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Abstract
Consider an XML view defined over a relational
database, and a user query specified over this view.
This user XML query is typically processed using the
following steps: (a) our translator maps the XML
query to one or more SQL queries, (b) the relational
engine translates an SQL query to a relational algebra
plan, (c) the relational engine executes the algebra
plan and returns SQL results, and (d) our translator
translates the SQL results back to XML. However,
a straightforward approach produces a relational al-
gebra plan after step (b) that is inefficient and has
redundant joins. In this paper, we report on our pre-
liminary observations with respect to how joins in
such a relational algebra plan can be minimized. Our
approach works on the relational algebra plan and
optimizes it using novel rewrite rules that consider
pairs of joins in the plan and determine whether one
of them is redundant and hence can be removed. Our
study shows that algebraic techniques achieve effec-
tive join minimization, and such techniques are useful
and can be integrated into mainstream SQL engines.

1 Introduction
Queries, and their corresponding algebra plans, gen-
erated automatically by translating queries specified
over virtual views tend to have unnecessary joins [16].
Such algebra plans take much longer time to execute
when compared to an equivalent algebra plan with-
out the unnecessary joins. In this paper, we study
the problem of how to remove unnecessary joins from
a relational algebra plan.

As it sounds, this problem has been extensively
studied in the more than thirty years of SQL and
relational history [2, 1, 8, 15, 4]. In spite of the
large amount of research, current SQL engines do
very minimal join-minimization; the only kind of
join minimization done is that of removing a join
such as A

�
c B, where c is a condition of the form

A.key = B.fk, and B.fk is foreign key attribute(s)
of B that reference A. The reason for this minimal

adoption is because existing solutions in research
assume a set semantics, which give incorrect results
when we assume bag semantics required by SQL.
As a simple example, consider the algebra plan
πattA(A × B), where A, B are relations, and attA
is the set of attributes of A. This plan returns the
attributes of A after doing a cartesian product of A
and B. The above plan is equivalent to the plan A,
under set semantics. However, under bag semantics
the above two plans give different results.

Motivating Example: Let us consider an example
application scenario from the medical domain to illus-
trate the practicality of this problem. Consider two
relations in the database of a primary clinic: one that
describes doctors, and their speciality, and another
that describes patients, who their primary doctor is,
and what their primary health issue is. The two re-
lations and their sample data are shown in Table 1.

docID name speciality
ID1 Mike ENT
ID2 Mary General
ID3 Cathy General

(a) Doctor Relation with Sample Data

patID name primaryHealthIssue doctor
SSN1 Matt Arthritis ID1
SSN2 Joe Polio ID1
SSN3 Mark Cancer ID2
SSN4 Emily Arthritis ID2
SSN5 Greg Cancer ID2
SSN6 Terry Cancer ID3
SSN7 Tina Cancer ID3

(b) Patient Relation with Sample Data

Table 1: Example Relational Database

Now consider that the primary clinic needs to ex-
port an XML view of its data to a certain class
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of users. The view must specify the patients who
have been diagnosed with cancer, and their primary
health care physicians, grouped by the physicians.
Such view definitions have been studied in several
systems such as SilkRoute [5], XPERANTO [14],
and CoT [10]. Fig 1 shows this view defined using
XQuery [17] (this query is slightly modified from the
one in SilkRoute [5] for ease of explanation).
<root> {
for $d in //Doctor
where exists (//Patient[@doctor=$d/@docID

and @primaryHealthIssue=’Cancer’])
return <doctor DoctorID={$d/@docID}>
for $p in //Patient[@doctor=$d/@docID

and @primaryHealthIssue=’Cancer’])
return <patient PatientID={$p/@patID}/>

</doctor> }
</root>

Figure 1: An XML view of the relational database
from Table 1 defined using an XQuery

<root>
<doctor DoctorID=’ID2’>
<patient PatientID=’SSN3’/>
<patient PatientID=’SSN5’/>

</doctor>
<doctor DoctorID=’ID3’>
<patient PatientID=’SSN6’/>
<patient PatientID=’SSN7’/>

</doctor>
</root>

Figure 2: The result from a user query /root against
the view defined in Figure 1

Such a view is typically virtual, and not material-
ized. Once such a view is defined, one needs to sup-
port arbitrary queries to be specified over this view.
For instance, the result of the query /root is shown in
Figure 2. Consider a user query U1 that retrieves all
the patient IDs in the view, which could be specified
as //patient/@PatientID. Such a query could be
answered using the following steps: (a) our translator
translates the above XML query into SQL queries, (b)
the relational engine translates an SQL query into a
relational algebra plan, (c) the relational engine exe-
cutes the algebra plan to get SQL results, and (d) our
translator translates the SQL results back to XML to
conform to the view. After these steps, the user will
get the answer {SSN3, SSN5, SSN6, SSN7}1.

1Note that we are assuming an unordered semantics. Con-
sidering order constraints such as SSN3 and SSN5 must appear
next to each other are outside the scope of this work. Such un-
ordered semantics as we assume might be appropriate, if the
user knows that the underlying data source is relational.

For step (a), our translator uses a mapping as
shown in Figure 3. This mapping says that one root
node always exists in the view; the set of doctor chil-
dren of this root node is the doctors that have a pa-
tient with cancer; given a doctor, her patients are
those who have cancer. Such mappings are derived
from the view query definition [5, 14].

WHERE p.primaryHealthIssue=’Cancer’

SELECT *

WHERE EXISTS (
FROM Doctor d

      SELECT * FROM Patient p
      WHERE p.primaryHealthIssue=’Cancer’
          AND p.doctor=d.docID)

root

doctor

patient

SELECT *

    AND p.doctor=d.docID

FROM Patient p, doctor d

Figure 3: Mapping obtained from the view query
(Figure 1) used to answer queries.

Let us see how the translator translates the user
XML query U1 into SQL using the above mapping.
The translator can determine that the set of patients
can be obtained from the SQL query corresponding to
the patient node in the mapping. This query in turn
uses the doctor node in the mapping, which in turn
can be substituted by the SQL query corresponding
to the doctor node in the mapping. After such substi-
tutions, and some minor syntactic rewriting, we get
the SQL query Q1 that answers the user query as:

SELECT p.patientID
FROM Patient p,

(SELECT * FROM Doctor d1
WHERE EXISTS (
SELECT * FROM Patient p1
WHERE p1.primaryHealthIssue=‘Cancer’

AND p1.doctor=d1.docID)) d
WHERE p.primaryHealthIssue=‘Cancer’

AND p.doctor=d.docID

The above query specifies two joins: first there is a
join between Doctor d1 and Patient p1 to produce d,
that is the set of doctors who have cancer patients.
This d is then joined with Patient p to get the final
result. However, from the application semantics, we
know that every patient who has cancer will appear
in the view. Therefore a simpler SQL query Q2 for
answering U1 would be:2

2Q2 answers U1 if we assume that every patient has one
doctor. However even without this assumption, Q1 can be
optimized to a query which has only one join, as we will see
later. In other words, Q1 always has redundant joins.
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SELECT p.patientID
FROM Patient p
WHERE p.primaryHealthIssue=‘Cancer’

Even if the query such as Q1 specifies multiple
joins, it might not be inefficient, if the relational en-
gine can optimize the query. A relational engine first
translates an SQL query into a relational algebra plan
and tries to optimize this plan. This optimized plan
is what is executed. However, when we feed Q1 into
a relational engine (we use IBM DB2 V8), we get a
final plan that looks like the one shown in Figure 4.
Observe that the plan still has the two joins.

Doctor Patient

Patient

TBSCAN

TBSCAN TBSCAN

JOIN

JOIN

Figure 4: Algebra Plan corresponding to Q1 gener-
ated by an SQL engine.

In this paper, we come up with a novel set of rules
for minimizing joins in a relational algebra plan.
Our rules determine whether a join in a algebra
plan can be removed by examining other joins in the
plan. Using our rules, as well as previously studied
rules that minimize joins by examining semantic
constraints in the schema, we are able to minimize
the query plan in Figure 4 to an equivalent query
plan without any joins.

Outline of the paper
The rest of the paper is organized as follows. Sec-
tion 2 describes some of the related work in minimiz-
ing joins. Our rules for minimizing joins, along with
an example illustration, are described in Section 3.
We report on our preliminary experimental studies
that show the performance gain possible by such join
minimization in Section 4. Our conclusions and fu-
ture directions are given in Section 5.

2 Related Work
Dan Suciu reported in [16] that the translator (step
(a) in our process) in SilkRoute can produce SQL
queries with unnecessary joins, and gave some in-
sights as to why this problem might be more critical
in the world of XML views, as opposed to plain SQL
views. In XML views, there is a query associated
with each “type” whereas in SQL views, there is only

one “type” and a query associated with that type.
Hence in XML views, queries that join multiple view
queries are very frequent.

In [9], the authors study the problem of join min-
imization for XML views. Here the authors try to
optimize step (a) (as opposed to step (b) in our ap-
proach). They do this by identifying which nodes in
the view mapping such as Figure 3 form “bijective”
mappings. A node in the view mapping is said to
be a bijective mapping with respect to a relation in
the SQL database, if there is an element of this node
type in the view instance corresponding to every row
in the relation. In our example view mapping shown
in Figure 3, every row in the Doctor relation does not
appear in the view; every row in the Patient relation
also does not appear in the view. Therefore both the
doctor node and the patient node in Figure 3 do not
form bijective mappings. This means that the tech-
niques studied in [9] will end up with an inefficient
query plan such as the one in Figure 4.

In [10], the authors study a class of views where
every node in the mapping is necessarily bijective.
In other words, they disallow a view definition such
as the one in Figure 1. By making this assumption,
the authors are able to optimize step (a), and come
up with minimal SQL queries easily: every XPath
expression (or subexpression) that selects every ele-
ment in the instance corresponding to a node can be
obtained by a select query from the corresponding
relation (and no joins are needed).

In the previous section, we mentioned the rich body
of work that study join minimization assuming set
semantics. In [2], Chandra and Merlin showed that
there is a unique minimal query for any given con-
junctive query, and that such minimization is NP-
hard. In [1], the authors considered additional con-
straints such as functional dependencies specified on
the relations, and came up with a tableau (matrix)
based approach for decreasing joins. Minimization of
joins in the presence of functional dependencies was
also shown to be NP-complete in the size of the query.
In [8], the authors considered functional and inclusion
dependencies and showed that minimization of joins
is still NP-complete. Here the authors came up with
a chase technique that, given a query, expands the
query by adding conjuncts based on the functional
and inclusion dependencies. This expanded query
can then be minimized. A graph based approach,
consisting of expansion and reduction steps, for join
minimization is studied in [15]. Recently, in [4], the
authors consider physical structures such as primary
and secondary indexes, extent-based representation
of OO classes, join indexes, path indexes, access sup-
port relations, gmaps etc. The authors study how to

22 SIGMOD Record, Vol. 35, No. 1, Mar. 2006



translate a logical query into a minimal query against
the physical schema, using a chase step that expands
the logical query to a universal query, and then a
backchase step that minimizes the universal query.

The above approaches [2, 1, 8, 15, 4] do provide a
good understanding of the problem; however, these
techniques cannot be used in SQL engines, because
SQL is based on bag semantics. The complexity
of join minimization of conjunctive queries under
bag semantics as in SQL is studied in [7, 3], and
they report that query containment is Πp

2-hard. Fur-
ther, in [3], the authors consider select-from-where
queries with bag semantics, and remark that such
queries cannot be minimized without additional se-
mantic constraints. In our work, we consider queries
that produce semi-joins in the plans (such as queries
with exists), and show that these joins can infact be
reduced without any additional semantic constraints.

The approach that we propose for join minimiza-
tion is an algebraic rewriting technique. Algebraic
rewriting rules for SQL queries have been studied ex-
tensively, for example in [11, 12, 6, 13]. Some of the
rules include removal of DISTINCT if one of the re-
turned columns is known to be unique, techniques for
decorrelation etc. However, none of the techniques
study join minimization that can optimize the query
plan shown in Figure 4. We expect that our tech-
niques described in this paper will complement exist-
ing algebraic optimization techniques.

3 Rules for Minimizing Joins
In this section, we will describe our rules for minimiz-
ing joins in an algebra plan. We will state each rule
informally, rather than using a formal notation, for
ease of explanation. Further, we assume that some
preliminary analysis of the algebra plan has already
been done to identify characteristics such as for ev-
ery operator, what columns are needed in the rest of
the algebra plan (refer to any commercial optimizer
like IBM DB2). We will use the following common
notations for our relational algebra operators: select
is denoted by σ; project is denoted by π; � denotes
join; � denotes semi-join;

o
�L denotes left-outer join;

δ removes duplicates; γ denotes grouping.
Before we define the rules, we would like to intro-

duce the notion of logical entailment. For instance,
we say that the condition (a = b) ∧ (c = d) logically
entails the condition (a = b). Given two conditions
(boolean expressions) c1 and c2, c2 logically entails
c1 if c2 → c1 is always true. In other words, when-
ever c2 evaluates to true c1 will necessarily be true.
A naive method for checking logical entailment is:
identify common “terms” in c1 and c2 using syntac-
tic analysis, and then check for all combinations of

truth values of every term, whether c2 → c1 is true.
Our first two rules are already studied and imple-

mented in most commercial systems. They utilize
semantic constraints (key-foreign key constraints) in
the schema to remove joins.

Rule 1 A
�
c B can be reduced to σc′(B) if c is a

condition that logically entails the condition A.key =
B.fk, where B.fk is foreign key referencing A, no
column in B.fk can be NULL, and no column of A is
needed in the rest of the algebra plan. c′ is obtained
from c by removing the condition A.key = B.fk. �

Rule 2 A
�
c B can be reduced to σc′(B) if c is a

condition that logically entails the condition A.key =
B.fk, where B.fk is foreign key of B that references
A, and no column of A is needed in the rest of the
algebra plan. c′ is obtained from c by removing the
condition A.key = B.fk, and by adding condition of
the form B.fk IS NOT NULL. �

Our third and fourth rules are more complex, and
form the crux of our approach. They try to remove
unnecessary semi-joins that may appear in the alge-
bra plan. Semi-joins may appear in an algebra plan
when we decorrelate a correlated SQL query. For
example, consider the SQL query corresponding to
the doctor node in Figure 3. It specifies a correlated
query, which is translated into an algebra plan such
as: Doctor

�

c Patient, where c = (doctor = docID
AND primaryHealthIssue = ’Cancer’) is the join con-
dition. The result of this semi-join is the set of rows
in the Doctor relation, that satisfy the condition.

Now in Q1, the above result is then joined with the
Patient relation. The algebra plan corresponding to
this is (Doctor

�

c1 Patient)
�
c2 Patient. Further, in

this query the two conditions c1 and c2 are identical.
In other words, the doctors who have patients are
then joined with patients. We see that the first semi-
join can be removed. We now get the query plan
Doctor

�
c2 Patient.

Rule 3 (A
�

c1 B)
�
c2 B can be reduced to A

�
c2 B if

the condition c2 logically entails the condition c1. �

The above rule can be implemented by doing a
bottom-up traversal of the algebra plan. For any
semi-join such as (A

�

c1 B), check if this operator
has an “ancestor” operator in the plan that is a join
with B, and has a join condition c2 where c2 logically
entails c1. This rule can be extended to an ancestor
semi-join also, and the correctness holds.

Rule 4 (A
�

c1 B)
�

c2 B can be reduced to A
�

c2 B if
the conditions c2 logically entails the condition c1. �
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Using the above rules, we can come up with an
efficient relational algebra plan for Q1, as shown in
Figure 5. First we start with a plan that includes
a semi-join and a join. Using Rule 3, we first re-
move the semi-join. We then use Rule 1 to remove
the remaining join. The result is an efficient algebra
plan with no unnecessary joins. In our experimental
section, we show this efficient plan executes orders
of magnitude faster; we achieved improvement of a
factor of about 26 for simple queries3.

Rule 3

Doctor Patient

Patient PatientDoctor

Rule 1

Patient

Figure 5: Using our rules to minimize relational al-
gebra plan for query Q1.

4 Experimental Evaluation
We performed some preliminary experiments to illus-
trate the effectiveness of our proposed approach. Our
experiments were done on IBM DB2 V8 Database
Server, which is installed on an 1.4 GHz Pentium ma-
chine with 512 MB RAM, running Windows XP. We
used the TPC-H4 benchmark data, loading data of
different amounts from 500 MB to 4 GB.

We performed three sets of experiments. The first
set of experiments illustrate that joins can be expen-
sive. For this, we executed the following two queries:

Q4: SELECT COUNT (*) FROM LINEITEM l, PART p
WHERE l.L PARTKEY=p.P PARTKEY

Q5: SELECT COUNT (*) FROM LINEITEM l
The plans for these two queries are shown in Fig-

ure 6. The execution times for these two queries
against TPC-H data are shown in Figure 8. Note
that this join can actually be very expensive, as it is
not a key-foreign key join.

The second set of experiments is similar to our mo-
tivating example, and show the effectiveness of Rule
3. For this we executed the queries Q6, and the equiv-
alent query Q5. Our rules are able to reduce Q6 to
Q5. The plan for Q6 is shown in Figure 7. The execu-
tion times for these two queries against TPC-H data
are shown in Figure 8. Note that we get considerable
performance gain using our rules.

Q6: SELECT COUNT (*) FROM LINEITEM l,
(SELECT * FROM ORDERS o1

3To clarify, for more complex queries, where the percentage
of unnecessary joins is smaller, we expect to get lower factors
of improvement, but larger absolute values of improvement.

4http://www.tpc.org

(a) Query Plan from Q4

(b) Query Plan
from Q5

Figure 6: Illustrating that joins can be expensive.
The execution times are shown in Figure 8.

WHERE EXISTS (
(SELECT * FROM LINEITEM l1
WHERE l1.L ORDERKEY=o1.O ORDERKEY)) o
WHERE l.L ORDERKEY=o.O ORDERKEY

Figure 7: Query plan corresponding to Q6. Our rules
reduce this plan to the plan in Figure 6(b).

The third set of experiments illustrate the effec-
tiveness of Rule 4. For this consider query Q7 below:

SELECT COUNT (*) FROM LINEITEM l
WHERE EXISTS (SELECT * FROM ORDERS o1

WHERE o1.O_ORDERKEY=l.L_ORDERKEY)
AND EXISTS (SELECT * FROM ORDERS o1

WHERE o1.O_ORDERKEY=l.L_ORDERKEY)
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Using our Rule 4, we can remove one of the joins.
We then get an algebra plan that is equivalent to the
query Q8 given below: (Execution times of Q7 and
Q8 are shown in Figure 8.)

SELECT COUNT (*) FROM LINEITEM l
WHERE EXISTS (SELECT * FROM ORDERS o1

WHERE o1.O_ORDERKEY=l.L_ORDERKEY)
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Figure 8: Execution times for the different queries

5 Conclusions and Future
Work

In this paper, we have shown that significant perfor-
mance gain can be achieved by performing join mini-
mization, and that research so far has not solved the
join minimization in a satisfactory manner. We have
come up with a solution for join minimization that is
based on the commercially used algebraic rewriting
techniques and preserves SQL bag semantics. We ex-
pect that our work will open up renewed interest in
this problem, and that the solutions will get adopted
into commercial SQL engines. As part of future work,
we need to integrate our solutions into commercial
optimizers in order to study the query compilation
time, as well as demonstrate the feasibility of our
techniques.
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