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Data-intensive science – a new paradigm 

Scientific instruments and computer simulations are 

creating vast data stores that require new scientific 

methods to analyze and organize the data.  Data volumes 

are approximately doubling each year.  Since these new 

instruments have extraordinary precision, the data quality 

is also rapidly improving. Analyzing this data to find the 

subtle effects missed by previous studies requires 

algorithms that can simultaneously deal with huge 

datasets and that can find very subtle effects – finding 

both needles in the haystack and finding very small 

haystacks that were undetected in previous measurements.   

 

The raw instrument and simulation data is processed by 

pipelines that produce standard data products.  In the 

NASA terminology
1
, the raw Level 0 data is calibrated 

and rectified to Level 1 datasets that are combined with 

other data to make derived Level 2 datasets.   Most 

analysis happens on these Level 2 datasets with drill down 

to Level 1 data when anomalies are investigated.   

 

We believe that most new science happens when the data 

is examined in new ways.  So our focus here is on data 

exploration, interactive data analysis, and integration of 

Level 2 datasets.  

 

Data analysis tools have not kept pace with our ability to 

capture and store data.  Many scientists envy the pen-and-

paper days when all their data used to fit in a notebook 

and analysis was done with a slide-rule.  Things were 

simpler then; one could focus on the science rather than 

needing to be an information-technology-professional 

with expertise in arcane computer data analysis tools.    

 

The largest data analysis gap is in this man-machine 

interface.  How can we put the scientist back in control of 

his data?  How can we build analysis tools that are 

intuitive and that augment the scientist’s intellect rather 

than adding to the intellectual burden with a forest of 

arcane user tools?  The real challenge is building this 

                                                             
1
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(CODMAC) Data Level Definitions 
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smart notebook that unlocks the data and makes it easy to 

capture, organize, analyze, visualize, and publish.    

 

This article is about the data and data analysis layer 

within such a smart notebook.  We argue that the smart 

notebook will access data presented by science centers 

that will provide the community with analysis tools and 

computational resources to explore huge data archives.  

New data-analysis methods 

The demand for tools and computational resources to 

perform scientific data-analysis is rising even faster than 

data volumes.  This is a consequence of three phenomena: 

(1) More sophisticated algorithms consume more 

instructions to analyze each byte.  (2) Many analysis 

algorithms are super-linear, often needing N
2
 or N

3
 time to 

process N data points. And (3) IO bandwidth has not kept 

pace with storage capacity. In the last decade, while 

capacity has grown more than 100-fold, storage 

bandwidth has improved only about 10-fold.  

 

These three trends: algorithmic intensity, nonlinearity, 

and bandwidth-limits mean that the analysis is taking 

longer and longer. To ameliorate these problems, 

scientists will need better analysis algorithms that can 

handle extremely large datasets with approximate 

algorithms (ones with near-linear execution time) and 

they will need parallel algorithms that can apply many 

processors and many disks to the problem to meet cpu-

density and bandwidth-density demands.  

Science centers  

These peta-scale datasets required a new work style.   

Today the typical scientist copies files to a local server 

and operates on the datasets using his own resources.  

Increasingly, the datasets are so large, and the application 

programs are so complex, that it is much more 

economical to move the end-user’s programs to the data  

and only communicate questions and answers rather than 

moving the source data and its applications to the user‘s 

local system.    

 

Science data centers that provide access to both the data 

and the applications that analyze the data are emerging as 
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service stations for one or another scientific domain.   

Each of these science centers curates one or more massive 

datasets, curates the applications that provide access to 

that dataset, and supports a staff that understands the data 

and indeed is constantly adding to and improving the 

dataset. One can see this with the SDSS at Fermilab, 

BaBar at SLAC, BIRN at SDSC, with Entrez-PubMed-

GenBank at NCBI, and with many other datasets across 

other disciplines.  These centers federate with others. For 

example BaBar has about 25 peer sites and CERN LHC 

expects to have many Tier1 peer sites. NCBI has several 

peers, and SDSS is part of the International Virtual 

Observatory.    

 

The new work style in these scientific domains is to send 

questions to applications running at a data center and get 

back answers, rather than to bulk-copy raw data from the 

archive to your local server for further analysis.  Indeed, 

there is an emerging trend to store a personal workspace 

(a MyDB) at the data center and deposit answers there. 

This minimizes data movement and allows collaboration 

among a group of scientists doing joint analysis. These 

personal workspaces are also a vehicle for data analysis 

groups to collaborate.  Longer term, personal workspaces 

at the data center could become a vehicle for data 

publication – posting both the scientific results of an 

experiment or investigation along with the programs used 

to generate them in public read-only databases.   

 

Many scientists will prefer doing much of their analysis at 

data centers because it will save them having to manage 

local data and computer farms.  Some scientists may bring 

the small data extracts “home” for local processing, 

analysis and visualization – but it will be possible to do 

all the analysis at the data center using the personal 

workspace. 

 

When a scientist wants to correlate data from two 

different data centers, then there is no option but to move 

part of the data from one place to another.   If this is 

common, the two data centers will likely federate with 

one another to provide mutual data backup since the data 

traffic will justify making the copy.   

 

Peta-scale data sets will require 1000-10,000 disks and 

thousands of compute nodes. At any one time some of the 

disks and some of the nodes will be broken. Such systems 

have to have a mechanism in place to protect against data 

loss, and provide availability even with a less than full 

configuration — a self-healing system is required. 

Replicating the data in science centers at different 

geographic locations is implied in the discussion above. 

Geographic replication provides both data availability and 

protects against data loss.  Within a data center one can 

combine redundancy with a clever partitioning strategy to 

protect against failure at the disk controller or server 

level. While storing the data twice for redundancy, one 

can use different organizations (e.g. partition by space in 

one, and by time in the other) to optimize system 

performance. Failed can should be automatically 

recovered from the redundant copies with no interruption 

to database access, much as RAID5 disk arrays  do today. 

 

All these scenarios postulate easy data access, interchange 

and integration.   Data must be self-describing in order to 

allow this.  This self-description, or metadata, is central to 

all these scenarios; it enables generic tools to understand 

the data, and it enables people to understand the data. 

Metadata enables data access 

Metadata is the descriptive information about data that 

explains the measured attributes, their names, units, 

precision, accuracy, data layout and ideally a great deal 

more.  Most importantly, metadata includes the data 

linage that describes how the data was measured, acquired 

or computed.   

 

If the data is to be analyzed by generic tools, the tools 

need to “understand” the data.  You cannot just present a 

bundle-of-bytes to a tool and expect the tool to intuit 

where the data values are and what they mean. The tool 

will want to know the metadata.   

 

To take a simple example, given a file, you cannot say 

much about it – it could be anything.   If I tell you it is a 

JPEG, you know it is a bitmap in http://www.jpeg.org/  

format.  JPEG files start with a header that describes the 

file layout, and often tells the camera, timestamp, and 

program that generated the picture.  Many programs know 

how to read JPEG files and also produce new JPEG files 

that include metadata describing how the new image was 

produced.  MP3 music files and PDF document files have 

similar roles – each is in a standard format, each carries 

some metadata, and each has an application suite to 

process and generate that file class.    

 

If scientists are to read data collected by others, then the 

data must be carefully documented and must be published 

in forms that allow easy access and automated 

manipulation.  In an ideal world there would be powerful 

tools that make it easy to capture, organize, analyze, 

visualize, and publish data.  The tools would do data 

mining and machine learning on the data, and would 

make it easy to script workflows that analyze the data.   

Good metadata for the inputs is essential to make these 

tools automatic.  Preserving and augmenting this metadata 

as part of the processing (data lineage) will be a key 

benefit of the next-generation tools.    

    

All the derived data that the scientist produces must also 

be carefully documented and published in forms that 
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allow easy access.  Ideally much of this metadata would 

be automatically generated and managed as part of the 

workflow, reducing the scientist’s intellectual burden.    

Semantic convergence: numbers to objects  

Much science data is in the form of numeric arrays 

generated by instruments and simulations.   Simple and 

convenient data models have evolved to represent arrays 

and relationships among them.   These data models can 

also represent data lineage and other metadata by 

including narrative text, data definitions, and data tables 

within the file.  HDF
2
, NetCDF

3
 and FITS

4
 are good 

examples of such standards. They each include a library 

that encapsulates the files and provides a platform-

independent way to read sub-arrays and to create or 

update files.   Each standard allows easy data interchange 

among scientists.  Generic tools that analyze and visualize 

these higher-level file formats are built atop each of these 

standards.   

While the commercial world has standardized on the 

relational data model and SQL, no single standard or tool 

has critical mass in the scientific community.  There are 

many parallel and competing efforts to build these tool 

suites – at least one per discipline.  Data interchange 

outside each group is problematic.   In the next decade, as 

data interchange among scientific disciplines becomes 

increasingly important, a common HDF-like format and 

package for all the sciences will likely emerge.  

 

Definitions of common terminology (units and 

measurements) are emerging within each discipline.  We 

are most familiar with the Universal Content Descriptors 

(UCD
5
) of the Astronomy community that define about a 

thousand core astrophysics units, measurements, and 

concepts.  Almost every discipline has an analogous 

ontology (a.k.a., controlled vocabulary) effort.   These 

efforts will likely start to converge over the next decade – 

probably as part of the converged format standard.  This 

will greatly facilitate tool-building and tools since an 

agreement on these concepts can help guide analysis tool 

designs. 

 

In addition to standardization, computer-usable ontologies 

will help build the Semantic Web: applications will be 

semantically compatible beyond the mere syntactic 

compatibility that current-generation of Web services 

offer with type matching interfaces. However, it will take 

some time before high-performance general-purpose 

ontology engines will be available and integrated with 

data analysis tools.  
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5
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Database users on the other hand are well positioned to 

prototype such applications: a database schema, though 

not a complete ontology in itself, can be a rich ontology 

extract. SQL can be used to implement a rudimentary 

semantic algebra. The XML integration in modern 

Database Management Systems (DBMS) opens the door 

for existing standards like RDF and OWL.  

 

Visualization or better visual exploration is a prime 

example of an application where success is determined by 

the ability to map a question formulated in the conceptual 

framework of the domain ontology onto the querying 

capabilities of a (meta-) data analysis backend. For the 

time being, a hybrid of SQL and XQuery is the only 

language suitable to serve as the target assembly language 

in this translation process.  

Metadata enables data independence 

The separation of data and programs is artificial – one 

cannot see the data without using a program and most 

programs are data driven.   So, it is paradoxical that the 

data management community has worked for 40 years to 

achieve something called data independence – a clear 

separation of programs from data. Database systems 

provide two forms of data independence termed physical 

data independence and logical data independence.    

 

Physical data independence comes in many different 

forms.  However, in all cases the goal is to be able to 

change the underlying physical data organization without 

breaking any application programs that depend on the old 

data format. One example of physical data independence 

is the ability of a database system to partition the rows of 

a table across multiple disks and/or multiple nodes of a 

cluster without requiring that any application programs be 

modified.  The mapping of the fields of each row of a 

relational table to different disks is another important 

example of physical data independence.  While a database 

system might choose to map each row to a contiguous 

storage container (e.g. a record) on a single disk page, it 

might also choose to store large, possibly infrequently 

referenced attributes of a table corresponding to large text 

objects, JPEG images, or multidimensional arrays in 

separate storage containers on different disk pages and/or 

different storage volumes in order to maximize the overall 

performance of the system.   Again, such physical storage 

optimizations are implemented to be completely 

transparent to application programs except, perhaps, for a 

change in their performance.   In the scientific domain the 

analogy would be that you could take a working 

application program that uses a C struct to describe its 

data records on disk and change the physical layout of the 

records without having to rewrite or even recompile the 

application program (or any of the other application 
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programs that access the same data). By allowing such 

techniques, physical data independence allows 

performance improvements by reorganizing data for 

parallelism–at little or no extra effort on the part of 

scientists.  

 

Modern database systems also provide logical data 

independence that insulates programs from changes to the 

logical database design – allowing designers to add or 

delete relationships and to add information to the 

database.  While physical data independence is used to 

hide changes in the physical data organizations, logical 

data independence hides changes in the logical 

organization of the data.  Logical data independence is 

typically supported using views.  A view defines a virtual 

table that is specified using a SQL query over one or more 

base tables and/or other views.    Views serve many 

purposes including increased security (by hiding attributes 

from applications and/or users without a legitimate need 

for access) and enhanced performance (by materializing 

views defined by complex SQL queries over very large 

input tables).   But views are primarily used to allow old 

programs to operate correctly even as the underlying 

database is reorganized and redesigned.  For example, 

consider a program whose correct operation depends on 

some table T that a database administrator wants to 

reorganize by dividing vertically into two pieces stored in 

tables T’ and T”.    To preserve applications that depend 

on T, the database administrator can then define a view 

over T’ and T” corresponding to the original definition of 

table T, allowing old programs to continue to operate 

correctly. 

 

In addition, data evolves.  Systems evolve from EBCDIC 

to ASCII to Unicode, from proprietary-float to IEEE-

float, from marks to euros, and from 8-character ASCII 

names to 1,000 character Unicode names.  It is important 

to be able to make these changes without breaking the 

millions of lines of existing programs that want to see the 

data in the old way.  Views are used to solve these 

problems by dynamically translating data to the 

appropriate formats (converting among character and 

number representations, converting among 6-digit and 9-

digit postal codes, converting between long-and-short 

names, and hiding new information from old programs.)  

The pain of the Y2K (converting from 2-character to 4-

character years) taught most organizations the importance 

of data independence. 

 

Database systems use a schema to implement both logical 

and physical data independence.  The schema for a 

database holds all metadata including table and view 

definitions as well as information on what indices exist 

and how tables are mapped to storage volumes (and nodes 

in a parallel database environment). Separating the data 

and the metadata from the programs that manipulate the 

data is crucial to data independence.  Otherwise, it is 

essentially impossible for other programs to find the 

metadata which, in turn, makes it essentially impossible 

for multiple programs to share a common database.  

Object-oriented programming concepts have refined the 

separation of programs and data.   Data classes 

encapsulated with methods provide data independence 

and make it much easier to evolve the data without 

perturbing programs.   So, these ideas are still evolving. 

  

But the key point of this section is that an explicit and 

standard data access layer with precise metadata and 

explicit data access is essential for data independence.  

Set-oriented data access gives parallelism 

As mentioned earlier, scientists often start with numeric 

data arrays from their instruments or simulations.  Often, 

these arrays are accompanied by tabular data describing 

the experimental setup, simulation parameters, or 

environmental conditions.  The data are also accompanied 

by documents that explain the data. 

Many operations take these arrays and produce new 

arrays, but eventually, the arrays undergo feature 

extraction to produce objects that are the basis for further 

analysis.  For example, raw astronomy data is converted 

to object catalogs of stars and galaxies.   Stream-gauge 

measurements are converted to stream-flow and water-

quality time-series data, serum-mass-spectrograms are 

converted to records describing peptide and protein 

concentrations, and raw high-energy physics data are 

converted to events. 

 

Most scientific studies involve exploring and data mining 

these object-oriented tabular datasets. The scientific file-

formats of HDF, NetCDF, and FITS can represent tabular 

data but they provide minimal tools for searching and 

analyzing tabular data.  Their main focus is getting the 

tables and sub-arrays into your Fortran/C/Java/Python 

address space where you can manipulate the data using 

the programming language.   

 

This Fortran/C/Java/Python file-at-a-time procedural data 

analysis is nearing the breaking point.   The data 

avalanche is creating billions of files and trillions of 

events.  The file-oriented approach postulates that files 

are organized into directories.  The directories relate all 

data from some instrument or some month or some region 

or some laboratory.  As things evolve, the directories 

become hierarchical.  In this model, data analysis 

proceeds by searching all the relevant files – opening each 

file, extracting the relevant data and then moving onto the 

next file.   When all the relevant data has been gathered in 

memory (or in intermediate files) the program can begin 

its analysis. Performing this filter-then-analyze, data 
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analysis on large datasets with conventional procedural 

tools runs slower and slower as data volumes increase.   

Usually, they use only one-cpu-at-a-time; one-disk-at-a-

time and they do a brute-force search of the data.   

Scientists need a way (1) to use intelligent indices and 

data organizations to subset the search, (2) to use parallel 

processing and data access to search huge datasets within 

seconds, and (3) to have powerful analysis tools that they 

can apply to the subset of data being analyzed.  

 

One approach to this is to use the MPI (Message Passing 

Interface) parallel programming environment to write 

procedural programs that stream files across a processor 

array – each node of the array exploring one part of the 

hierarchy.   This is adequate for highly-regular array 

processing tasks, but it seems too daunting for ad-hoc 

analysis of tabular data.   MPI and the various array file 

formats lack indexing methods other than partitioned 

sequential scan. MPI itself lacks any notion of metadata 

beyond file names.  

 

As file systems grow to petabyte-scale archives with 

billions of files, the science community must create a 

synthesis of database systems and file systems.   At a 

minimum, the file hierarchy will be replaced with a 

database that catalogs the attributes and lineage of each 

file.   Set-oriented file processing will make file names 

increasingly irrelevant – analysis will be applied to “all 

data with these attributes” rather than working on a list of 

file/directory names or   name patterns.  Indeed, the files 

themselves may become irrelevant (they are just 

containers for data.)  One can see a harbinger of this idea 

in the Map-Reduce approach pioneered by Google
6
.  

From our perspective, the key aspect of Google Map-

Reduce is that it applies thousands of processors and disks 

to explore large datasets in parallel.  That system has a 

very simple data model appropriate for the Google 

processing, but we imagine it could evolve over the next 

decade to be quite general.    

 

The database community has provided automatic query 

processing along with CPU and IO parallelism for over 

two decades.   Indeed, this automatic parallelism allows 

large corporations to mine 100-Terabyte datasets today 

using 1000 processor clusters.   We believe that many of 

those techniques apply to scientific datasets
7
. 

Other useful database features 

Database systems are also approaching the peta-scale data 

management problem driven largely by the need to 

                                                             
6
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7
 “Parallel Database Systems: the Future of High Performance 

Database Systems”, D. DeWitt, J. Gray, CACM, Vol. 35, No. 
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manage huge information stores for the commercial and 

governmental sectors.  They hide the file concept and deal 

with data collections.   They can federate many different 

sources letting the program view them all as a single data 

collection.   They also let the program pivot on any data 

attributes.  

   

Database systems provide very powerful data definition 

tools to specify the abstract data formats and also specify 

how the data is organized.   They routinely allow the data 

to be replicated so that it can be organized in several ways 

(by time, by space, by other attributes).  These techniques 

have evolved from mere indices to materialized views that 

can combine data from many sources.    

 

Database systems provide powerful associative search 

(search by value rather than by location) and provide 

automatic parallel access and execution essential to peta-

scale data analysis.  They provide non-procedural and 

parallel data search to quickly find data subsets, and a 

many tools to automate data design and management.  

 

In addition, data analysis using data cubes has made huge 

advances, and now efforts are focused on integrating 

machine learning algorithms that infer trends, do data 

clustering, and detect anomalies.   All these tools are 

aimed at making it easy to analyze commercial data, but 

they are equally applicable to scientific data analysis.  

Ending the impedance mismatch 

Conventional tabular database systems are adequate for 

analyzing objects (galaxies, spectra, proteins, events, 

etc.).  But even there, the support for time-sequence, 

spatial, text and other data types is often awkward.   

Database systems have not traditionally supported 

science’s core data type: the N-dimensional array.  Arrays 

have had to masquerade as blobs (binary large objects) in 

most systems.   This collection of problems is generally 

called the impedance mismatch – meaning the mismatch 

between the programming model and the database 

capabilities. The impedance mismatch has made it 

difficult to map many science applications into 

conventional tabular database systems.     

 

But, database systems are changing.   They are being 

integrated with programming languages so that they can 

support object-oriented databases.  This new generation of 

object relational database systems treats any data type (be 

it a native float, an array, a string, or a compound object 

like an XML or HTML document) as an encapsulated 

type that can be stored as a value in a field of a record.  

Actually, these systems allow the values to be either 

stored directly in the record (embedded) or to be pointed 

to by the record (linked).  This linking-embedding object 

model nicely accommodates the integration of database 

38 SIGMOD Record, Vol. 34, No. 4, Dec. 2005



systems and file systems – files are treated as linked-

objects. Queries can read and write these extended types 

using the same techniques they use on native types.   

Indeed we expect HDF and other file formats to be added 

as types to most database systems.  

 

Once you can put your types and your programs inside the 

database you get the parallelism, non-procedural query, 

and data independence advantages of traditional database 

systems.  We believe this database, file system, and 

programming language integration will be the key to 

managing and accessing peta-scale data management 

systems in the future.  

What’s wrong with files? 

Everything builds from files as a base.  HDF uses files. 

Database systems use files. But, file systems have no 

metadata beyond a hierarchical directory structure and file 

names.  They encourage a do-it-yourself- data-model that 

will not benefit from the growing suite of data analysis 

tools. They encourage do-it-yourself-access-methods that 

will not do parallel, associative, temporal, or spatial 

search.   They also lack a high-level query language.    

Lastly, most file systems can manage millions of files, but 

by the time a file system can deal with billions of files, it 

has become a database system.   

 

As you can see, we take an ecumenical view of what a 

database is.   We see NetCDF, HDF, FITS, and Google 

Map-Reduce as nascent database systems (others might 

think of them as file systems).   They have a schema 

language (metadata) to define the metadata. They have a 

few indexing strategies, and a simple data manipulation 

language. They have the start of non-procedural and 

parallel programming.  And, they have a collection of 

tools to create, access, search, and visualize the data.  So, 

in our view they are simple database systems.  

Why scientists don’t use databases today 

Traditional database systems have lagged in supporting 

core scientific data types but they have a few things 

scientists desperately need for their data analysis: non-

procedural query analysis, automatic parallelism, and 

sophisticated tools for associative, temporal, and spatial 

search.  

 

If one takes the controversial view that HDF, NetCDF, 

FITS, and Root are nascent database systems that provide 

metadata and portability but lack non-procedural query 

analysis, automatic parallelism, and sophisticated 

indexing, then one can see a fairly clear path that 

integrates these communities.  

 

Some scientists use databases for some of their work, but 

as a general rule, most scientists do not.  Why?  Why are 

tabular databases so successful in commercial 

applications and such a flop in most scientific 

applications?  Scientific colleagues give one or more of 

the following answers when asked why they do not use 

databases to manage their data:   

• We don’t see any benefit in them.  The cost of 

learning the tools (data definition and data loading, 

and query) doesn’t seem worth it.  

• They do not offer good visualization/plotting tools. 

• I can handle my data volumes with my programming 

language. 

• They do not support our data types (arrays, spatial, 

text, etc.). 

• They do not support our access patterns (spatial, 

temporal, etc.). 

• We tried them but they were too slow.  

• We tried them but once we loaded our data we could 

no longer manipulate the data using our standard 

application programs.  

• They require an expensive guru (database 

administrator) to use. 

 

All these answers are based on experience and 

considerable investment.  Often the experience was with 

older systems (a 1990 vintage database system) or with a 

young system (an early object-oriented database or an 

early version of Postgres or MySQL.)   Nonetheless, there 

is considerable evidence that databases have to improve a 

lot before they are worth a second look.  

Why things are different now 

The thing that forces a second look now is that the file-ftp 

modus operandi just will not work for peta-scale datasets.  

Some new way of managing and accessing information is 

needed.   We argued that metadata is the key to this and 

that a non-procedural data manipulation language 

combined with data indexing is essential to being able to 

search and analyze the data.    

 

There is a convergence of file systems, database systems, 

and programming languages.   Extensible database 

systems use object-oriented techniques from 

programming languages to allow you to define complex 

objects as native database types.  Files (or extended files 

like HDF) then become part of the database and benefit 

from the parallel search and metadata management.   It 

seems very likely that these nascent database systems will 

be integrated with the main-line database systems in the 

next decade or that some new species of metadata driven 

analysis and workflow system will supplant both 

traditional databases and the science-specific file formats 

and their tool suites.  
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Some hints of success 

There are early signs that this is a good approach.  One of 

us has shown that the doing analysis atop a database 

system is vastly simpler and runs much faster than the 

corresponding file-oriented approach
8
.   The speedup is 

due to better indexing and parallelism.  

  

We have also had considerable success in adding user 

defined functions and stored procedures to astronomy 

databases. The MyDB and CasJobs work for the Sloan 

Digital Sky Survey give a good example of moving-

programs-to-the-database
9
.   

 

The BaBar experiments at SLAC manage a petabyte store 

of event data.  The system uses a combination of Oracle 

to manage some of the file archive and also a physics-

specific data analysis system called Root for data 

analysis
10

. 

 

The GridDB
11

 workflow system at UC Berkeley expands 

the role of database systems into pipeline processing, a 

domain traditionally serviced by "process-centric" 

middlewares
12,13

. Process-centric middlewares 

automatically parallelize workflows of imperative, file-

based programs (e.g. those written in 

Fortran/C/Python/Java) by making use of a "workflow 

schema", which describes programs and their 

dependencies. GridDB uses database techniques to 

improve pipeline processing; specifically, it uses schemas 

that not only contain workflow information, but also 

incorporate data information (i.e. a database schema). The 

combination of both workflow and data schemas enable 

declarative interfaces, and improves the interactivity and 

performance of pipeline processing. 

 

Adaptive Finite Element simulations spend considerable 

time and programming effort on input, output, and 

checkpointing.  We (Heber) use a database to represent 

large Finite Element models. The initial model is 
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represented in the database and each checkpoint and 

analysis step is written to the database. Using a database 

allows queries to define more sophisticated mesh 

partitions and allows concurrent indexed access to the 

simulation data for visualization and computational 

steering.   Commercial Finite Element packages each use 

a proprietary form of a “database”. They are, however, 

limited in scope, functionality, and scalability, and are 

typically buried inside the particular application stack. 

Each worker in the MPI job gets its partition from the 

database (as a query) and dumps its progress to the 

database. These dumps are two to four orders of 

magnitude larger than the input mesh and represent a 

performance challenge in both traditional and database 

environments. The database approach has the added 

benefit that visualization tools can watch and steer the 

computation by reading and writing the database. Finally, 

while we have focused on the ability of databases to 

simplify and speedup the production of raw simulation 

data, we cannot understate its core competency: providing 

declarative data analysis interfaces. It is with these tools 

that scientists spend most of their time. We hope to apply 

similar concepts to some turbulence studies being done at 

Johns Hopkins.  

Summary 

Science centers that curate and serve science data are 

emerging around next-generation science instruments.   

The world-wide telescope, GenBank, and the BaBar 

collaborations are prototypes of this trend.   One group of 

scientists is collecting the data and managing these 

archives.   A larger group of scientists are exploring these 

archives the way previous generations explored their 

private data.  Often the results of the analysis are fed back 

to the archive to add to the corpus.  

 

Because data collection is now separated from data 

analysis, extensive metadata describing the data in 

standard terms is needed so people and programs can 

understand the data.    Good metadata becomes central for 

data sharing among different disciplines and for data 

analysis and visualization tools.      

 

There is a convergence of the nascent-databases (HDF, 

NetCDF, FITS,..) which focus primarily on the metadata 

issues and data interchange, and the traditional data 

management systems (SQL and others) that have focused 

on managing and analyzing very large datasets.   The 

traditional systems have the virtues of automatic 

parallelism, indexing, and non-procedural access, but they 

need to embrace the data types of the science community 

and need to co-exist with data in file systems.   We 

believe the emphasis on extending database systems by 

unifying databases with programming languages so that 
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one can either embed or link new object types into the 

data management system will enable this synthesis.  

 

Three technical advances will be crucial to scientific 

analysis: (1) extensive metadata and metadata standards 

that will make it easy to discover what data exits, make it 

easy for people and programs to understand the data, and 

make it easy to track data lineage; (2) great analysis tools 

that allow scientists to easily ask questions, and to easily 

understand and visualize the answers; and (3)  set-

oriented data parallelism access supported by new 

indexing schemes and new algorithms that allow us to 

interactively explore peta-scale datasets.  

 

The goal is a smart notebook that empowers scientists to 

explore the world’s data.   Science data centers with 

computational resources to explore huge data archives 

will be central to enabling such notebooks.  Because data 

is so large, and IO bandwidth is not keeping pace, moving 

code to data will be essential to performance.  

Consequently, science centers will remain the core 

vehicle and federations will likely be secondary.  Science 

centers will provide both the archives and the institutional 

infrastructure to develop these peta-scale archives and the 

algorithms and tools to analyze them.  
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