a

top-level architecture has been defined [3], and

working groups are developing specifications that fit

into the architecture. The WS-DAI specifications

[9][10][11] form part of the OGSA Data

Architecture, which will also include services for

data movement, replication and storage management.

WS-DAI: A Framework for Data
Access and Integration
The WS-DAI specification defines concepts,

properties and messages that can be used in the

definition of data services. A data service is a web

service that implements one or more of the

DAIS-WG specified interfaces to provide access to

data resources. A consumer is an application that

exploits the interface provided by a data service to

access a data resource.

In principle, a data resource represents any

system that can act as a source or sink of data. In

practice, two kinds of data resource are distinguished

in WS-DAI. An externally managed data resource is

one in which the data is stored using an existing data

management system. For example, a relational

database of protein sequences stored using an

installation of MySQL would be an externally

managed data resource. An externally managed data

resource:

1. Normally has an existence outside the DAIS

service.

2. Has its lifetime managed in ways that are not

specified in the DAIS specifications.

The DAIS-WG specifications do not provide

operations for carrying out database administration

functions on a database management system; instead

they provide access to data managed by such systems

using the capabilities of a service-based middleware.

We note that the specifications are silent about how a

service is implemented, so different properties and

operations can be supported in different ways. For

example, an external data management system could

be a centralized database or a federation, and a

federation could be constructed using WS-DAI

services to access the federated resources.

A Service Managed Data Resource, by

contrast:

1. Does not normally have an existence outside the

service-oriented middleware.

2. Has its lifetime managed in ways that are

specified in the DAIS specifications.

For example, the result of a query over a protein

sequence database could give rise to a result set that

contains information on all the proteins found in

yeast. Such a result set could be made available as a

data resource in its own right through a data service.

As such a data resource has been created by a data

service, the service is considered to have

responsibility for providing access to the data

resource and for enabling the destruction of the

resource when it is no longer required; messages are

provided to support such capabilities.

Following the OGSA naming scheme [3],

data resources may be identified using abstract

names or concrete names. An abstract name is a

location-independent persistent name, which is a

URI. A concrete name specifies the location of a data

resource. As such, a single abstract name may be

used to refer to a data resource accessible through

multiple data services, but the concrete name is

specific to the location of the service through which

the data resource is being accessed.

In WS-DAI, a concrete name may consist of

a combination of a service address plus an abstract

name, or it may consist of a WS-Addressing endpoint

reference as used in the WS-Resource Framework

(WSRF) [7]. The WSRF specifies both an approach

to resource identification in which resources are

identified explicitly in the header of a message, and a

range of associated behaviors, for example for

representing the properties or the lifetime of a

resource. In WS-DAI, messages to a data service

must include within their SOAP body the abstract

name of the resource being accessed by way of the

service; where WSRF is being used to identify a data

resource, the address to which a message is sent

contains enough information to identify the resource

within the data service, and the abstract name is also

included in the SOAP body only for consistency with

non-WSRF data resources. Both approaches are

supported because the WSRF family of specifications

is only now completing its standardisation process

within OASIS (http://www.oasis-open.org/), and the

level of adoption it will experience is not yet clear,

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 49

partly due to the presence of competing specifications

for resource representation.

The properties of a data service and the

principal messages that can be sent to a data service

form the core of the specification, and are available

whether or not data resources are represented using

WSRF. Where data resources are represented using

WSRF, the functionalities associated with WSRF for

soft state lifetime management and fine-grained

property access become available for managing the

lifetime of (service managed) data resources and for

accessing the properties defined in WS-DAI and in

the realizations. For non-WSRF resources, properties

are only available through retrieval of the entire

property document, and lifetime management is

restricted to an explicit destruction of the data

service-data resource relationship.

Properties

It is important that a consumer of a data service can

interrogate the service to: (i) determine whether the

service is suitable for use in a given setting; and (ii)

obtain the information required to enable valid

requests to be sent to the service. To support this, the

WS-DAI specification defines a collection of

properties and provides a GetDataResourceProperty-

Document operation, which, given a resource name,

returns an XML document that describes all the

properties associated with a resource on a service. If

the data resource is represented using WSRF, the

fine-grained operations provided by WSRF can be

used to access the properties individually.

The properties in the WS-DAI specification

are applicable to any type of data resource; individual

realizations extend the properties listed here to

include paradigm-specific features, such as the XML

Schemas associated with the collections in an XML

database. The following properties are defined for all

data services:

DataResourceAbstractName: URI representing the

abstract name of the data resource.

ParentDataResource: If this resource was derived

from another, this has the abstract name of the

parent data resource.

DataResourceManagement: An enumeration

indicating if the data resource is ServiceManaged

or ExternallyManaged.

DatasetMap: A mapping between the QName of a

message and the URI of a dataset type

representing the result types supported for the

messages. For example, as there are many

different XML representations for relational result

sets, this property allows a service provider to

indicate to a consumer the representations that the

service can return. A consumer can then specify

the format in which data should be returned to

them. The dataset URIs are not defined by DAIS.

ConfigurationMap: A mapping between the QName

of a message and the URI of an expression

language. For example, a message which supports

XPath queries may support XPath Version 1.0

expressions or XPath Version 2.0 expressions.

DAIS does not define new expression languages

but wraps those defined by others in DAIS

messages. Expression languages are expected to

evolve independently of the DAIS specifications.

For example, the development of the DAIS

specifications has no impact on the further

development of the SQL or XQuery

specifications. DAIS uses, but does not define,

URIs to identify supported expression languages.

Suitably precise identifiers for languages do

not always exist. In this regard, it is hoped that

vendors and language standards bodies will

develop schemes that allow the language

supported by a data resource management system

to be unambiguously identified.

LanguageMap: A mapping between the QName of a

message and the URI of an expression language.

For example, a message which supports SQL

queries may allow such queries as SQL:1999

expressions or SQL:2003 expressions. DAIS does

not define the URIs of supported languages.

DataResourceDescription: A human readable

description of a data resource.

Readable and Writeable: These properties indicate

whether or not the data resource is able to be read

from or written to from the data service.

ConcurrentAccess: Has the value true if a data

service is able to process more than one message

concurrently otherwise it has the value false.

TransactionInitiation: Describes under what

circumstances a transaction is initiated in

response to messages. The values are as follows:

NotSupported – does not support transactions;

Automatic – transaction initiated automatically for

the duration of each message; Manual

Transaction – context under control of the

consumer, for example using an existing

transaction specification, such as WS-

AtomicTransaction [8].

TransactionIsolation: describes how transactions

behave with respect to other ongoing transactions.

ChildSensitiveToParent and ParentSensitiveToChild:

indicates whether a parent or child data resource

is sensitive to changes made to the other.

 50 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Direct Access

The DAIS-WG specifications, for the most part, rely

on the existing query facilities of database systems

for extracting data from and modifying the contents

of data resources. Operations are provided that pass

query statements as strings, which in turn are passed

on to the underlying data resource management

system; as such, the specifications can be seen as

defining web service wrappers for the underlying

databases.

The WS-DAI specification supports two

patterns for obtaining the results of requests directed

at a data resource, referred to as direct data access

and indirect data access. Direct data access follows

the typical web service type of interaction where a

consumer expects the data or status of a query in the

response to a request. For example, passing a

message containing a SQL query to a data service

will result in a response message containing the

rowset representing the result of the query as an

XML document, as illustrated below.

Database

Data Service

Relational

Database

SQLResponse

SQLDescription:

 Readable

 Writeable

 ConcurrentAccess

 TransactionInitiation

 TransactionIsolation

 LanguageCapabilities

 Etc.

SQLAccess

Consumer

SQLExecute

For direct data access, the WS-DAI specification

defines a single query-language-independent

message, and a template for realizations to follow in

defining language-dependent operations.

Generic Query

A message for passing generic queries to a data

resource. The actual query language payload is

implicit in the QName of the message, and is

specified by a LanguageMap property. Operation

descriptions are not given in WSDL here; the WSDL

is provided in the specification [9]. The following

terminology is used to indicate multiplicity in the

examples below: a “?” indicates that a parameter is

optional; “*” denotes 0 or more; “+” denotes one or

more; and no modifiers signifies that one such

element must be present.

Input. GenericQueryRequest:

1. DataResourceAbstractName: abstract name of

the target resource.

2. DatasetFormatURI: An element that can be used

to define the type of the response message. This

element must contain a URI from the set that

appears in the MessageDatasetMap properties

defined by the data service. When only one URI

is advertised this element may be omitted, in

which case the format of the response message

will follow that of the type reference by the

advertised value.

3. GenericExpression: the query expression

document.

Output. GenericQueryResponse:

1. The DatasetFormatURI used to format the

response.

2. The response document formatted according to

DatasetFormatURI

GenericQuery is an extensibility point for a service;

the specifications are not prescriptive with regard to

the languages that might be supported in different

contexts, and thus, like other extensibility points,

interoperability is traded for flexibility.

Query Template

The WS-DAI specification does not provide any

query-language-specific operations; these are the

responsibility of the realizations. Rather, WS-DAI

defines a structure for direct data access request

messages that is followed by the realizations. The

structure is as follows:

<RequestMessage>
 <wsdai:DataResourceAbstractName/>
 <wsdai:DatasetFormalURI/>?
 <RequestDocument/>
</RequestMessage>

The elements within the template are as follows:

1. RequestMessage: This is the root element for a

request message. The type of this element is

specific to each message. For example, the

relational realization defines SQLExecuteRequest

as a RequestMessage.

2. DataResourceAbstractName: abstract name of

the target resource

3. DatasetFormatURI: as in Generic Query.

4. RequestDocument: The request statement. The

structure of this document is specific to the

statement being used. For example, the relational

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 51

realization defines a SQLExpression element as a

RequestDocument.

The structure of a direct access response message is:

<ResponseMessage>
 <wsdai:DatasetFormat/>
 <wsdai:DatasetData>
 Data formatted according to the
 DatasetFormatURI goes here.
 </wsdai:DatasetData>
</ResponseMessage>

Indirect Access

Indirect data access essentially implements the

factory pattern, whereby the result of a request is not

returned directly to the user, but rather made

available as a data resource in its own right, for

access through a data service. The consumer thus gets

an end-point reference in the response message

through which the data may be accessed. The WS-

DAI specification does not define any generic

indirect access operations, but it defines a template

that must be followed by the realizations that

implement this type of operation.

To see an example of indirect access usage

we thus turn to the relational realization example.

Consumer

Rowset

SQLExecuteFactory

GetRowset

Address of

SQLResponse

Data Service

Database

Data Service

SQL Response
Data Service

RDB

Row

Set

SQLFactory

SQLResponseDescription

SQLResponseAccess

SQLDescription:

 Readable

 Writeable

 ConcurrentAccess

 TransactionInitiation

 TransactionIsolation

 Etc.

Response Data

Resource

A consumer sends a SQLExecuteFactory

message to a Relational Data Service. As a result of

the message, the data service makes available a

service managed Response Data Resource through a

SQL Response Data Service. The result of the

SQLExecuteFactory message is the concrete name of

the associated Response Data Resource. Subsequent

messages from the same consumer, or a different

consumer, can be used to access the contents of the

Response Data Resource.

This pattern has been introduced into the

DAIS-WG specifications in part to support third

party delivery (and also to avoid unnecessary data

movement). The specifications support third-party-

pull delivery directly – a consumer C1 can invoke a

SQLExecuteFactory operation and pass the concrete

name of the result data resource to consumer C2,

which can then access the result directly, avoiding the

need to transfer the result to C2 via C1. Other

patterns of third party delivery, such as third-party-

push delivery, are expected to be supported by

implementing portTypes from OGSA data movement

services on the data services used to provide access to

the results of factory operations.

As in the case of direct data access, the

specification defines a template that is implemented

by the realizations. The structure of a message

implementing the factory pattern is:

<RequestMessage>
 <wsdai:DataResourceAbstractName/>
 <wsdai:PortTypeQName/>?
 <wsdai:ConfigurationDocument/>?
 <wsdai:PreferredTargetService/>?
 <RequestDocument/>
</RequestMessage>

The components of the template are as follows:

1. RequestMessage: This is the root element for a

request message. The type of this element is

message-specific. For example, the relational

realization defines SQLExecuteFactoryRequest

as a RequestMessage.

2. DataResourceAbstractName: The abstract name

of the target resource.

3. PortTypeQName: The QName of the port type

that the resulting resource will be accessed

through. This must correspond to one of the

QNames defined in the ConfigurationMap

property of the service. If no PortTypeQName is

specified the port type specified by the first

ConfigurationMap property is assumed.

6. RequestDocument: This is the request part of the

message. The structure of this document is

message-specific. For example, the relational

realization defines a SQLExpression element as a

RequestDocument.

 52 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

The structure of the factory pattern response message

is:

<wsdai:DataResourceAddressList>
 <wsa:EndPointReference>
 <wsa:ReferenceParameters>
 <wsdai:DataResourceAbstractName/>?
 </wsa:ReferenceParameters>
 </wsa:EndPointReference>*
</wsdai:DataResourceAddressList>

The components of the template are as follows:

1. wsdai:DataResourceAddress: This is the root

element for the response message. For example,

the relational realization defines a

SQLExecuteFactoryResponse element.

2. wsa:EndPointReference: A list of end points of

the service(s) that provide access to the newly

created data resource(s). The EPR

ReferenceParameters element contains the

abstract name of the data resource to which the

address refers.

WS-DAIR: The Relational
Realization
The relational realization [10] extends the properties

defined in WS-DAI, instantiates the templates for

direct and indirect data access, and defines interfaces

for accessing the results of requests directed at a

relational data service. The relational realization

builds on the SQL standard throughout.

Properties

A relational data service defines a single additional

property, namely CIMDescription: the description of

the database accessible through the service, described

using the model of the Database Technical

Committee of the Distributed Management Task

Force (DMTF – http://www.dmtf.org).

Direct Access

The SQLExecute operation directs a SQL statement

to a relational data resource, instantiating the

template defined in WS-DAI.

Input: SQLExecuteRequest. The elements are as

defined in the WS-DAI direct access template, where

the RequestDocument becomes SQLExpression

which contains the actual SQL query plus optional

parameters.

Output: SQLExecuteResponse.

1. DatasetFormatURI: The format in which the

data is being returned.

2. DatasetData: Any data returned in response to a

query.

3. SQLUpdateCount*: The number of rows that

were affected by an SQL update if this was the

type of SQL statement used.

4. SQLOutputParameter*: Any output from a SQL

stored procedure output parameter.

5. SQLReturnValue?: The return value from any

stored procedure.

6. SQLCommunicationsArea+: Any output from

the SQL Communications Area.

The following is an example of an input message to

SQLExecuteRequest:

<SQLExecuteRequest>
 <DataResourceAbstractName>
 urn:dais:dataresource27
 </DataResourceAbstractName>
 <SQLExpression>
 <Expression>
 SELECT * FROM P
 </Expression>
 </SQLExpression>
</SQLExecuteRequest>

Indirect Access

The SQLExecuteFactory operation directs a SQL

statement to a relational data resource, instantiating

the template defined in WS-DAI. As such, the result

of the SQL statement is made available to the

consumer as a data resource by way of a data service.

Input: SQLExecuteFactoryRequest. The elements are

as defined in the WS-DAI indirect access template,

where the RequestDocument becomes

SQLExpression.

Output: SQLExecuteFactoryResponse. A list of

addresses of the data resources for the result(s).

The following is a fragment of an example

SQLExecuteFactoryRequest, which includes both the

query and the properties used to configure the data

service that will provide access to the result:

<SQLExecuteFactoryRequest>
 <DataResourceAbstractName>
 urn:dais:mydataresource1234
 </DataResourceAbstractName>
 <PortTypeQName>
 dair:SQLResponsePT
 </PortTypeQName>
 <ConfigurationDocument>
 <Readable>true</Readable>
 <Writeable>false</Writeable>
 <ConcurrentAccess>
 false
 </ConcurrentAccess>
 <TransactionInitiation>
 NotSupported

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 53

 </TransactionInitiation>
 …
 </ConfigurationDocument>
 <SQLExpression>
 <Expression>
 SELECT * FROM P
 </Expression>
 </SQLExpression>
</SQLExecuteFactoryRequest>

Although the DAIS-WG specifications allow other

interfaces to be used to provide access to the results

of a SQLExecuteFactoryRequest, the SQLResponse

and SQLRowset data services have been defined for

this purpose.

SQLResponse

A SQLExecuteFactoryRequest may return the

concrete address of a data resource based on the

result of any SQL statement. As such, the

SQLResponse data service provides properties that

describe the actual result and operations for accessing

those results.

Space does not allow a detailed description

to be provided, but the names of the properties are

fairly self-explanatory, and are:

NumberOfSQLRowSets,

NumberOfSQLUpdateCounts,

NumberOfSQLReturnValues,

NumberOfSQLOutputParameters and

NumberOfSQLCommunicationsAreas.

Associated with these properties are a

collection of data access operations, namely

GetSQLResponseItem, GetSQLRowSet,

GetSQLUpdateCount, GetSQLReturnValue,

GetSQLOutputParameter and

GetSQLCommunicationsArea.

In a third-party pull data delivery, the results

of a query can be obtained by a consumer using the

collection of operations defined in SQLResponse.

SQLRowSet

A SQLRowSet data service essentially provides

access to a single table. It has the properties:

AccessMode, which indicates if the rowset can be

read only sequentially or whether access by position

is supported; and NumberOfRows, which indicates

how many tuples are stored in the rowset. An

operation, GetTuples, provides access to a group of

tuples from the rowset, indexed by position.

WS-DAIX: The XML Realization
The XML realization [11] extends the properties

defined in WS-DAI, instantiates the templates for

direct and indirect data access, and defines interfaces

for accessing the results of requests directed at a

XML data service. Space restrictions preclude a

fuller description of WS-DAIX here, but it follows a

similar pattern to that described for WS-DAIR. Key

features include: properties and operations for

manipulating collections of documents, direct and

indirect access using both XQuery and XPath, and

data modification using XUpdate.

Conclusions
The development of standards for accessing

databases from programming languages is well

established, and has saved countless hours of

developer effort though improved portability and

interoperability. Such standards are widely deployed

for relational databases, where Embedded SQL is

part of the SQL standards process (ISO/IEC 9075 at

http://www.iso.org/) and JDBC® is part of the Java

Community Process (http://jcp.org/en/jsr/-

detail?id=054). Programming language APIs used to

access XML databases are less well established,

although several native XML database systems

support XML:DB (http://xmldb-org.source-

forge.net/xapi/), and the development of the XQJ

standard within the Java Community Process is now

well advanced (http://www.jcp.org/en/jsr/-

detail?id=225). The WS-DAI family of specifications

should bring similar benefits to service-based

computing, by making data resources available

though consistent WSDL interfaces. Benefits that

result from the provision of data access standards as

web services include: (i) no need to deploy database

connectivity software on clients; (ii) seamless

integration with other web service standards, for

example, for security, transaction management and

data movement.

The argument here is not that databases

should always, or even normally, be made available

in a service-based setting using the interfaces

described in this paper; indeed most access to

databases in service-based applications will be

completely transparent, hidden behind domain-

specific services. However, at some level in any

distributed application it becomes necessary to direct

requests at resources, whether data or computational

resources. Service-oriented grid middleware seeks to

make the secure and coordinated interaction with

distributed computational resources more systematic,

more consistent and more compositional, and thus

more cost effective. The WS-DAI family of standards

seeks to contribute to this process by making

databases first class citizens in service-based grids.

At the time of writing, the specifications have been

submitted by the DAIS-WG to the public comment

phase of the GGF standardization process; as such it

is anticipated that the specifications will be refined in

 54 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

the light of feedback for adoption as standards during

2006.

Availability: Prototype implementations of WS-

DAIR and WS-DAIX will be made available from

http://www.ogsadai.org.uk during the first half of

2006.

Acknowledgements: Many people have contributed at

different stages to the development of the DAIS-WG

specifications, including Malcolm Atkinson, Brian

Collins, Shannon Hastings, Stephen Langella, James

Magowan and Greg Riccardi; fuller

acknowledgements are provided on the specifications

themselves.

Java, JDBC, and all Java-based trademarks are

trademarks of Sun Microsystems, Inc. in the United

States, other countries, or both. Other company,

product, or service names may be trademarks or

service marks of others.

References
[1] Database Access and Integration Services

Working Group (DAIS-WG),

http://forge.gridforum.org/projects/dais-wg

[2] Global Grid Forum (GGF), http://www.ggf.org

[3] Open Grid Services Architecture Version 1.0, I.

Foster et al., Technical Report GFD-I.30, Global

Grid Forum, 2004.

[4] Data Access, Integration and Management, M.P.

Atkinson, et al., in The Grid: Blueprint for a

New Computing Infrastructure (Second Edition),

I. Foster and C. Kesselman, Morgan-Kaufmann,

391-430, 2004.

[5] Grid Database Access and Integration:

Requirements and Functionalities M.P.

Atkinson, V. Dialani, L. Guy, I. Narang, N.W.

Paton, D. Pearson, T. Storey, and P. Watson.

Technical Report GFD-I.13, GGF, 2003.

[6] Web Services Security: SOAP Message Security

1.0 (WS-Security), A. Nadalin, C. Kaler, P.

Hallam-Baker, and R. Monzillo. OASIS, 2004.

[7] Web Services Resource Framework (WSRF)

Primer, T. Banks,

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-

primer-cd-01.pdf, OASIS, 2005.

[8] Web Services Atomic Transaction (WS-

AtomicTransaction) 1.1. E Newcomer, I

Robinson (eds), Working Draft,

http://www.oasis-

open.org/committees/download.php/15719/WS-

AT%20Working%20Draft.pdf, 2004.

[9] Web services data access and integration – the

core (WS-DAI) Specification, Version 1.0. M.

Antonioletti, M. Atkinson, A. Krause, S. Laws,

S. Malaika, N.W. Paton, D. Pearson, G. Riccardi.

GGF, 2005.

[10] Web services data access and integration – the

relational realization (WS-DAIR), Version 1.0.

M. Antonioletti, B. Collins, A. Krause, S. Laws,

S. Malaika, J. Magowan, N.W. Paton. GGF,

2005.

[11] Web services data access and integration – the

XML realization (WS-DAIX), Version 1.0, M.

Antonioletti, A. Krause, S. Hastings, S. Langella,

S. Laws, S.Malaika, N.W. Paton. GGF, 2005

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 55

http://www.ogsa-dai.org.uk/
http://forge.gridforum.org/projects/dais-wg
http://www.ggf.org/
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://www.oasis-open.org/committees/download.php/15719/WS-AT%20Working%20Draft.pdf
http://www.oasis-open.org/committees/download.php/15719/WS-AT%20Working%20Draft.pdf
http://www.oasis-open.org/committees/download.php/15719/WS-AT%20Working%20Draft.pdf

Moshe Vardi Speaks Out

on the Proof, the Whole Proof, and Nothing But the Proof

by Marianne Winslett

Moshe Vardi

http://www.cs.rice.edu/~vardi/

Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the

database community. I’m Marianne Winslett, and I have here with me Moshe Vardi, who holds an

endowed professorship at Rice University and is a former chair of their Computer Science

Department. Before joining Rice, Moshe was a manager at IBM Almaden Research Center.

Moshe is an ACM Fellow, a AAAI Fellow, a co-winner of the Goedel Prize, and a member of the

U.S. National Academy of Engineering and the European Academy of Sciences. His research

interests include databases, verification, complexity theory, and multi-agent systems, and his PhD

is from the Hebrew University of Jerusalem. So Moshe, welcome!

Thank you very much. It is a pleasure to be here.

Moshe, after you finished your PhD, you worked on Datalog for a number of years---as did many,

if not all, database theoreticians. At the time, there was vocal opposition to some aspects of this

activity from some of the more practically oriented members of the database research community.

In hindsight, do you think that the criticism was justified?

It surprised me that people get so emotional about certain research areas. The work on integrity

constraints in the late 70s and early 80s also received scathing criticism as not being at all

relevant to the practice of database systems, only to reemerge later as being of central importance.

I heard recently a question that someone asked Stephen Hawking: what is the best idea in physics

this year? And Hawking said that we won’t know for many years. When you do an exciting

piece of research, it is very hard to know whether it will be relevant to the field in the long term.

This is true both for theory and for experimental work. The vast majority of theory research

results will be forgotten, as will be the vast majority of experimental work. The fact that

something is done experimentally does not guarantee any lasting impact.

We can look back now at Datalog, and ask what its impact was. I don’t know of any database

that implements Datalog per se, but SQL3 does include recursion. A case can be made that the

Datalog work did contribute to realizing the importance of recursion. Georg Gottlob has a

company that does Web integration using Datalog as its internal language. The Datalog concept

of rules has had an impact on active databases. So yes, Datalog did have an impact. That doesn’t

56 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

mean that every single technical result, every PSPACE-completeness result, had much impact;

but the same is true for most scientific work. Most scientific work will be forgotten.

Datalog has been very influential in the area I work in, in security.

Languages for security policies?

A very good language for security policies. Although it is not necessarily the direction that the

industry is going in, perhaps they should be going in that direction. Certainly in security

research, you want to be able to reason about the correctness of what you are doing.

What do you view as the most important open problems in database theory today?

Have you tried to use databases? They are darned hard to use. We have built a marvelous piece

of middleware that is incredibly powerful and incredibly difficult to use. The challenge for the

database field is how to have more usable database systems.

I use databases all the time. I use them every time I go to an ATM machine, and it is very easy.

So why are you complaining that they are hard to use?

For you it is easy, but it is very expensive to make them easy for the consumer to use.

So you are not worried about ease of use, you are worried about the expense of making them easy

to use.

Someone actually has to write the application. At an ATM, you don’t deal directly with the

database, you are interacting with an application. It is very expensive to write an application and

maintain the database---I’m not going to be the first person or the last person who will say that.

What we lack (and this is true both on the implementation side and the theoretical side) is a good

set of abstractions that will make life easier for people who build databases and people who build

and maintain applications.

The relational model overall was a wonderful abstraction, a beautiful abstract model. It cleared

away a lot of bushes from the pathway, and life became easy for a while. Now the bushes are

growing across the pathway again. If you talk to people in forestry, they will tell you that fires

are good because they clear the brush from the forest. The relational model was a fire that

cleared a lot of brush away, but we haven’t had a good fire for a while.

Is there a role for the theory community there? Basically, you are talking about a revolution in

the API?

Well, the API is one way to look at it, but the relational model first and foremost was a theoretical

contribution. The experimental work came later to show that this theoretical contribution is

realizable and can result in practically and pragmatically usable databases. In our time, we have

tried another abstraction. Everybody claimed that object-oriented databases were the way things

would go. But it didn’t work out that way, so we can ask, why not?

There is no doubt that we are looking for new abstractions, and in that task theory plays a critical

role. It is not enough to have new theory, it must also be paired with implementations and

experimental work. In the database research community culture, I don’t think we have a very

healthy ecosystem where there is a constant interplay between theory and practice. Instead, for

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 57

example, the theoreticians come and say that integrity constraints are important, and the more

experimental people say that no, they are not important. After a while the theory people stop

working on integrity constraints. Then the experimental people say, “No, no, we need integrity

constraints!” And the theory people say, “Oh, we are not interested now, we looked at them ten

years ago and now we’re not interested.” In other areas of my research, verification for example,

there is a much more healthy interchange between more theoretical research and more applied

research.

I think I misunderstood you earlier. You don’t want a better API, you want a new model?

It is not necessarily just the model; there is a whole set of abstractions that goes into building a

system. The relational model was one such abstraction. Another abstraction was logic and

relational algebra as a way to query. Another abstraction was the concept of keys, as a way to

describe integrity constraints, and normalization. Transaction management was another kind of

abstraction. So we are not tied to one single abstraction; we need a mix of abstractions. We can’t

just replace tables by trees and be done. It’s more than that. But the complexity of today’s

systems suggests that there is a prime opportunity for the theory community to develop and

reason about new abstractions.

Do you have any proposed directions to find these new abstractions?

I don’t. If I had, maybe I wouldn’t be here! There is some work happening in the XML world,

where people are trying to figure out a more abstract way of looking at XML. Maybe that will

have lasting impact. Interestingly, we see theory playing a bigger role in the XML world than it

did in the relational world. If XML becomes the primary way of storing data, then perhaps we

will see some impact there.

In that earlier fiasco with dependency theory, I think that the integrity constraints that the theory

people were looking at were not the kinds of integrity constraints that come up in practice, so that

is where the mismatch happened.

I think that was part of it. At the time we theoreticians didn’t get feedback saying, “This is very

nice, but here is the constraint that we really care about, and please work on it instead.” Instead,

what we got was a scathing response that nobody needs anything more than keys. And then later,

“Well, maybe we’ll eventually need referential integrity, but nothing else.” Today if you look at

SQL, you find that there are keys, referential integrity, and assertions. Assertions are incredibly

powerful and we never did develop a good theory of how to handle them well. So we don’t have

a healthy interchange between theory and experimentalists. I’m perfectly okay if somebody says,

“Very nice work, but if you can change it a little bit, maybe it will better fit my needs,” rather

than “You’re wasting our time, you’re wasting your time, stop bothering us,” which is, I have to

say, very often what we were hearing.

There is no Nobel Prize in computer science, but there is a Nobel Prize in economics. I have

heard that database theoreticians have switched to working on game theory for this reason. Is

that rumor true?

People work on game theory because games are a powerful paradigm. For example, I use games

in my verification work. I don’t think game theory work will get a Nobel Prize. I think one

should not structure one’s work for Nobel Prizes. Too few people get them; it is not a good

career driver. One should strive to make impact, to have success, for other considerations. I

58 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

know people who work on bioinformatics because they think they might get the Nobel Prize in

medicine. I think it is a bad strategy for designing one’s career.

A Nobel Prize is a bit of a long shot, but maybe one can pick up some other prizes along the way.

Game theory already received the Nobel Prize twice in economics, which surprised people. Some

people thought after the first prize that game theory had had its time, and then there was a second

prize for game theory. So I wouldn’t bet on a third one.

How about bioinformatics?

Bioinformatics is a less of a long shot in some sense. Again, one would have to do something

fairly dramatic to win a Nobel in that area.

You could argue whether the contribution by some people to the genome project was worthy of

the Nobel Prize in medicine. I suspected that that project was so controversial that nobody from

that project would get the Nobel Prize, because the Nobel Prize committee would not want to sort

out the intense rivalries there. If the medicinal contributions of the genome project would

materialize, which so far has not happened, then the genome project would be one of the most

successful contributions of computer science to medicine.

Moshe, you were one of the main players in the area of finite model theory. Many of our readers

will not be familiar with this fascinating subject. Can you tell us a little bit about it? Perhaps

some of your favorite results in the field, and how they may relate to the database world?

Finite model theory emerged at the confluence of databases, complexity theory, and logic. The

realization that several people had independently was that classical mathematical logic, and

model theory in particular, deal with infinite structures. They deal with infinite structures

because arithmetic is infinite and real numbers are infinite; logicians almost looked down on

finite structures. Finite was almost boring; it was too trivial to study. We realized that there is

motivation coming from computer science to study finite structures, and a beautiful theory

emerged. Questions and issues come up that do not arise at all when you look at infinite

structures.

You can ask what the implications of finite model theory are for databases and complexity theory

and perhaps for other areas. The answer is that we don’t know yet. So far, in my opinion, the

implications of finite model theory for any other area are somewhat modest. We have a beautiful

mathematical theory and there are some textbooks. We hope that the beauty can eventually lead

to applications, just like in any other area of mathematics, but that can take a while.

From the finite model theory work, we learned about the limits of expressivity of first-order logic.

When SQL was developed, Ted Codd and other people thought that first-order logic was as

expressive as one would ever need. The work on finite model theory led us to understand the

limits on expressivity of first-order logic and therefore of SQL. This contributed to the eventual

inclusion of recursion in SQL, because we now had formal proof that recursion does add

expressive power. This is probably the most measurable impact of finite model theory on

databases.

There was some hope that finite model theory work on random models might tell us something

about average query processing behavior. I don’t think that has been borne out. People were

hoping that finite model theory would lead to significant progress in complexity theory; that so

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 59

far has not been borne out. There is some recent work that uses finite model theory to give us

new techniques in query optimization, and that might become significant.

What are the hot topics in computational logic today?

I think that one of the major successes in computational logic has been the applications of logic to

theoretical formal methods. (I just discovered that [the Department of Computer Science here at

UIUC] has a very large group in formal methods.) The issue of how to design better systems has

been one of the challenges of computer science for the last 50 years. Just in the last decade,

formal methods have been coming to the fore as a major body of techniques to do better systems

design, programming, debugging, and other tasks related to creating more reliable computer

systems. Formal methods have had major success in industry.

I would love to see more of my database work having impact on database practice, but most of

my work has been theoretical, without technology transfer. I think that some of my theoretical

verification work will have an impact on industrial practice. That is where I spend most of my

time: not in database research, but in trying to transfer ideas from computational logic to

industrial practice. I think it is a very exciting area nowadays.

You served as department chair at Rice for many years.

Too many!

Nowadays, many departments are working hard to move up in the US News & World Report

rankings---so much so that a department has to continually improve itself just to maintain its

current position. Finite model theory tells us that this cannot go on forever. So where will it all

end?

The goal of improving a department’s ranking is not a realistic goal. You can say that you want

to have more graduate students; that is something you can measure: how many graduate students

do you admit per year? You can look at the average GRE score of the students, and say that you

would like to have better graduate students. You can say that you would like to see your

department getting more funding. There are all kinds of things you can measure and you can

control, but you cannot control the ranking that US News will generate with their complex

formulas. Since everybody is trying to improve, it would be nice if you could squeeze more

departments into the top ten. But since only ten departments can be in the top ten, I think it is not

a useful goal for departments to have. I would advise departments to focus on measurable goals

and attainable goals. I never felt that the goal of ranking improvement was useful or attainable.

You can only improve your graduate student population so far, and you can only increase your

funding so much. If everyone else is also trying to compete for the same pool of excellent

graduate students and to compete for the same pool of research dollars, how is it all going to

end?

I will tell you where it is going. Everything is going down, unfortunately. There is a biblical

story that says that there were seven fat cows, and there were seven lean cows. This meant that

there were seven good years, and they were followed by seven bad years. Right now, I look at

the global situation and see that we are in for a tough period. Now our job is to survive in this

tough period and do the best we can.

60 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Well, what the biblical story tells us is that during the fat years, plan well for the lean years. That

was the wisdom of Joseph. I don’t think we did it. We enjoyed the good years and we thought

they would last forever. And they didn’t last forever.

What should we have done that we didn’t do? Go to Congress and talk up the field?

We have not communicated effectively the contributions of our field. The public as a whole

knows very little about it. When you open the newspaper, you find stories almost once a month

about black holes. Somehow, the stories excite people about black holes. When you think about

it, it is utterly bizarre; why would be people be so interested in black holes in the center of the

galaxy? But people are interested in black holes. The authors made the topic interesting. We

computer scientists have not told our stories well to make them interesting to the public. Maybe

our topics are more difficult, more abstract; it is hard to get people excited about theoretical

algorithms. But still, how many books do you know that tell exciting stories of computer science

to the public? Compare that to physics, even to string theory: there are books for the public about

string theory!

There are books about computer science for the public, but they often concentrate on things like

startups and successful companies in computer science.

So the public does not have an appreciation for computer science. Now, how does public

appreciation translate into Congressional support and funding? That is not so obvious, but when

you go to Congress it does help to have background appreciation for what your discipline has

done. Computer science has not built that background appreciation; we have hunkered in our

own little corner. We have done great research and we built amazing infrastructure, but if you

ask the public what they know about computer science, they will list the Internet, and very little

other than that. They know very little about research challenges in computer science.

So does that mean we’ll be seeing stories in the New York Times about finite model theory soon?

It is an art to tell the story in a way that people find interesting. I heard David Harel give a

wonderful talk to the public about what computers cannot do. And he is one of the few people

that have been able to write very cogently about theoretical computer science, about

computability, about complexity theory. Now, of course, he doesn’t talk about the complexity of

Ehrenfeucht games. When people write about quantum theory for the public, they don’t present

all the gory details of Schroedinger’s equations. We need to know how to tell our story. We

have not developed this set of skills. I think it is more difficult for us than for other disciplines,

because there is something about the natural world that people inherently find more interesting

than abstract and artificial worlds such as ours.

People are starting to think about how to tell our story. We rarely publish in Science and Nature.

Should we try to publish there? Is it a good idea? How do we do it? I am hearing a conversation

that I haven’t heard until very recently, partly driven by the current crisis.

What words of advice do you have for database groups in academia who would like to improve

their group’s standing?

We now have interesting tools to evaluate the success of work in the long term. Things like

Citeseer and Google Scholar suddenly give us a view that we could not have had before. One

thing that we discovered from these tools is that we are actually very poor in predicting the long

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 61

term impact of work. There is very little correlation, for example, between the best paper awards

that we give and the test-of-time awards that we give. Sometimes, miraculously, we have the

same paper win the best paper and the test-of-time awards. But that is the exception rather than

the rule. So I think people should focus on just doing the best work they can.

What you just said implies that the low acceptance rates at conferences now are actually a

problem, because we may be pruning out those papers that would win the ten-year paper award.

I think the low acceptance rate is a terrible problem. I think that the idea that we are raising the

quality is nonsense. I think that actually the quality goes down. I think we are very good at

selecting about one third to one fourth of the papers; we do a pretty good job there. As we

become more selective, the program committee gets larger, the whole discussion gets more

balkanized, and the whole process gets more random. Nobody gets a global view. The program

committee used to look at the whole set of papers and there was some consensus; people would

argue only about the marginal papers. Now the whole enterprise is so large that it is effectively

broken into several subcommittees, and I have no confidence that we are really selecting the best

papers. I have heard other people say that we are encountering the problem that we deal with in

our own research: scalability. Conferences are not scalable. They work nicely with up to roughly

300 submissions and a certain size of program committee. When you try to scale it up, very good

papers get lost. It becomes more political. I think we are being held back by our own success.

What would you propose as a remedy?

We are very unique among all the sciences in how we go about publication. We have these

selective conferences. (People have stopped calling them “refereed conferences.” They are not

really refereed. You don’t get good referee reports.) Our conferences worked well in the world

we used to inhabit. We assume that because they worked, they are scalable; but there are reasons

to doubt the scalability of this model.

I don’t have a good solution to this problem. We don’t even have a good forum in which to

discuss the problem. It’s not just a problem for one part of computer science, it is a problem for

all of computer science. How can computer science go about changing its publication culture?

Are there areas that move just as fast as we do, and have journal papers and conferences, but

conferences are not the primary vehicle? I have questions about the basic model of scholarly

publications. And I find it fascinating that it is difficult to have a conversation about this on a big

scale, and make changes on a big scale. We are very conservative. It is interesting that computer

science has been one of the slowest disciplines to move to open access publications. Other

disciplines are way ahead of us in using online publications.

So you must not be thinking of ACM SIGMOD’s DiSC and Anthology?

Those are online repositories of printed publications. When you go to the SIGMOD conference,

you get a monster proceedings volume. It is expensive to produce it. Do you need it?

We don’t do that anymore. Now you get a DVD, and you can buy the printed version if you want.

Right, actually, I find I cannot store DVDs. I am not organized enough to store DVDs. All I care

about…

62 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

I want it on the Internet. If I have it there, I don’t need a DVD. At least books are thick enough

that you can put them back on the shelf and you can find them later. I have yet to see anybody

organize DVDs in such a way that you can find a DVD when you want it. So I just want the

proceedings on line. I don’t know why conferences give people a DVD of the proceedings.

Maybe during the conference you can use it, and during a talk you can open the paper. But long

term, I don’t even keep the DVDs any more.

To back up just a moment, it sounds like you are talking about moving us more towards a journal

culture?

I’m raising the issues. I think we had a model that worked successfully for about 30 years, but

now we see cracks in the foundations. We ought to rethink how we do it. Right now, people try

to fix things incrementally by having a larger conference with a bigger program committee, a

two-level PC, a three-level PC. Maybe we need to rethink the way we do scholarly

communication in our discipline.

As the number of really good database researchers continues to grow exponentially in the US

(because we all graduate more than one PhD student in our lifetime), while the available funds

for research remain constant, what changes do you foresee in the way research is carried out?

Exponential growth is never sustainable---we know this. During the period of exponential

growth, we all get very excited, and we think this will go on forever. Nothing goes on forever.

Exponential growth always hits some kind of a ceiling. We have been hitting our ceiling.

So funding is going to be scarcer, and that will translate to fewer graduate students. If the

graduates cannot find good jobs, that will translate to fewer graduate students. Fields go through

periods of growth and then some fields decline after that. We are too young to have seen this ebb

and flow of things, so we think our field is always in growth. We had a period of very heady

years: we had the late 90s, which were a very atypical period. There was an Internet bubble

outside, but in some sense there was also a bubble inside our discipline. We still have to come to

grips with that. What is the realistic size of our discipline? That will depend on the interest by

students; that will depend on the funding available. The fact that we want to have more students

ultimately is not the only factor that will determine what is going to happen. There is a big world

out there, and we have to learn to roll with the punches.

Do you have any words of advice for fledgling or mid-career researchers or practitioners?

I find that the things ultimately that I have success with are the things that I find at the time just to

be an enjoyable piece of research. When I did research that I really enjoyed and that I thought

was beautiful, very often it became the piece of research that had long term impact. I have to

admit I had some beautiful papers that only I loved and nobody else cared about; generally we are

not very good at predicting the ultimate success of our own work. There is a famous story about

a party at the Cavendish Lab in Cambridge around 1900, where the physicists toasted, “To the

electron: may it be of no use ever!” Even technical people, scientists, are not good at predicting

the ultimate impact of their own work. So do the work that you think has lasting power; some

will last, and some will not, but at least you will have fun in the process.

Among all your past research, what is your favorite piece of work?

Paul Erdos, the great discrete mathematician, had a concept of God’s Book of Proofs. He said

that mathematicians produce many proofs, but once in a while there is a proof so beautiful that

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 63

God says, “Ah, this one I didn’t see coming. This one is so beautiful that I am going to put it in

my own book.” Long term, the things that I appreciate are the things that are the most beautiful,

the things that have the most aesthetic value---sometimes these are the things that also have the

most long term impact, but not necessarily. I have a few proofs that I would consider submitting

to God for his book of proofs.

My work in verification was about translating from linear temporal logic to automata; it

established a new connection, and I like that work very much. The thing that drove me in the

beginning was the aesthetics of it. There are some results in finite model theory that have not had

as much impact, but I think they are very elegant aesthetically. I recently put on my web page

two slogans. One says, “Theorems Are Forever,” and the other says, “The proof, the whole

proof, and nothing but the proof.”

If you magically had enough time to do one additional thing at work that you are not doing now,

what would it be?

I would like to write a textbook on teaching logic in computer science.

Oh, that would be great!

There is a course I have been teaching for many years, about logic from a computer science

perspective. It is very algorithmic; I make a lot of effort to convey to students why logic is

important in computer science. I would love to have the time to write such a textbook.

When you say it is algorithmic, do you mean that you spend a lot of time on automated proof

theory?

For example, we talk about propositional logic, and we talk about satisfiability, both from a

complexity point of view and algorithmically. The course has a lot of programming, and for the

course project the students write a satisfiability solver. We talk about databases and first-order

logic as a query language. We spend quite a lot of time thinking about query evaluation. We

don’t do SQL, but the students understand the concept of formulas as queries. There is a deep

connection between logic and computer science. There are some textbooks that try to make this

connection, with a focus mostly on verification, but I think the connection between logic and

computer science is much deeper than that.

If you could change one thing about yourself as a computer science researcher, what would it be?

I would be better organized. I am not a very organized person. My office continually looks like a

hurricane just passed through it. My time management skills are not very good. I would love to

be better organized.

But a hurricane did just pass through your office, didn’t it?

Both Rita and Katrina went a little north of us.

Thank you very much for talking with me today.

It has been a pleasure.

64 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Query Reformulation with Constraints∗

Alin Deutsch
University of California at San Diego

deutsch@cs.ucsd.edu

Lucian Popa
IBM Almaden Research Center

lucian@almaden.ibm.com

Val Tannen
University of Pennsylvania

val@cis.upenn.edu

1 Introduction

Let Σ1,Σ2 be two schemas, which may overlap,C be a set of
constraints on the joint schemaΣ1 ∪Σ2, andq1 be aΣ1-query.
An (equivalent) reformulation of q1 in the presence ofC is
a Σ2-query,q2, such thatq2 gives the same answers asq1 on
anyΣ1∪Σ2-database instance that satisfiesC. In general, there
may exist multiple such reformulations and choosing among
them may require, for example, a cost model.

In 1999 we published an algorithm, called Chase and Back-
chase (C&B), for enumerating the reformulations of a query
under constraints [11]. Our main motivation was query opti-
mization, in whichΣ1’s role is played by thelogical schema
andΣ2’s role by thephysical schema. We found that the as-
sertions used for integrity constraints (a.k.a. dependencies), by
relating the elements of the logical and physical schemas con-
stitute a flexible tool for modeling ideas such as “semantic”
optimization [4], and the use of cached data or materialized
views [33, 3].

The 1999 paper did not limit itself to the standard relational
model and instead, following [30] and more distantly [6, 23],
covered complex values and OO classes with extents. A com-
prehensive approach to query optimization for this model, in-
cluding join (usual and dependent) reordering, appeared in[28],
see also[29].

Query reformulation is also essential for data publishing [32,
12] whereΣ1 is the public schema andΣ2 the proprietary (stor-
age) schema. It is equally essential in schema evolution where
Σ1 respectivelyΣ2 is the old, respectively new schema.

Since views can be modeled as a pair of inclusion con-
straints, the C&B algorithm provided a new technique for rewrit-
ing with views [25] and hence was also applicable to informa-
tion integration. In fact, we had already shown in [11] that
C&B will find all reformulations of conjunctive queries using
conjunctive views, if such reformulations exists. However, we
should emphasize that C&B findsequivalentreformulations
while in information integration, when equivalent reformula-
tions may not exist, one is also very much interested in refor-
mulations that produce some (as many as possible) of the an-
swer tuples [26, 1, 21, 7].

As its name suggest, C&B is using thechase, a technique
developed 25+ years ago for the purposes of deciding logi-

∗Database Principles Column. Column editor: Leonid Libkin, Depart-
ment of Computer Science, University of Toronto, Toronto, Ontario M5S 3H5,
Canada. E-mail: libkin@cs.toronto.edu.

cal consequence for most types of integrity constraints used
in databases [27, 5]. Many papers have used the chase since
then1 . It seemed surprising that there would still exist funda-
mental properties of the chase left undiscovered. Nonetheless,
we thought that the C&B algorithm provided such a property.
This was formally verified in [13] where we proved that with
constraints to which the chase applies, whenever the chase ter-
minated, C&B would find all minimal reformulations of con-
junctive (select-project-join) queries.

This completeness property holds also for the complex val-
ues and OO model, using a generalization of the chase devel-
oped in [30]. Moreover, the C&B algorithm was used also
for the reformulation of XML queries, via a compilation from
XML to relational queries and constraints [14, 12, 10]. These
early successes encourage us to think that C&B could become a
versatile tool for query processing. This survey will attempt to
provide an introduction to the why, when, and especially how,
of C&B.

2 What is C&B?

From the beginning it was observed that the chase can also be
used to decide containment (hence equivalence) of conjunctive
queries in the presence of constraints. Indeed, if the chaseof
q1 with C terminates producing a queryqc thenq1 ⊆C q2 iff
qc ⊆ q2 and the latter can be checked by finding a containment
mapping fromq2 to qc [9, 2]. (Here,q1 ⊆C q2 means that
whenq1 andq2 are applied to any instance that satisfiesC the
answers ofq1 are contained in those ofq2. Similarly for≡C .)

In the reformulation problem, however, we are only given
C andq1 and we must decide whether there exists aq2 such
thatq1 ≡C q2. Sinceq2 is among infinitely many queries of the
same type asq1 deciding this isn’t obvious. Moreover, in prac-
tice we want to actually compute aq2 when it exists, in fact we
probably want to enumerate theq2’s that provide solutions and
choose among them based on cost criteria. But it’s easy to see
that queries can be syntactically “padded” with redundant joins
while conserving equivalence, ad infinitum. We are therefore
led to searching for solutions that satisfy some syntactically de-
terminedminimalitycondition. (See the definition of minimal-
ity under constraints in section 4.) As a consequence, we shall

1In this survey we assume familiarity with conjunctive queries, homomor-
phisms and the chase procedure which are all covered extensively in [2]. To
keep the paper self-contained we review these definitions inthe appendix.

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 65

��ΣΣΣΣ1�

��ΣΣΣΣ
�
∪∪∪∪ΣΣΣΣ

�
�

��
�
��

�
	

�
��

���������	
�
	� �������
������������
����ΣΣΣΣ2

���
���������� �������

��
���������

������������������

���������

Figure 1: Chase and Backchase.

solve both the reformulation problem and a generalization of
the query minimization problem [9, 2].

The C&B algorithm applies to the case whenq1 is a con-
junctive queryand when the constraints inC are either atuple-
generating dependency (tgd)of the form

∀x(φ(x) → ∃yψ(x,y))

or anequality-generating dependency (egd)of the form

∀x(φ(x) → (x1 = x2))

(see [5]). Here,φ(x) andψ(x,y) are conjunctions of atomic
formulas overΣ1 ∪ Σ2, all of the variables inx must appear in
φ(x), andx1, x2 must be among the variables inx.

These two classes (tgds and egds) together comprise the
(embedded) implicational dependencies [16], which seem to
include essentially all of the naturally-occurring constraints on
relational databases. Furthermore, tgds, which were originally
meant as a generalization of integrity constraints such as join
and inclusion dependencies turn out to be ideally suited forde-
scribing schema mappings in data exchange [18] and data inte-
gration [24], as well as for capturing physical structures typi-
cally used in query optimization (views, indexes, join indexes,
gmaps, etc.) [11]. As a whole, the class of embedded implica-
tional dependencies is remarkably well-suited for representing
most intra- and inter-schema relationships that are of impor-
tance in practice.

C&B proceeds in two phases. In thechase phaseit usesC
to chaseq1 until (and if) no more chase steps are possible. We
call the resulting queryU , auniversal plan, see Figure 1

Now it’s time to recall thatq1 is Σ1-query, that we are look-
ing for a Σ2-query as reformulation, and that the constraints
in C are on the joint schemaΣ1 ∪ Σ2. The universal plan,U ,
resulting from the chase ofq1 with C will (in general) be a
Σ1 ∪ Σ2-query. We can think of the universal plan as incorpo-
ratingall possible alternative ways to answerq1 in the presence
of the constraintsC. This intuition is fully justified by the fol-
lowing [13]:

Theorem 1 If qm is a minimal conjunctiveΣ1∪Σ2-query equiv-
alent toq1 underC, i.e.,q1 ≡C qm, thenqm is (isomorphic to)
a subqueryof the universal planU .

It is now possible to effectively enumerate all minimal re-
formulations. Indeed, we need only search the finite space of

subqueries ofU . This is done in thebackchase phase, so
called because we check for equivalence withq1 by chasing
subqueries ofU with C. These chase sequences go “back-
wards”, toward theU we already have. For each such candi-
date reformulation we can stop (equivalence holds) whenever
we have a containment mapping fromU into an intermedi-
ate chase result or (no equivalence) when the chase terminates
without such a containment mapping. In fact, as we shall see
(Section 4), it is enough to check the existence of a containment
mapping from the original queryq1 into any intermediate result
of chasing the candidate subquery ofU .

We see that in both the chase and the backchase phase the
algorithm (and Theorem 1) needs the chase sequences to termi-
nate. In [5] it was shown that this is always the case if the tgds
aretotal or full [2] (they cannot have∃) while the egds can be
arbitrary. While full tgds cannot in general model the physical
structures or the integration/exchange mappings we have be-
come interested in, Deutsch and Popa have recently discovered
a significantly larger and remarkably useful class of tgds that
can. Chase sequences with such sets of dependencies, called
weakly acyclicin [17, 18] andstratified-witnessin [13, 14] are
guaranteed to terminate. The set of constraints from Example 2
in Section 3 is weakly acyclic.

Finally, note that the subqueries ofU are in generalΣ1∪Σ2-
queries. Some of them may in fact beΣ1-queries (q1 itself
is one!) and some may beΣ2-queries. The theorem above
guarantees that ifΣ2-reformulations exist, then we shall find
all minimal ones among the subqueries ofU.

3 Schemas and Constraints, Queries and
Rewritings

In this article we focus our presentation on a scenario where
query reformulation is applied to a distributed heterogeneous
environment, with multiple schemas that are interconnected by
complex relationships. The problem is that of finding alterna-
tive (and equivalent) reformulations of a query that is initially
formulated in terms of one of the schemas. Our running ex-
ample will show the challenges (and opportunities) for query
reformulation in such an environment. The example will depict
constraints that fall into one of four categories:

1. (Traditional) single-database constraints(e.g., key and
foreign key constraints.)

2. Relationships (mappings) between schemas.These
constraints are a consequence of how these repositories
have been created and subsequently maintained.

3. Domain knowledge constraints.These constraints are
assertions that are true about a specific situation, for ex-
ample, the fact that a customer id has a unique nation
code across repositories.

4. Constraints capturing materialized views.These con-
straints express the fact that data is redundantly stored in
both base tables and materialized views.

66 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

supp_id
saddr
snation
history

MasterSupp
Site 3

cust_id
cnation
caddr

MasterCust

part
supp_id
orderkey
cust_id
qty

WebOrder
Site1

supp_id
saddr
snation
directory

SuppCatalog

Site2

cust_id
cnation

Cust

supp_id
orderkey
cust_id

Supp2Cust
(f�)

(f�)

(f�)

(m�)

RSC database with parts
ordered on-line

RSC master data repository containing
RSC suppliers and RSC customers and
their relationship (based on orders)

An external on-line
catalog of suppliers

Figure 2: Retail Store Chain Example

Example 1 (Running) Consider a large retail store chain (call
it RSC) maintaining and accessing several repositories with
data about its suppliers, customers and parts.

One of the repositories (located at Site 2) is an external,
read-only, on-line directory of suppliers. The other repositories
are internal but distributed across Sites 1 and 3, with differ-
ent structure, and with different although possibly overlapping
data. The repository at Site 1 is a database containing parts
ordered on-line and some of the associated customer and sup-
plier information. Additional repositories like this may exist
(not shown here for simplicity). The repository at Site 3 is a
central repository intended to contain all the informationabout
RSC suppliers, customers and the orders that relate them. Fig-
ure 2 illustrates the schemas of these repositories; it alsodepicts
some of the intra- and inter-schema constraints that hold.

Example 2 (Constraints) We illustrate next some of the con-
straints associated with the schemas in the running example.
These constraints fall under the first three categories mentioned
earlier. We shall illustrate constraints in the fourth category, de-
scribing views, later in Section 5.
1. (Traditional) single-database constraints.The following
egds can be used to express thatcust id plays the role of a
key in the each of the tablesCust andMasterCust and sim-
ilarly, supp id is a key inMasterSupp. (As a notational con-
venience, we will drop the the universal quantifiers in frontof
a dependency, and implicitly assume such quantification.)

k1 : Cust(c, cn) ∧ Cust(c, cn′) → cn = cn′

k2 : MasterCust(c, cn, ca) ∧ MasterCust(c, cn′, ca′)
→ (cn = cn′) ∧ (ca = ca′)

k3 : MasterSupp(s, sa, sn, h) ∧ MasterSupp(s, sa′, sn′, h′)
→ (sa = sa′) ∧ (sn = sn′) ∧ (h = h′)

The following tgds describe formally the foreign key con-
straintsf1, f2, andf3 shown in Figure 2.

f1 : WebOrder(p, s, o, c, q) → ∃cn Cust(c, cn)
f2 : Supp2Cust(s, o, c) → ∃sa∃sn∃h MasterSupp(s, sa, sn, h)
f3 : Supp2Cust(s, o, c) → ∃cn∃ca MasterCust(c, cn, ca)

2. Relationships (mappings) between schemas.The mapping
m1 from Sites 1 and 2 to Site 3 reflects the fact that the master
data repository will be refreshed with data from Site 1 and Site
2, for instance due to a periodic process that takes customerand
supplier info from Site 1, joins with Site 2 to get extra supplier
information (e.g.,saddr andsnation) and updates appropriate
tables of Site 3. Such a mapping can be specified using schema
mapping tools (e.g., Clio [31]). In Figure 2, the mapping is
shown informally via the dotted arrows grouped underm1. The
link betweensupp id in Site 1 andsupp id in Site 2 reflects the
join. Formally, the meaning of mappingm1 is expressed by the
following tgd (universal quantifiers are again dropped):

m1 : WebOrder(p, s, o, c, q) ∧ Cust(c, cn)

∧ SuppCatalog(s, sa, sn, d)

→ ∃h∃ca (MasterSupp(s, sa, sn, h)

∧ Supp2Cust(s, o, c) ∧ MasterCust(c, cn, ca))

Another example of a mapping between schemas (not shown
in Figure 2 to avoid cluttering) is the following tgd, expressing
thatSuppCatalog is an “authority” for supplier information,
and every supplier inMasterSupp at Site 3 can be found in
SuppCatalog at Site 2. (The converse may not be true.)

m2 : MasterSupp(s, sa, sn, h) → ∃d SuppCatalog(s, sa, sn, d)

3. Domain knowledge constraints.The fact that a customer id
has a unique nation code (across all repositories) is expressed
by adding the following egd to the earlier key constraints:

e : Cust(c, cn) ∧ MasterCust(c, cn′

, ca) → cn = cn
′

Note thate is more general than a functional dependency, as it
states a property about tuples in different tables.

Example 3 (Reformulations) Consider the following query (ex-
pressed in conjunctive query notation [2]):

q(p, c, sa, sn) : − WebOrder(p, s, o, c, q),

SuppCatalog(s, sa, sn, d)

The queryq retrieves all parts that were ordered at Site 1, with
the addresses and nations of suppliers and with the customer
ids. The query needs to access Site 1 and Site 2, to be executed
in its current form.

Given the overall configuration,q is equivalent to the fol-
lowing (non-obvious) rewriting:

q
′(p, c, sa, sn) : − WebOrder (p, s, o, c, q),

MasterSupp(s, sa, sn, h)

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 67

The queryq′ accesses Site 1 and Site 3 (all within RSC) and
avoids the external catalog (which could be slower, less avail-
able, may require subscription, etc). Thus,q′ is potentially
more efficient with respect to execution time or cost.

If for Example 1 we have thatΣ1 contains the union of the
schemas at all sites andΣ1 = Σ2, then Example 3 shows that
we need to consider at least two candidates for evaluation:q′

andq itself. As the configuration of the system grows larger
(e.g., additional databases, cached queries, materialized views,
etc.), the number of equivalent rewritings increases as well (as
we shall also see in a later example). This increases the poten-
tial for improvement in performance but at the same time poses
the challenge of finding such reformulations in a systematicand
complete way.

Section 4 describes how the C&B algorithm can be used
for systematic enumeration of available reformulations. This
enumeration is based on constraints such as the ones described
above. In Section 5 we modify the running example by adding
materialized views (one in the example). We then describe how
the same C&B algorithm is able to find extra, view-based refor-
mulations, by using additional constraints describing theviews.

4 The C&B Algorithm

Given a conjunctive queryq and a setC of constraints, the C&B
algorithm finds reformulationsq′ of q underC (i.e. q′ ≡C q)
which areminimal underC (in shortC-minimal). The notion
of minimality of a conjunctive query in the absence of con-
straints is well-known [9, 2]:q is minimal if dropping any of
its atoms compromises equivalence toq. For minimality under
constraints, we require a subtle modification:

Definition 1 (Minimality under constraints) A conjunctive qu-
ery q is C-minimal if there are no queriess1, s2 wheres1 is
obtained fromq by replacing zero or more variables with other
variables ofq, ands2 by dropping at least one atom froms1
such thats2 ands1 remain equivalent toq: q ≡C s1 ≡C s2.

Intuitively, the variable replacement reflects the equalities be-
tween replaced and replacing variables as implied by the equality-
generating dependencies (egds) inC.

Example 4

qnm(cn, cn
′) : − Cust(c, cn), MasterCust(c, cn, ca),

Cust(c, cn′), MasterCust(c, cn′

, ca
′)

s1(cn, cn) : − Cust(c, cn), MasterCust(c, cn, ca),

M asterCust(c, cn, ca
′)

s2(cn, cn) : − Cust(c, cn), MasterCust(c, cn, ca)

The queryqnm above yields pairs of nations of customers listed
with the same customer id. The query is minimal in the ab-
sence of constraints: we cannot drop any atom, as proven by
the absence of containment mappings. However, for constraint
e from Example 2,qnm is not {e}-minimal, as witnessed by

queriess1 ands2 above. Intuitively, replacingcn′ with cn pre-
serves{e}-equivalence ofs1 to qnm, sincecn = cn′ is im-
plied by e (the duplicate atomCust(c,cn)is removed). It is
easy to check that the removal of the secondMasterCustatom
preserves equivalence tos1 even in the absence of constraints.

As illustrated in Figure 1, the C&B algorithm proceeds in
two phases. In thechase phase, the original queryq is chased
with the constraints inC, yielding the queryU called auni-
versal plan. Thebackchase phaseenumerates allC-minimal
subqueriessq of U which are formulated againstΣ2 and areC-
equivalent toq (sq ≡C q). (A subqueryis obtained by dropping
one or more atoms in the original query with the condition that
the head variables continue to appear in the new query body.)

Example 5 (Chase)Recall the queryq from Example 3:

q(p, c, sa, sn) : − WebOrder(p, s, o, c, q),

SuppCatalog(s, sa, sn, d)

A chase step ofq with f1 yields

q1(p, c, sa, sn) : − WebOrder(p, s, o, c, q), Cust(c, cn),

SuppCatalog(s, sa, sn, d)

which chases withm1 to

U(p, c, sa, sn) : − WebOrder(p, s, o, c, q), Cust(c, cn),

SuppCatalog(s, sa, sn, d),

MasterSupp(s, sa, sn, h),

Supp2Cust(s, o, c),

MasterCust(c, cn, ca)

which is the universal plan since no further chase step applies.

For each subquerysq of U , to checksq ≡C q it suffices to
checksq ⊆C q. Indeed, by constructionU is contained insq,
U ⊆ sq, andU ≡C q because the chase preserves equivalence
under constraints [2]. Checkingsq ⊆C q reduces according
to classical results to finding a containment mapping fromq
into the result of chasingsq with C [2]. Finding a containment
mapping into anintermediateresult of chasing also suffices to
show containment.
Pruning Property. An immediate yet naive backchase imple-
mentation would exhaustively enumerate all subqueries. We
can however avoid this by using the following key observation
(called thepruning property) which follows from the defini-
tion of C-minimality: given a subquerysq of U with sq ≡C q,
every subquerysq′ of U corresponding to a superset ofsq’s
atoms (we say thatsq′ is a superqueryof sq) cannot be both
C-equivalent toq andC-minimal.

The pruning property enables an efficient backchase imple-
mentation which enumerates subqueries ofU bottom-up, start-
ing with all subqueries generated by one atom ofU , continuing
with those generated by all pairs of atoms, then all triplets, and
so on. As soon as a subquery isC-equivalent toq, it is output
and all its superqueries are pruned from subsequent considera-
tion. This enumeration discipline avoids even generating non-
minimal reformulations. We will discuss alternate backchase
implementations shortly.

68 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

Example 6 (Backchase)The rewritingq′ of q from Example 3
corresponds to the subquery ofU generated by theWebOrder
andMasterSuppatoms. Sinceq′ has no smaller subquery, it is
one of the starting points in the bottom-up backchase. To check
q′ ⊆C q, we chaseq′ with C. A first chase step with constraint
m2 yields

q
′

1(p, c, sa, sn) : − WebOrder(p, s, o, c, q),

MasterSupp(s, sa, sn, h),

SuppCatalog(s, sa, sn, d)

Although we could continue to chase withf1 and thenm1,
it is not necessary. We can already find a containment map-
ping fromq to q′

1
(the identity mapping), thus proving thatq′ is

equivalent underC to q. It can be checked thatq′ isC-minimal.
In fact, it is a property of the C&B algorithm that it outputs only
C-minimal reformulations.

The backchase will enumerate additional subqueries and
will possibly output other minimal reformulations. For instance,
the subquery ofU generated by itsWebOrderandSuppCatalog
atoms isq itself.

In the example, the retrieval of rewritingq′ as a subquery of
the universal plan is not merely a happy coincidence: by The-
orem 1, we have that whenever the chase is guaranteed to ter-
minate, all minimal reformulations of a query will be found by
the C&B algorithm:

Theorem 2 (Sound and complete C&B [11, 13])Let q be a
conjunctive query andC a set of tgds and egds such that the
chase of any query withC terminates. Then the C&B algorithm
outputs precisely allC-minimal reformulations ofq (up to iso-
morphism).

The C&B algorithm relies on the termination of the chase.
This property is in general undecidable for conjunctive queries
and constraints given by tgds and egds. However, the notion of
weak acyclicityof a set of constraints, is sufficient to guarantee
that any chase sequence terminates. This is the least restrictive
sufficient termination condition we are aware of, holding inall
scenarios we encountered in practice (including our example).

Definition 2 (Weakly acyclic set of constraints)LetC be a set
of tgds over a fixed schema. Construct a directed graph, called
thedependency graph, as follows: (1) there is a node for every
pair (R,A) with R a relation symbol of the schema andA an
attribute ofR; call such pair(R,A) a position; (2) add edges
as follows: for every tgdφ(x) → ∃yψ(x,y) in C and for every
x in x thatoccurs in ψ:

• For every occurrence ofx in φ in position(R,Ai):

(a) for every occurrence ofx in ψ in position(S,Bj), add
an edge(R,Ai) → (S,Bj).

(b) in addition, for every existentially quantified variable
y and for every occurrence ofy in ψ in position(T,Ck),
add aspecial edge(R,Ai)

∗
→ (T,Ck).

Note that there may be two edges in the same direction between
two nodes, if exactly one of the two edges is special. ThenC
is weakly acyclicif the dependency graph has no cycle going
through a special edge. We say that a set of tgds and egds is
weakly acyclic if the set of all its tgds is weakly acyclic.

Theorem 3 ([17, 13]) If C is a weakly acyclic set of tgds and
egds, then the chase withC of any conjunctive queryq termi-
nates.

By Theorems 3 and 2, the C&B algorithm is sound and
complete for weakly acyclic sets of constraints:

Corollary 1 If C is a weakly acyclic set of tgds and egds, then
the C&B algorithm outputs precisely theC-minimal reformula-
tions of its input query.

The complexity of the chase. For fixed schemas and setC
of constraints, ifC is weakly acyclic then any chase sequence
terminates in polynomial time in the size of the query being
chased (as shown in [17, 13]). The fixed size assumption about
schemas and constraints is often justified in practice, where
one is usually interested in repeatedly reformulating incom-
ing queries for the same setting with schemas and constraints.
Nonetheless, the degree of the polynomial depends on the size
of the dependencies and care is needed to implement the chase
efficiently. Successive implementations have shown that inprac-
tical situations the chase is eminently usable [29, 28, 10, 12].
The complexity of reformulation. Assume that the chase of
any query withC terminates in polynomial time. Then checking
whether a conjunctive queryq admits a reformulation is NP-
complete in the size ofq. Checking whether a given queryr
is aC-minimal reformulation ofq is NP-complete in the sizes
of q andr. Note that for arbitrary sets of dependencies (for
which the chase may not even terminate), the above problems
are undecidable.
Alternative strategies for backchase.The complexity of the
backchase is an even more delicate issue since even though the
size of the universal plan is (with weakly acyclic dependen-
cies) polynomial in that of the original query, in the worst case
the backchase enumerates exponentially many minimal solu-
tions [29]. Above, we presented the backchase as a bottom-up
procedure that generates subqueries of the universal planU by
starting from the smallest subqueries and extending them with
additional atoms fromU . The algorithm stops extending a sub-
querysq as soon assq becomesequivalentto the original query
q. Suchsq is guaranteed to be aC-minimal reformulation ofq.

Symmetrically, another way of implementing the backchase
minimization is atop-down, decremental, procedure that goes
from the universal plan down to its subqueries by eliminating
one relational atom at a time in a systematic way, starting atev-
ery step a new branch per available atom. The algorithm stops
descending on a branch whenever anon-equivalentsubquery is
found. The last equivalent query on that branch is aC-minimal
reformulation.

The top-down and the bottom-up algorithms are dual and
produce the exact same output. However, the bottom-up ap-

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 69

proach has a crucial advantage in that it can be mixed withcost-
based pruning(when cost information is available). The result-
ing procedure is as follows. When we find the first minimal re-
formulation, we estimate its cost (for example, based on tradi-
tional methods that include join reordering). This cost becomes
thebest costso far and it will be subsequently replaced by the
cost of every minimal reformulation that we may find later.
Once the best cost is in place, for every explored subquery, even
before checking for equivalence, we compute its cost. If the
cost is higher than the best cost so far, then we can prune the
subquerytogether with all of its superquerieswithout check-
ing equivalence. This pruning still guarantees that the least-
cost reformulation is found under the (typically true2) assump-
tion that queries become more expensive by adding extra atoms
(joins). The improvement in performance of the overall method
is then substantial, sometimes over an order of magnitude [28].
Bottom-up backchase minimization with cost-based pruningis
further extended in [28] to deal also with cases in which the
above assumption may be violated (for example, due to the
presence of indexes). Additional exploration strategies for sub-
queries of the universal plan are investigated in [29]. There it
was shown that in various practical situations, the C&B method
can bestratified, which means essentially, that the universal
plan can be decomposed into independent fragments (smaller
universal plans). For each fragment the backchase minimiza-
tion is applied in the usual way. The minimal reformulations
that result for each fragment can then be put together, by join-
ing, as minimal reformulations for the entire process. The net
effect is a significant reduction in the exponent of the search
space, and hence considerable improvement in the performance
of the method.

5 Adding Views

We show next that materialized views defined by conjunctive
queries can be captured using tgds, and hence the C&B algo-
rithm serves in particular as a complete algorithm which finds
all minimal rewritings of a conjunctive query using conjunctive
query views under integrity constraints. All we need to do is
add the constraints (tgds) capturing the views, and reformulate
the query against a schema containing the view names.

In detail, letV be a set of views defined by conjunctive
queries againstΣ1. The views define a relationship between
schemasΣ1 and the schemaV , in which each view nameV de-
notes the table with the materialized result of the homonymous
view. We express this relationship equivalently using the set of
dependenciesCV constructed as follows. For each viewV ∈ V ,
assume w.l.o.g. that it is defined by the query

V (x) : − body(x,y)

wherebody is a conjunctive query body andx,y are its vari-
ables. Letd1

V , d
2

V be the dependencies (over schemaΣ1 ∪ V):

d1

V : body(x,y) → V (x) d2

V : V (x) → ∃y body(x,y)

2And in fact, the very idea of minimization is based on such assumption.

which state the inclusions between the result of the query defin-
ing the view, and the materialized tableV . Set

CV := {d1

V | V ∈ V} ∪ {d2

V | V ∈ V}.

We consider two flavors of rewriting using views: rewrit-
ings using exclusively the views (also calledtotal rewritings
in [25]), and rewritings using both the views and the base ta-
bles inΣ1 (calledpartial rewritings in [25]). Thus, given con-
junctiveΣ1-queryq and set of constraintsC overΣ1, the prob-
lem of finding all total conjunctive query rewritings ofq re-
duces to finding all minimal reformulations ofq against schema
Σ2 := V under constraintsC ∪ CV . For partial rewritings, we
setΣ2 := Σ1 ∪ V . According to Theorem 2, both flavors are
completely solved by the C&B algorithm.

Example 7 Continuing our example, consider the following
query launched at Site 1, which retrieves all parts providedby
Japanese suppliers and ordered by US customers.

j2us(p) : − WebOrder(p, s, o, c, q), Cust(c, “US”),

SuppCatalog(s, sa, “Japan”, d)

In general, the query would need to access Sites 1 and 2. As-
sume however that the previously answered queryq from Ex-
ample 3 is cached at Site 1, in cache entrycacheq. Thenj2us
has a partial rewriting which reuses the pre-computed join of
WebOrder andSuppCatalog, performing only the remain-
ing join between the cache entry and the customer table, both
located at Site 1:

j2us′(p) : −cacheq(p, c, sa, “Japan”), Cust(c, “US”)

This is more efficient as it avoids network access to Site 2,
and saves the time to recompute the join ofWebOrder and
SuppCatalog.

The C&B algorithm discovers this rewriting when called
with Σ2 := Σ1 ∪ V andC ∪ CV , whereV contains the names
of all active cache entries,Σ1 is the union of the schemas at all
sites, andCV is constructed as described above. For instance,
entrycacheq can be seen as the materialized view

cacheq(p, c, sa, sn) : − WebOrder(p,s, o, c, q),

SuppCatalog(s, sa, sn, d)

andCV includes the constraints:

d
1

cacheq
: WebOrder(p, s, o, c, q) ∧ SuppCatalog(s, sa, sn, d)

→ cacheq(p, c, sa, sn)

d
2

cacheq
: cacheq(p, c, sa, sn) → ∃s∃o∃q∃d

WebOrder(p,s, o, c, q)

∧SuppCatalog(s, sa, sn, d)

Now j2us chases withm1, thend1

cacheq
, to

j2us1(p) : − WebOrder(p, s, o, c, q), Cust(c, “US”),

SuppCatalog(s, sa, “Japan”, d),

MasterSupp(s, sa, “Japan”, h),

Supp2Cust(s, o, c),

MasterCust(c, “US”, ca),

cacheq(p, c, sa, “Japan”)

70 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

This is the universal plan, and it contains the equivalent
(and minimal) rewritingj2us′ as the subquery given by the
second and last atoms. In fact, the universal plan includes even
more. The following two subqueries of the universal plan are
alsoC-minimal reformulations ofj2us:

j2us
′′(p) : − WebOrder(p, s, o, c, q), Cust(c, “US”),

MasterSupp(s, sa, “Japan”, h)

j2us
′′′(p) : − WebOrder(p, s, o, c, q),

MasterSupp(s, sa, “Japan”, h),

MasterCust(c, “US”, ca)

While the first of the two rewritings above is similar to the
earlier rewritingq′ (Example 3), the second of the two rewrit-
ings is slightly different and less obvious. Its equivalence to
the original query (which can be proven by chasing) depends
essentially on the existence of several of the constraints in the
system (specifically,m2, f1, and even the egde). The last two
reformulations do not include the view (cacheq) but they can
be equally good candidates for execution.

This example shows the versatility of the C&B method as a
rewriting tool that unifies several different concepts (e.g., views,
constraints, mappings) under one umbrella, that of rewriting
under constraints.

6 Other Considerations

Dictionaries. An interesting property of the query and de-
pendency languages used in [30, 11] is the use ofdictionary
structures. In conjunction with complex values, dictionaries
can be used (see [11]) to model OO classes with extents, pri-
mary and secondary indexes on either relations or class extents
and gmaps [33]. On one hand this allows one to express and
optimize arbitrary OQL queries [8]. On the other hand, the ex-
plicit presence of indexes allows an optimizer that uses C&Bto
automatically discover non-trivial execution plans that would
not be found by traditional optimizers (including the ones that
perform rewriting using materialized views [21]).
More expressive queries and constraints.For simplicity, we
have presented the C&B only for conjunctive queries and con-
straints given by tgds and egds. However, the soundness and
completeness of the C&B carries over to unions of conjunctive
queries with inequalities, and tgds and egds extended with dis-
junction and inequalities (using an appropriate generalization
of the chase) [10, 13, 14].
XML query reformulation. We were able to apply the C&B
method to XML query reformulation, by using a relational en-
coding of queries, views and constraints that are originally writ-
ten against a schema which models the XML tree. Relation-
ships between XML elements (such as parent-child and ancestor-
descendant) are captured by relational tables satisfying certain
constraints (e.g. each child has at most one parent, the descen-
dant table is transitive, etc.). We could show that for a sig-
nificant class of XML queries, the minimal reformulations are
found by running the C&B algorithm on the relational encod-
ing [10, 13, 14]. The encoding turned out to lead to queries and

universal plans of significantly larger size than encountered in
any real-life relational scenarios (as a typical data point, uni-
versal plans of 300 atoms were obtained by chasing queries of
20 atoms). Both the chase and the backchase implementation
were engineered to scale, and the feasibility of the method was
proven in a battery of experiments [10, 12].
Relationship to data integration and non-equivalent rewrit-
ings. The C&B algorithm looks for rewritings that are equiv-
alent (retrieve the same answers as the original query). Under
this semantics, it is more general than previously known algo-
rithms for rewriting using views, because it additionally takes
into account general constraints (tgds and egds). In many inte-
gration scenarios however, there is no equivalent rewriting and
one is content to approximate the original queryq by finding a
maximally-contained rewriting. Significant research has been
carried out on algorithms which find such rewritings for con-
junctive queries. Contained rewritings are unions of conjunc-
tive queries expressed exclusively in terms of the views and
contained inq [15, 21]. Maximally-contained rewritings are
contained rewritings which contain any other contained rewrit-
ing of q, thus being the best “under-approximation” ofq using
the views. The problem was generalized in [7] to replace views
with schema mapping constraints from the source schema to
the target schema, also allowing constraints on the target schema.
[22] generalizes the setting even further, allowing schemamap-
pings in both directions, and settling the problem by charting its
decidability boundaries and providing tight complexity bounds.

Although in its basic form the C&B algorithm returns only
equivalentrewritings, it turns out that a simplified version acts
as a dual to the algorithms for finding maximally-contained
rewritings [21], by providing an alternate approximation:the
minimally-containing rewriting. A containing rewriting ofq
is a conjunctive query against the views which containsq. A
minimally-containing rewriting is a containing rewritingwhich
is contained in any other containing rewriting ofq. It is thus
the best “over-approximation” ofq. The simplified algorithm
is the following:

1. Chaseq and obtain the universal planU .
2. Restrict the body ofU only to the vocabulary of views,

obtaining a queryM .
3. If M is safe (i.e., its head variables appear in the body),

outputM , otherwise output “no containing rewriting of
q exists”.

This simplification of C&B skips the backchase minimization
stage. The following result states that the algorithm is sound
and complete for finding the minimally-containing rewriting,
which is unique up to equivalence:

Theorem 4 Assume that the chase ofq terminates. Thenq ad-
mits a minimally-containing rewriting if and only if the simpli-
fied C&B algorithm outputs such a rewriting. Moreover, the
minimally-containing rewriting is unique up to equivalence.

Relationship to data exchangeThere are several interesting
parallels (and differences) between the C&B method and the
formalism for data exchange that was developed in [18, 19].

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 71

The data exchange problem is the problem of materializing an
instance of a target schema based on an instance of a source
schema, and based on a set of source-to-target constraints,rep-
resenting the mapping between the two schemas.

First of all, both methods make use of the chase in a fun-
damental way. The C&B method applies the chase to construct
the universal plan, while in data exchange, the chase is applied
on the source instance to construct auniversal solution. Philo-
sophically, the concepts of universal plan and universal solution
are somewhat similar and play equally important roles. The
universal plan defines the space of all minimal reformulations
while the universal solution is the “best” representative for the
space of all possible target instances (or, solutions).

Second, both methods use minimization: in C&B, to gen-
erate all the minimal reformulations, in data exchange, to com-
pute the smallest universal solution (thecore of the universal
solutions [19]). In C&B, minimization is performed under con-
straints and we look for multiple and non-isomorphic refor-
mulations that are minimal under constraints. In contrast,in
data exchange there is only one core of the universal solutions
(up to isomorphism). This core is defined independently of the
constraints and represents the minimal form of a universal so-
lution, under homomorphisms which preserve the values that
appear in the source instance. Finally, another (important) dif-
ference is the complexity of the minimization process in the
two cases. In data exchange, computing the core of the univer-
sal solutions has polynomial-time algorithms in several cases
of practical relevance [19, 20]. In the more general settingof
C&B, minimization is exponential (NP-hard even without con-
straints, when it becomes tableau minimization [9]).

7 Conclusion

Many classical database problems such as semantic optimiza-
tion (i.e. rewriting using semantic constraints), minimization,
rewriting using views, equivalent query reformulation in data
publishing and integration, are particular instances of query re-
formulation under constraints. While the general reformula-
tion problem is undecidable, the least restrictive known con-
ditions which are sufficient to guarantee decidability (namely
weak acyclicity of the constraint set) hold in numerous prac-
tical scenarios. Under these conditions, C&B is a sound and
complete algorithm, thus providing a uniform solution to the
above problems (with applicability to object-oriented andXML
settings). Our experiments show that, with careful engineering
of the chase and backchase phases, the C&B method is viable
in practice. An online demo of the C&B method can be found
athttp://cb.ucsd.edu.

References

[1] S. Abiteboul and O. M. Duschka. Complexity of Answer-
ing Queries Using Materialized Views. InPODS, pages
254–263, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. Sub-
rahmanian. Query Caching and Optimization in Dis-
tributed Mediator Systems. InSIGMOD, pages 137–148,
1996.

[4] C. Beeri and Y. Kornatzky. Algebraic Optimisation of
Object Oriented Query Languages.TCS, 116(1):59–94,
1993.

[5] C. Beeri and M. Y. Vardi. A Proof Procedure for Data
Dependencies.JACM, 31(4):718–741, 1984.

[6] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Prin-
ciples of Programming with Collection Types.TCS,
149(1):3–48, 1995.

[7] A. Calı̀, D. Calvanese, G. D. Giacomo, and M. Lenzerini.
Data Integration under Integrity Constraints. InCAiSE,
pages 262–279, 2002.

[8] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman,
D. Jordan, C. Russell, O. Schadow, T. Stanienda, and
F. Velez, editors.The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, 2000.

[9] A. K. Chandra and P. M. Merlin. Optimal Implementa-
tion of Conjunctive Queries in Relational Data Bases. In
STOC, pages 77–90, 1977.

[10] A. Deutsch.XML Query Reformulation Over Mixed and
Redundant Storage. PhD thesis, Dept. of Computer and
Information Sciences, University of Pennsylvania, 2002.

[11] A. Deutsch, L. Popa, and V. Tannen. Physical Data Inde-
pendence, Constraints and Optimization with Universal
Plans. InVLDB, pages 459–470, 1999.

[12] A. Deutsch and V. Tannen. MARS: A System for Publish-
ing XML from Mixed and Redundant Storage. InVLDB,
pages 201–212, 2003.

[13] A. Deutsch and V. Tannen. Reformulation of XML
Queries and Constraints. InICDT, pages 225–241, 2003.

[14] A. Deutsch and V. Tannen. XML Queries and Constraints,
Containment and Reformulation.TCS, 336(1):57–87,
2005.

[15] O. M. Duschka and M. R. Genesereth. Answering recur-
sive queries using views. InPODS, pages 109–116, 1997.

[16] R. Fagin. Horn Clauses and Database Dependencies.
JACM, 29(4):952–985, Oct. 1982.

[17] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. InICDT,
pages 207–224, 2003.

72 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

[18] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data Exchange: Semantics and Query Answering.TCS,
336(1):89–124, 2005.

[19] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange:
Getting to the Core.ACM TODS, 30(1):174–210, 2005.

[20] G. Gottlob. Computing Cores for Data Exchange: New
Algorithms and Practical Solutions. InPODS, 2005.

[21] A. Halevy. Answering Queries Using Views: A Survey.
VLDB Journal, pages 270–294, 2001.

[22] C. Koch. Query Rewriting with Symmetric Constraints.
In Proceedings of FoIKS (LNCS 2284), pages 130–147,
2002.

[23] K. Lellahi and V. Tannen. A calculus for collections and
aggregates. In E. Moggi and G. Rosolini, editors,LNCS
1290: Category Theory and Computer Science (Proceed-
ings of CTCS’97), pages 261–280, 1997.

[24] M. Lenzerini. Data Integration: A Theoretical Perspec-
tive. In PODS, pages 233–246, 2002.

[25] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering Queries Using Views. InPODS, pages 95–
104, 1995.

[26] A. Y. Levy, A. Rajamaran, and J. J. Ordille. Querying Het-
erogeneous Information Sources Using Source Descrip-
tions. InVLDB, pages 251–262, 1996.

[27] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing Im-
plications of Data Dependencies.ACM TODS, 4(4):455–
469, 1979.

[28] L. Popa. Object/Relational Query Optimization with
Chase and Backchase. PhD thesis, Dept. of Computer and
Information Sciences, University of Pennsylvania, 2000.

[29] L. Popa, A. Deutsch, A. Sahuguet, and V. Tannen. A
Chase Too Far? InSIGMOD, pages 273–284, 2000.

[30] L. Popa and V. Tannen. An Equational Chase for Path-
Conjunctive Queries, Constraints, and Views. InICDT,
pages 39–57, 1999.

[31] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez,
and R. Fagin. Translating Web Data. InVLDB, pages
598–609, 2002.

[32] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and
J. Funderburk. Querying XML Views of Relational Data.
In VLDB, pages 261–270, 2001.

[33] O. Tsatalos, M. Solomon, and Y. Ioannidis. The GMAP:
A Versatile Tool for Physical Data Independence.VLDB
Journal, 5(2):101–118, 1996.

A Some Definitions

We review the standard definitions of conjunctive queries, ho-
momorphisms, containment mappings and chase.

A conjunctive queryq over a schemaΣ is an expression
of the formq(x) : − φ(x,y) whereφ(x,y) is a conjunction
of atomic formulas (i.e., relational atoms, also calledsubgoals)
overΣ. We follow the usual notation and separate the atoms
in a query by commas. We callq(x) the headandφ(x,y)
thebody. We use a notation such asx for a vector of variables
x1, . . . , xk (not necessarily distinct). Every variable in the head
must appear in the body(i.e., the query must besafe). The set
of variables iny is assumed to be existentially quantified.

Given two conjunctionsφ(u) andψ(v) of atomic formulas,
a homomorphismfrom φ(u) to ψ(v) is a mappingh from the
set of variables inu to the set of variables inv such that for ev-
ery atomR(u1, . . . , un) of φ, the atomR(h(u1), . . . , h(un))
is in ψ. Given two conjunctive queriesq1(x) : − φ(x,y)
andq2(x′) : − ψ(x′,y′), a containment mappingfrom q1 to
q2 is a homomorphismh from φ(x,y) to ψ(x′,y′) such that
h(x) = x

′. A classical result [9] states that a necessary and
sufficient condition for the containment (under all instances) of
a conjunctive queryq1 into a conjunctive queryq2 is the exis-
tence of a containment mapping fromq2 to q1.

Assume a conjunctive queryq(x) : − φ(x,y) and a tgdt
of the form∀u(α(u) → ∃vβ(u,v)). Assume without loss of
generality thatv and the query have no variables in common.
The chase ofq with t is applicable if there is a homomorphism
h from α(u) to the body ofq, and moreover, ifh cannot be
extended to a homomorphismh′ from α(u) ∧ β(u,v) to the
body of q. In that case, achase stepof q with t andh is a
rewrite ofq into q′(x) : − φ(x,y) ∧ β(h(u),v).

Similarly, we can define a chase step with an egd. As-
sume a conjunctive queryq as before and an egde of the form
∀u(α(u) → (u1 = u2)). The chase ofq with e is applicable if
there is a homomorphismh fromα(u) toφ(x,y) so thath(u1)
andh(u2) are not the same variable. In that case, achase step
of q with e andh is a rewrite ofq into a queryq′ which is the
same asq except that all occurrences of the variableh(u1) (in
the head and in the body) are replaced by the variableh(u2).

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 73

Computing Reviews is the authoritative publication of reviews in computing
literature, and we’re inviting you to apply to become a reviewer.

As a reviewer, you will communicate your expertise and insight to Computing
Reviews’ readers – hundreds of thousands of academics and professionals in
universities and corporate research facilities worldwide. With reviews published
daily online and monthly on paper, Computing Reviews tracks the latest
developments and discoveries across all areas of computer science, and gives its
readers the overview needed to identify the most essential books and articles.

To apply to become a reviewer, go to www.reviews.com/reviewer, then click on
Become a Reviewer. At Computing Reviews, we are committed to excellence.
Our reviewers are authorities in their fields, and, through their reviews, they provide
the timely commentary needed to find out what is new and worth reading. Our
Editorial Board evaluates and approves reviewers on numerous criteria, including
educational background, technical knowledge and professional experience.

Computing Reviews is a collaboration
between the Association for Computing
Machinery and Reviews.com and can be
read daily at www.reviews.com.

C o m p u t i n g
R e v i e w s

BECOME A REVIEWER FOR
COMPUTING REVIEWS

Association for
Computing Machinery

Reviews.com

WWW.REVIEWS.COM

REVIEWERS

74 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

	p1-organizers.pdf
	p2-editornotes.pdf
	p3-article-aref.pdf
	p9-article-byun.pdf
	p15-article-gruenwald.pdf
	p21-article-mani.pdf
	p27-article-pey.pdf
	p34-article-zudeli.pdf
	p67-article-graefe.pdf
	p73-column-cooper.pdf
	p76-column-melton-eisenberg.pdf
	The WS-DAI Family of Specifications for Web Service Data Access and Integration
	
	Guest Column Introduction
	Introduction
	WS-DAI: A Framework for Data Access and Integration
	Properties
	Direct Access
	Generic Query
	Query Template

	Indirect Access

	WS-DAIR: The Relational Realization
	Properties
	Direct Access
	Indirect Access
	SQLResponse
	SQLRowSet

	WS-DAIX: The XML Realization
	Conclusions
	References

	p84-column-marianne.pdf
	p93-column-libkin.pdf
	p103-compreviews-ad.pdf
	SIGMODRecordMarch2006.pdf
	p1-organizers.pdf
	p103-compreviews-ad.pdf
	p15-article-gruenwald.pdf
	p2-editornotes.pdf
	p21-article-mani.pdf
	p27-article-pey.pdf
	p3-article-aref.pdf
	p34-article-zudeli.pdf
	p67-article-graefe.pdf
	p73-column-cooper.pdf
	p76-column-melton-eisenberg.pdf
	The WS-DAI Family of Specifications for Web Service Data Access and Integration
	
	Guest Column Introduction
	Introduction
	WS-DAI: A Framework for Data Access and Integration
	Properties
	Direct Access
	Generic Query
	Query Template

	Indirect Access

	WS-DAIR: The Relational Realization
	Properties
	Direct Access
	Indirect Access
	SQLResponse
	SQLRowSet

	WS-DAIX: The XML Realization
	Conclusions
	References

	p84-column-marianne.pdf
	p9-article-byun.pdf
	p93-column-libkin.pdf

