
Scientific Data Management in the Coming Decade
Jim Gray, Microsoft

David T. Liu, Berkeley

Maria Nieto-Santisteban & Alex Szalay, Johns Hopkins University

 David J. DeWitt, Wisconsin

Gerd Heber, Cornell

January 2005

An earlier version of this paper appeared Cyber Technology Watch, February 2005, http://www.ctwatch.org/quarterly/

Data-intensive science – a new paradigm

Scientific instruments and computer simulations are

creating vast data stores that require new scientific

methods to analyze and organize the data. Data volumes

are approximately doubling each year. Since these new

instruments have extraordinary precision, the data quality

is also rapidly improving. Analyzing this data to find the

subtle effects missed by previous studies requires

algorithms that can simultaneously deal with huge

datasets and that can find very subtle effects – finding

both needles in the haystack and finding very small

haystacks that were undetected in previous measurements.

The raw instrument and simulation data is processed by

pipelines that produce standard data products. In the

NASA terminology
1
, the raw Level 0 data is calibrated

and rectified to Level 1 datasets that are combined with

other data to make derived Level 2 datasets. Most

analysis happens on these Level 2 datasets with drill down

to Level 1 data when anomalies are investigated.

We believe that most new science happens when the data

is examined in new ways. So our focus here is on data

exploration, interactive data analysis, and integration of

Level 2 datasets.

Data analysis tools have not kept pace with our ability to

capture and store data. Many scientists envy the pen-and-

paper days when all their data used to fit in a notebook

and analysis was done with a slide-rule. Things were

simpler then; one could focus on the science rather than

needing to be an information-technology-professional

with expertise in arcane computer data analysis tools.

The largest data analysis gap is in this man-machine

interface. How can we put the scientist back in control of

his data? How can we build analysis tools that are

intuitive and that augment the scientist’s intellect rather

than adding to the intellectual burden with a forest of

arcane user tools? The real challenge is building this

1
 Committee on Data Management, Archiving, and Computing

(CODMAC) Data Level Definitions
http://science.hq.nasa.gov/research/earth_ science_formats.html

smart notebook that unlocks the data and makes it easy to

capture, organize, analyze, visualize, and publish.

This article is about the data and data analysis layer

within such a smart notebook. We argue that the smart

notebook will access data presented by science centers

that will provide the community with analysis tools and

computational resources to explore huge data archives.

New data-analysis methods

The demand for tools and computational resources to

perform scientific data-analysis is rising even faster than

data volumes. This is a consequence of three phenomena:

(1) More sophisticated algorithms consume more

instructions to analyze each byte. (2) Many analysis

algorithms are super-linear, often needing N
2
 or N

3
 time to

process N data points. And (3) IO bandwidth has not kept

pace with storage capacity. In the last decade, while

capacity has grown more than 100-fold, storage

bandwidth has improved only about 10-fold.

These three trends: algorithmic intensity, nonlinearity,

and bandwidth-limits mean that the analysis is taking

longer and longer. To ameliorate these problems,

scientists will need better analysis algorithms that can

handle extremely large datasets with approximate

algorithms (ones with near-linear execution time) and

they will need parallel algorithms that can apply many

processors and many disks to the problem to meet cpu-

density and bandwidth-density demands.

Science centers

These peta-scale datasets required a new work style.

Today the typical scientist copies files to a local server

and operates on the datasets using his own resources.

Increasingly, the datasets are so large, and the application

programs are so complex, that it is much more

economical to move the end-user’s programs to the data

and only communicate questions and answers rather than

moving the source data and its applications to the user‘s

local system.

Science data centers that provide access to both the data

and the applications that analyze the data are emerging as

34 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

service stations for one or another scientific domain.

Each of these science centers curates one or more massive

datasets, curates the applications that provide access to

that dataset, and supports a staff that understands the data

and indeed is constantly adding to and improving the

dataset. One can see this with the SDSS at Fermilab,

BaBar at SLAC, BIRN at SDSC, with Entrez-PubMed-

GenBank at NCBI, and with many other datasets across

other disciplines. These centers federate with others. For

example BaBar has about 25 peer sites and CERN LHC

expects to have many Tier1 peer sites. NCBI has several

peers, and SDSS is part of the International Virtual

Observatory.

The new work style in these scientific domains is to send

questions to applications running at a data center and get

back answers, rather than to bulk-copy raw data from the

archive to your local server for further analysis. Indeed,

there is an emerging trend to store a personal workspace

(a MyDB) at the data center and deposit answers there.

This minimizes data movement and allows collaboration

among a group of scientists doing joint analysis. These

personal workspaces are also a vehicle for data analysis

groups to collaborate. Longer term, personal workspaces

at the data center could become a vehicle for data

publication – posting both the scientific results of an

experiment or investigation along with the programs used

to generate them in public read-only databases.

Many scientists will prefer doing much of their analysis at

data centers because it will save them having to manage

local data and computer farms. Some scientists may bring

the small data extracts “home” for local processing,

analysis and visualization – but it will be possible to do

all the analysis at the data center using the personal

workspace.

When a scientist wants to correlate data from two

different data centers, then there is no option but to move

part of the data from one place to another. If this is

common, the two data centers will likely federate with

one another to provide mutual data backup since the data

traffic will justify making the copy.

Peta-scale data sets will require 1000-10,000 disks and

thousands of compute nodes. At any one time some of the

disks and some of the nodes will be broken. Such systems

have to have a mechanism in place to protect against data

loss, and provide availability even with a less than full

configuration — a self-healing system is required.

Replicating the data in science centers at different

geographic locations is implied in the discussion above.

Geographic replication provides both data availability and

protects against data loss. Within a data center one can

combine redundancy with a clever partitioning strategy to

protect against failure at the disk controller or server

level. While storing the data twice for redundancy, one

can use different organizations (e.g. partition by space in

one, and by time in the other) to optimize system

performance. Failed can should be automatically

recovered from the redundant copies with no interruption

to database access, much as RAID5 disk arrays do today.

All these scenarios postulate easy data access, interchange

and integration. Data must be self-describing in order to

allow this. This self-description, or metadata, is central to

all these scenarios; it enables generic tools to understand

the data, and it enables people to understand the data.

Metadata enables data access

Metadata is the descriptive information about data that

explains the measured attributes, their names, units,

precision, accuracy, data layout and ideally a great deal

more. Most importantly, metadata includes the data

linage that describes how the data was measured, acquired

or computed.

If the data is to be analyzed by generic tools, the tools

need to “understand” the data. You cannot just present a

bundle-of-bytes to a tool and expect the tool to intuit

where the data values are and what they mean. The tool

will want to know the metadata.

To take a simple example, given a file, you cannot say

much about it – it could be anything. If I tell you it is a

JPEG, you know it is a bitmap in http://www.jpeg.org/

format. JPEG files start with a header that describes the

file layout, and often tells the camera, timestamp, and

program that generated the picture. Many programs know

how to read JPEG files and also produce new JPEG files

that include metadata describing how the new image was

produced. MP3 music files and PDF document files have

similar roles – each is in a standard format, each carries

some metadata, and each has an application suite to

process and generate that file class.

If scientists are to read data collected by others, then the

data must be carefully documented and must be published

in forms that allow easy access and automated

manipulation. In an ideal world there would be powerful

tools that make it easy to capture, organize, analyze,

visualize, and publish data. The tools would do data

mining and machine learning on the data, and would

make it easy to script workflows that analyze the data.

Good metadata for the inputs is essential to make these

tools automatic. Preserving and augmenting this metadata

as part of the processing (data lineage) will be a key

benefit of the next-generation tools.

All the derived data that the scientist produces must also

be carefully documented and published in forms that

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 35

allow easy access. Ideally much of this metadata would

be automatically generated and managed as part of the

workflow, reducing the scientist’s intellectual burden.

Semantic convergence: numbers to objects

Much science data is in the form of numeric arrays

generated by instruments and simulations. Simple and

convenient data models have evolved to represent arrays

and relationships among them. These data models can

also represent data lineage and other metadata by

including narrative text, data definitions, and data tables

within the file. HDF
2
, NetCDF

3
 and FITS

4
 are good

examples of such standards. They each include a library

that encapsulates the files and provides a platform-

independent way to read sub-arrays and to create or

update files. Each standard allows easy data interchange

among scientists. Generic tools that analyze and visualize

these higher-level file formats are built atop each of these

standards.

While the commercial world has standardized on the

relational data model and SQL, no single standard or tool

has critical mass in the scientific community. There are

many parallel and competing efforts to build these tool

suites – at least one per discipline. Data interchange

outside each group is problematic. In the next decade, as

data interchange among scientific disciplines becomes

increasingly important, a common HDF-like format and

package for all the sciences will likely emerge.

Definitions of common terminology (units and

measurements) are emerging within each discipline. We

are most familiar with the Universal Content Descriptors

(UCD
5
) of the Astronomy community that define about a

thousand core astrophysics units, measurements, and

concepts. Almost every discipline has an analogous

ontology (a.k.a., controlled vocabulary) effort. These

efforts will likely start to converge over the next decade –

probably as part of the converged format standard. This

will greatly facilitate tool-building and tools since an

agreement on these concepts can help guide analysis tool

designs.

In addition to standardization, computer-usable ontologies

will help build the Semantic Web: applications will be

semantically compatible beyond the mere syntactic

compatibility that current-generation of Web services

offer with type matching interfaces. However, it will take

some time before high-performance general-purpose

ontology engines will be available and integrated with

data analysis tools.

2
 http://hdf.ncsa.uiuc.edu/HDF5/

3
 http://my.unidata.ucar.edu/content/software/netcdf/

4
 http://fits.gsfc.nasa.gov/

5
 http://vizier.u-strasbg.fr/doc/UCD.htx

Database users on the other hand are well positioned to

prototype such applications: a database schema, though

not a complete ontology in itself, can be a rich ontology

extract. SQL can be used to implement a rudimentary

semantic algebra. The XML integration in modern

Database Management Systems (DBMS) opens the door

for existing standards like RDF and OWL.

Visualization or better visual exploration is a prime

example of an application where success is determined by

the ability to map a question formulated in the conceptual

framework of the domain ontology onto the querying

capabilities of a (meta-) data analysis backend. For the

time being, a hybrid of SQL and XQuery is the only

language suitable to serve as the target assembly language

in this translation process.

Metadata enables data independence

The separation of data and programs is artificial – one

cannot see the data without using a program and most

programs are data driven. So, it is paradoxical that the

data management community has worked for 40 years to

achieve something called data independence – a clear

separation of programs from data. Database systems

provide two forms of data independence termed physical

data independence and logical data independence.

Physical data independence comes in many different

forms. However, in all cases the goal is to be able to

change the underlying physical data organization without

breaking any application programs that depend on the old

data format. One example of physical data independence

is the ability of a database system to partition the rows of

a table across multiple disks and/or multiple nodes of a

cluster without requiring that any application programs be

modified. The mapping of the fields of each row of a

relational table to different disks is another important

example of physical data independence. While a database

system might choose to map each row to a contiguous

storage container (e.g. a record) on a single disk page, it

might also choose to store large, possibly infrequently

referenced attributes of a table corresponding to large text

objects, JPEG images, or multidimensional arrays in

separate storage containers on different disk pages and/or

different storage volumes in order to maximize the overall

performance of the system. Again, such physical storage

optimizations are implemented to be completely

transparent to application programs except, perhaps, for a

change in their performance. In the scientific domain the

analogy would be that you could take a working

application program that uses a C struct to describe its

data records on disk and change the physical layout of the

records without having to rewrite or even recompile the

application program (or any of the other application

36 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

programs that access the same data). By allowing such

techniques, physical data independence allows

performance improvements by reorganizing data for

parallelism–at little or no extra effort on the part of

scientists.

Modern database systems also provide logical data

independence that insulates programs from changes to the

logical database design – allowing designers to add or

delete relationships and to add information to the

database. While physical data independence is used to

hide changes in the physical data organizations, logical

data independence hides changes in the logical

organization of the data. Logical data independence is

typically supported using views. A view defines a virtual

table that is specified using a SQL query over one or more

base tables and/or other views. Views serve many

purposes including increased security (by hiding attributes

from applications and/or users without a legitimate need

for access) and enhanced performance (by materializing

views defined by complex SQL queries over very large

input tables). But views are primarily used to allow old

programs to operate correctly even as the underlying

database is reorganized and redesigned. For example,

consider a program whose correct operation depends on

some table T that a database administrator wants to

reorganize by dividing vertically into two pieces stored in

tables T’ and T”. To preserve applications that depend

on T, the database administrator can then define a view

over T’ and T” corresponding to the original definition of

table T, allowing old programs to continue to operate

correctly.

In addition, data evolves. Systems evolve from EBCDIC

to ASCII to Unicode, from proprietary-float to IEEE-

float, from marks to euros, and from 8-character ASCII

names to 1,000 character Unicode names. It is important

to be able to make these changes without breaking the

millions of lines of existing programs that want to see the

data in the old way. Views are used to solve these

problems by dynamically translating data to the

appropriate formats (converting among character and

number representations, converting among 6-digit and 9-

digit postal codes, converting between long-and-short

names, and hiding new information from old programs.)

The pain of the Y2K (converting from 2-character to 4-

character years) taught most organizations the importance

of data independence.

Database systems use a schema to implement both logical

and physical data independence. The schema for a

database holds all metadata including table and view

definitions as well as information on what indices exist

and how tables are mapped to storage volumes (and nodes

in a parallel database environment). Separating the data

and the metadata from the programs that manipulate the

data is crucial to data independence. Otherwise, it is

essentially impossible for other programs to find the

metadata which, in turn, makes it essentially impossible

for multiple programs to share a common database.

Object-oriented programming concepts have refined the

separation of programs and data. Data classes

encapsulated with methods provide data independence

and make it much easier to evolve the data without

perturbing programs. So, these ideas are still evolving.

But the key point of this section is that an explicit and

standard data access layer with precise metadata and

explicit data access is essential for data independence.

Set-oriented data access gives parallelism

As mentioned earlier, scientists often start with numeric

data arrays from their instruments or simulations. Often,

these arrays are accompanied by tabular data describing

the experimental setup, simulation parameters, or

environmental conditions. The data are also accompanied

by documents that explain the data.

Many operations take these arrays and produce new

arrays, but eventually, the arrays undergo feature

extraction to produce objects that are the basis for further

analysis. For example, raw astronomy data is converted

to object catalogs of stars and galaxies. Stream-gauge

measurements are converted to stream-flow and water-

quality time-series data, serum-mass-spectrograms are

converted to records describing peptide and protein

concentrations, and raw high-energy physics data are

converted to events.

Most scientific studies involve exploring and data mining

these object-oriented tabular datasets. The scientific file-

formats of HDF, NetCDF, and FITS can represent tabular

data but they provide minimal tools for searching and

analyzing tabular data. Their main focus is getting the

tables and sub-arrays into your Fortran/C/Java/Python

address space where you can manipulate the data using

the programming language.

This Fortran/C/Java/Python file-at-a-time procedural data

analysis is nearing the breaking point. The data

avalanche is creating billions of files and trillions of

events. The file-oriented approach postulates that files

are organized into directories. The directories relate all

data from some instrument or some month or some region

or some laboratory. As things evolve, the directories

become hierarchical. In this model, data analysis

proceeds by searching all the relevant files – opening each

file, extracting the relevant data and then moving onto the

next file. When all the relevant data has been gathered in

memory (or in intermediate files) the program can begin

its analysis. Performing this filter-then-analyze, data

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 37

analysis on large datasets with conventional procedural

tools runs slower and slower as data volumes increase.

Usually, they use only one-cpu-at-a-time; one-disk-at-a-

time and they do a brute-force search of the data.

Scientists need a way (1) to use intelligent indices and

data organizations to subset the search, (2) to use parallel

processing and data access to search huge datasets within

seconds, and (3) to have powerful analysis tools that they

can apply to the subset of data being analyzed.

One approach to this is to use the MPI (Message Passing

Interface) parallel programming environment to write

procedural programs that stream files across a processor

array – each node of the array exploring one part of the

hierarchy. This is adequate for highly-regular array

processing tasks, but it seems too daunting for ad-hoc

analysis of tabular data. MPI and the various array file

formats lack indexing methods other than partitioned

sequential scan. MPI itself lacks any notion of metadata

beyond file names.

As file systems grow to petabyte-scale archives with

billions of files, the science community must create a

synthesis of database systems and file systems. At a

minimum, the file hierarchy will be replaced with a

database that catalogs the attributes and lineage of each

file. Set-oriented file processing will make file names

increasingly irrelevant – analysis will be applied to “all

data with these attributes” rather than working on a list of

file/directory names or name patterns. Indeed, the files

themselves may become irrelevant (they are just

containers for data.) One can see a harbinger of this idea

in the Map-Reduce approach pioneered by Google
6
.

From our perspective, the key aspect of Google Map-

Reduce is that it applies thousands of processors and disks

to explore large datasets in parallel. That system has a

very simple data model appropriate for the Google

processing, but we imagine it could evolve over the next

decade to be quite general.

The database community has provided automatic query

processing along with CPU and IO parallelism for over

two decades. Indeed, this automatic parallelism allows

large corporations to mine 100-Terabyte datasets today

using 1000 processor clusters. We believe that many of

those techniques apply to scientific datasets
7
.

Other useful database features

Database systems are also approaching the peta-scale data

management problem driven largely by the need to

6
 “MapReduce: Simplified Data Processing on Large Clusters,”

J. Dean, S. Ghemawat, ACM OSDI, Dec. 2004.
7
 “Parallel Database Systems: the Future of High Performance

Database Systems”, D. DeWitt, J. Gray, CACM, Vol. 35, No.

6, June 1992.

manage huge information stores for the commercial and

governmental sectors. They hide the file concept and deal

with data collections. They can federate many different

sources letting the program view them all as a single data

collection. They also let the program pivot on any data

attributes.

Database systems provide very powerful data definition

tools to specify the abstract data formats and also specify

how the data is organized. They routinely allow the data

to be replicated so that it can be organized in several ways

(by time, by space, by other attributes). These techniques

have evolved from mere indices to materialized views that

can combine data from many sources.

Database systems provide powerful associative search

(search by value rather than by location) and provide

automatic parallel access and execution essential to peta-

scale data analysis. They provide non-procedural and

parallel data search to quickly find data subsets, and a

many tools to automate data design and management.

In addition, data analysis using data cubes has made huge

advances, and now efforts are focused on integrating

machine learning algorithms that infer trends, do data

clustering, and detect anomalies. All these tools are

aimed at making it easy to analyze commercial data, but

they are equally applicable to scientific data analysis.

Ending the impedance mismatch

Conventional tabular database systems are adequate for

analyzing objects (galaxies, spectra, proteins, events,

etc.). But even there, the support for time-sequence,

spatial, text and other data types is often awkward.

Database systems have not traditionally supported

science’s core data type: the N-dimensional array. Arrays

have had to masquerade as blobs (binary large objects) in

most systems. This collection of problems is generally

called the impedance mismatch – meaning the mismatch

between the programming model and the database

capabilities. The impedance mismatch has made it

difficult to map many science applications into

conventional tabular database systems.

But, database systems are changing. They are being

integrated with programming languages so that they can

support object-oriented databases. This new generation of

object relational database systems treats any data type (be

it a native float, an array, a string, or a compound object

like an XML or HTML document) as an encapsulated

type that can be stored as a value in a field of a record.

Actually, these systems allow the values to be either

stored directly in the record (embedded) or to be pointed

to by the record (linked). This linking-embedding object

model nicely accommodates the integration of database

38 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

systems and file systems – files are treated as linked-

objects. Queries can read and write these extended types

using the same techniques they use on native types.

Indeed we expect HDF and other file formats to be added

as types to most database systems.

Once you can put your types and your programs inside the

database you get the parallelism, non-procedural query,

and data independence advantages of traditional database

systems. We believe this database, file system, and

programming language integration will be the key to

managing and accessing peta-scale data management

systems in the future.

What’s wrong with files?

Everything builds from files as a base. HDF uses files.

Database systems use files. But, file systems have no

metadata beyond a hierarchical directory structure and file

names. They encourage a do-it-yourself- data-model that

will not benefit from the growing suite of data analysis

tools. They encourage do-it-yourself-access-methods that

will not do parallel, associative, temporal, or spatial

search. They also lack a high-level query language.

Lastly, most file systems can manage millions of files, but

by the time a file system can deal with billions of files, it

has become a database system.

As you can see, we take an ecumenical view of what a

database is. We see NetCDF, HDF, FITS, and Google

Map-Reduce as nascent database systems (others might

think of them as file systems). They have a schema

language (metadata) to define the metadata. They have a

few indexing strategies, and a simple data manipulation

language. They have the start of non-procedural and

parallel programming. And, they have a collection of

tools to create, access, search, and visualize the data. So,

in our view they are simple database systems.

Why scientists don’t use databases today

Traditional database systems have lagged in supporting

core scientific data types but they have a few things

scientists desperately need for their data analysis: non-

procedural query analysis, automatic parallelism, and

sophisticated tools for associative, temporal, and spatial

search.

If one takes the controversial view that HDF, NetCDF,

FITS, and Root are nascent database systems that provide

metadata and portability but lack non-procedural query

analysis, automatic parallelism, and sophisticated

indexing, then one can see a fairly clear path that

integrates these communities.

Some scientists use databases for some of their work, but

as a general rule, most scientists do not. Why? Why are

tabular databases so successful in commercial

applications and such a flop in most scientific

applications? Scientific colleagues give one or more of

the following answers when asked why they do not use

databases to manage their data:

• We don’t see any benefit in them. The cost of

learning the tools (data definition and data loading,

and query) doesn’t seem worth it.

• They do not offer good visualization/plotting tools.

• I can handle my data volumes with my programming

language.

• They do not support our data types (arrays, spatial,

text, etc.).

• They do not support our access patterns (spatial,

temporal, etc.).

• We tried them but they were too slow.

• We tried them but once we loaded our data we could

no longer manipulate the data using our standard

application programs.

• They require an expensive guru (database

administrator) to use.

All these answers are based on experience and

considerable investment. Often the experience was with

older systems (a 1990 vintage database system) or with a

young system (an early object-oriented database or an

early version of Postgres or MySQL.) Nonetheless, there

is considerable evidence that databases have to improve a

lot before they are worth a second look.

Why things are different now

The thing that forces a second look now is that the file-ftp

modus operandi just will not work for peta-scale datasets.

Some new way of managing and accessing information is

needed. We argued that metadata is the key to this and

that a non-procedural data manipulation language

combined with data indexing is essential to being able to

search and analyze the data.

There is a convergence of file systems, database systems,

and programming languages. Extensible database

systems use object-oriented techniques from

programming languages to allow you to define complex

objects as native database types. Files (or extended files

like HDF) then become part of the database and benefit

from the parallel search and metadata management. It

seems very likely that these nascent database systems will

be integrated with the main-line database systems in the

next decade or that some new species of metadata driven

analysis and workflow system will supplant both

traditional databases and the science-specific file formats

and their tool suites.

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 39

Some hints of success

There are early signs that this is a good approach. One of

us has shown that the doing analysis atop a database

system is vastly simpler and runs much faster than the

corresponding file-oriented approach
8
. The speedup is

due to better indexing and parallelism.

We have also had considerable success in adding user

defined functions and stored procedures to astronomy

databases. The MyDB and CasJobs work for the Sloan

Digital Sky Survey give a good example of moving-

programs-to-the-database
9
.

The BaBar experiments at SLAC manage a petabyte store

of event data. The system uses a combination of Oracle

to manage some of the file archive and also a physics-

specific data analysis system called Root for data

analysis
10

.

The GridDB
11

 workflow system at UC Berkeley expands

the role of database systems into pipeline processing, a

domain traditionally serviced by "process-centric"

middlewares
12,13

. Process-centric middlewares

automatically parallelize workflows of imperative, file-

based programs (e.g. those written in

Fortran/C/Python/Java) by making use of a "workflow

schema", which describes programs and their

dependencies. GridDB uses database techniques to

improve pipeline processing; specifically, it uses schemas

that not only contain workflow information, but also

incorporate data information (i.e. a database schema). The

combination of both workflow and data schemas enable

declarative interfaces, and improves the interactivity and

performance of pipeline processing.

Adaptive Finite Element simulations spend considerable

time and programming effort on input, output, and

checkpointing. We (Heber) use a database to represent

large Finite Element models. The initial model is

8
 “When Database Systems Meet the Grid,” M. Nieto

Santisteban et. al., CIDR, 2005,

 http://www-db.cs.wisc.edu/cidr/papers/P13.pdf
9
 “Batch is back: CasJobs serving multi-TB data on the Web,”

W. O’Mullane, et. al, in preparation.
10

 “Lessons Learned from Managing a Petabyte,”

 J. Becla and D. L. Wang, CIDR, 2005,

http://www-db.cs.wisc.edu/cidr/papers/P06.pdf
11

 D. T. Liu and M. J. Franklin, VLDB, 2004,

www.cs.berkeley.edu/~dtliu/pubs/griddb_vldb04.pdf
12

 M. Litzkow, M. Livny and M. Mutka, Condor - A

Hunter of Idle Workstations, International Conference of

Distributed Computing Systems, 1988
13

 I. Foster and C. Kesselman, Globus: A Metacomputing

Infrastructure Toolkit, Journal of Supercomputer

Applications and High Performance Computing, 1997

represented in the database and each checkpoint and

analysis step is written to the database. Using a database

allows queries to define more sophisticated mesh

partitions and allows concurrent indexed access to the

simulation data for visualization and computational

steering. Commercial Finite Element packages each use

a proprietary form of a “database”. They are, however,

limited in scope, functionality, and scalability, and are

typically buried inside the particular application stack.

Each worker in the MPI job gets its partition from the

database (as a query) and dumps its progress to the

database. These dumps are two to four orders of

magnitude larger than the input mesh and represent a

performance challenge in both traditional and database

environments. The database approach has the added

benefit that visualization tools can watch and steer the

computation by reading and writing the database. Finally,

while we have focused on the ability of databases to

simplify and speedup the production of raw simulation

data, we cannot understate its core competency: providing

declarative data analysis interfaces. It is with these tools

that scientists spend most of their time. We hope to apply

similar concepts to some turbulence studies being done at

Johns Hopkins.

Summary

Science centers that curate and serve science data are

emerging around next-generation science instruments.

The world-wide telescope, GenBank, and the BaBar

collaborations are prototypes of this trend. One group of

scientists is collecting the data and managing these

archives. A larger group of scientists are exploring these

archives the way previous generations explored their

private data. Often the results of the analysis are fed back

to the archive to add to the corpus.

Because data collection is now separated from data

analysis, extensive metadata describing the data in

standard terms is needed so people and programs can

understand the data. Good metadata becomes central for

data sharing among different disciplines and for data

analysis and visualization tools.

There is a convergence of the nascent-databases (HDF,

NetCDF, FITS,..) which focus primarily on the metadata

issues and data interchange, and the traditional data

management systems (SQL and others) that have focused

on managing and analyzing very large datasets. The

traditional systems have the virtues of automatic

parallelism, indexing, and non-procedural access, but they

need to embrace the data types of the science community

and need to co-exist with data in file systems. We

believe the emphasis on extending database systems by

unifying databases with programming languages so that

40 SIGMOD Record, Vol. 34, No. 4, Dec. 2005

one can either embed or link new object types into the

data management system will enable this synthesis.

Three technical advances will be crucial to scientific

analysis: (1) extensive metadata and metadata standards

that will make it easy to discover what data exits, make it

easy for people and programs to understand the data, and

make it easy to track data lineage; (2) great analysis tools

that allow scientists to easily ask questions, and to easily

understand and visualize the answers; and (3) set-

oriented data parallelism access supported by new

indexing schemes and new algorithms that allow us to

interactively explore peta-scale datasets.

The goal is a smart notebook that empowers scientists to

explore the world’s data. Science data centers with

computational resources to explore huge data archives

will be central to enabling such notebooks. Because data

is so large, and IO bandwidth is not keeping pace, moving

code to data will be essential to performance.

Consequently, science centers will remain the core

vehicle and federations will likely be secondary. Science

centers will provide both the archives and the institutional

infrastructure to develop these peta-scale archives and the

algorithms and tools to analyze them.

SIGMOD Record, Vol. 34, No. 4, Dec. 2005 41

