

[Editor’s note: With the exception of the last pages –which would be the back cover of the printed issue– that are not

included in this file, it has the same contents as the printed edition. All the articles are also available individually

online and have been put together here for convenience only.]

SIGMOD OFFICERS, COMMITTEES AND AWARDS .. 1
EDITOR'S NOTES... 2
SPECIAL SECTION ON SCIENTIFIC WORKFLOWS

Guest Editors’ Introduction to the Special Section on Scientific Workflows 3
B. Ludaescher and C.Goble

Integrating Databases and Workflow Systems ... 5
S. Shankar, A. Kini, D.J. DeWitt and J. Naughton

An Approach for Pipelining Nested Collections in Scientific Workflows 12
 T.M. McPhillips and S. Bowers
WOODSS and the Web: Annotating and Reusing Scientific Workflows................................... 18

C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri, G. Z. Pastorello Jr, A. Santanche,
R. S. Torres, E. Madeira and E. Bacarin

Simplifying Construction of Complex Workflows for Non-Expert Users of the Southern
California Earthquake Center Community Modeling Environment.. 24

P. Maechling, H. Chalupsky, M. Dougherty, E. Deelman, Y. Gil, S. Gullapalli,
V. Gupta, C. Kesselman, J. Kim, G. Mehta, B. Mendenhall, T. Russ, G. Singh,
M. Spraragen, G. Staples, K. Vahi

A Survey of Data Provenance in e-Science.. 31
Y.L. Simmhan, B. Plale and D. Gannon

A Notation and System for Expressing and Executing Cleanly Typed Workflows on
Messy Scientific Data ... 37
 Yong Zhao, J. Dobson, I. Foster, L. Moreau and M. Wilde
A Taxonomy of Scientific Workflow Systems for Grid Computing... 44
 J. Yu and R. Buyya
XML Database Support for Distributed Execution of Data-intensive Scientific
Workflows .. 50

S. Hastings, M. Ribeiro, S. Langella, S. Oster, U. Catalyurek, T. Pan, K. Huang,
R. Ferreira, J. Saltz and T. Kurc

Scheduling of Scientific Workflows in the ASKALON Grid Environment 56
 M. Wieczorek, R. Prodan and T. Fahringer

REGULAR RESEARCH ARTICLES
Efficient Calendar Based Temporal Association Rule.. 63

K. Verma and O. P. Vyas
Artemis Message Exchange Framework: Semantic Interoperability of Exchanged
Messages in the Healthcare Domain... 71

V. Bicer, G.B. Laleci, A. Dogac and Y. Kabak
RESEARCH CENTERS (U. Centitemel, editor)

Database Research at Bilkent University .. 77
O. Ulusoy

Data Management Research at the Middle East Technical University 81
N. Cicekli, A. Cosar, A. Dogac, F. Polat, P. Senkul, I. Toroslu and A. Yazici

EVENT REPORTS (B. Cooper, editor)
Report on the Workshop on Wrapper Techniques for Legacy Data Systems......................... 85

Ph. Thiran, T. Risch, C. Costilla, J. Henrard, Th. Kabisch, J. Petrini,
W-J. van den Heuvel and J-L. Hainaut

Exchange, Integration and Consistency of Data. Report on the ARISE/NISR Workshop....... 87
L. Bertossi, J. Chomicki, P. Godfrey, P.G. Kolaitis, A. Thomo, and C. Zuzarte

DATABASE PRINCIPLES (L. Libkin, editor)
Query Answering Exploiting Structural Properties.. 91

F. Scarcello
DISTINGUISHED DATABASE PROFILES (M. Winslett, editor)

John Wilkes Speaks Out ..100
REMINISCENCES ON INFLUENTIAL PAPERS (K. A. Ross, editor) ...111
TODS REPORT (R. Snodgrass, editor) ...114

S
IG

M
O

D
 R

e
c
o
rd

–

S
e
p

t
e
m

b
e
r
 2

0
0

5

–

V
o

lu
m

e
 3

4

Is
s
u

e
 3

–

i
d

/
d

SIGMOD Officers, Committees, and Awardees
Chair Vice-Chair Secretary/Treasurer

Raghu Ramakrishnan
Department of Computer Sciences
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706-1685

USA
raghu@cs.wisc.edu

Yannis Ioannidis
University Of Athens

Department of Informatics & Telecom

Panepistimioupolis, Informatics Bldngs

157 84 Ilissia, Athens

HELLAS
yannis@di.uoa.gr

Mary Fernández
ATT Labs - Research
180 Park Ave., Bldg 103, E277
Florham Park, NJ 07932-0971
USA
mff@research.att.com

Information Director: Alexandros Labrinidis, University of Pittsburgh, labrinid@cs.pitt.edu.

Associate Information Directors: Manfred Jeusfeld, Dongwon Lee, Michael Ley, Frank Neven, Altigran

Soares da Silva, Jun Yang.

Advisory Board: Richard Snodgrass (Chair), University of Arizona, rts@cs.arizona.edu, H.V. Jagadish,

John Mylopoulos, David DeWitt, Jim Gray, Hank Korth, Mike Franklin, Patrick Valduriez, Timos Sellis, S.

Sudarshan.

SIGMOD Conference Coordinator: Jianwen Su, UC Santa Barbara, su@cs.ucsb.edu

SIGMOD Workshops Coordinator: Laurent Amsaleg, IRISA Lab, Laurent.Amsaleg@irisa.fr

Industrial Advisory Board: Daniel Barbará (Chair), George Mason Univ., dbarbara@isse.gmu.edu, José

Blakeley, Paul G. Brown, Umeshwar Dayal, Mark Graves, Ashish Gupta, Hank Korth, Nelson M. Mattos,

Marie-Anne Neimat, Douglas Voss.

SIGMOD Record Editorial Board: Mario A. Nascimento (Editor), University of Alberta,

mn@cs.ualberta.ca, José Blakeley, Ugur Cetintemel, Brian Cooper, Andrew Eisenberg, Leonid Libkin,

Alexandros Labrinidis, Jim Melton, Len Seligman, Jignesh Patel, Ken Ross, Marianne Winslett.

SIGMOD Anthology Editorial Board: Curtis Dyreson (Editor), Washington State University,

cdyreson@eecs.wsu.edu, Nick Kline, Joseph Albert, Stefano Ceri, David Lomet.

SIGMOD DiSC Editorial Board: Shahram Ghandeharizadeh (Editor), USC, shahram@pollux.usc.edu,

A. Ailamaki, W. Aref, V. Atluri, R. Barga, K. Boehm, K.S. Candan, Z. Chen, B. Cooper, J. Eder, V. Ganti, J.

Goldstein, G. Golovchinsky, Z. Ives, H-A. Jacobsen, V. Kalogeraki, S.H. Kim, L.V.S. Lakshmanan, D.

Lopresti, M. Mattoso, S. Mehrotra, R. Miller, B. Moon, V. Oria, G. Ozsoyoglu, J. Pei, A. Picariello, F. Sadri, J.

Shanmugasundaram, J. Srivastava, K. Tanaka, W. Tavanapong, V. Tsotras, M. Zaki, R. Zimmermann.

SIGMOD Digital Review Editorial Board: H. V. Jagadish (Editor), Univ. of Michigan,

jag@eecs.umich.edu, Alon Halevy, Michael Ley, Yannis Papakonstantinou, Nandit Soparkar.

Sister Society Liaisons: Stefano Ceri (VLDB Foundation and EDBT Endowment), Hongjun Lu (SIGKDD and

CCFDBS), Yannis Ioannidis (IEEE TCDE), Serge Abiteboul (PODS and ICDT Council).

Latin American Liaison Commitee: Claudia M. Bauzer Medeiros (Chair), University of Campinas,

cmbm@ic.unicamp.br Alfonso Aguirre, Leopoldo Bertossi, Alberto Laender, Sergio Lifschitz, Marta

Mattoso, Gustavo Rossi.

Awards Committee: Moshe Y. Vardi (Chair), Rice University, vardi@cs.rice.edu. Rudolf Bayer,

Masaru Kitsuregawa, Z. Meral Ozsoyoglu, Pat Selinger, Michael Stonebraker.

Award Recipients:

Innovation Award: Michael Stonebraker, Jim Gray, Philip Bernstein, David DeWitt, C. Mohan, David Maier,

Serge Abiteboul, Hector Garcia-Molina, Rakesh Agrawal, Rudolf Bayer, Patricia Selinger, Don Chamberlin,

Ronald Fagin.

Contributions Award: Maria Zemankova, Gio Wiederhold, Yahiko Kambayashi, Jeffrey Ullman, Avi

Silberschatz, Won Kim, Raghu Ramakrishnan, Laura Haas, Michael Carey, Daniel Rosenkrantz, Richard

Snodgrass, Michael Ley, Surajit Chaudhuri.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 1

Editor’s Notes

Dear Colleagues,

This is the first issue with the newly elected officers for SIGMOD: Raghu Ramakrishnan (Chair), Yannis

Ioannidis (Vice-chair) and Mary Fernández (Secretary/Treasurer). I am confident I can speak for all

members when I bid a warm welcome and wish them a productive mandate. Likewise, I would also like

to thank the other candidates, Ahmed Elmagarmid, Krithi Ramamritham and Louiqa Rashid, for putting

forward their names. As others have mentioned it before, is good to see that SIGMOD can count on

good people willing to keep its well-established tradition.

You will probably notice that this issue is missing the traditional Chair’s Message. The reason for that is

simple: timing. Even though this is September’s issue, it is closed and sent to ACM’s Headquarters late

in July. Raghu took over shortly before I had to close this issue, and amid all the transition work, his

message could not be prepared in time; hence this issue will not feature the Chair’s Message. However,

in a quick email exchange he asked me to relay the following message: “I’m glad to have the opportunity

to be chair and to work with Mary and Yannis, and we're working to understand the issues involved in

our new offices.” We all look forward for his first message in December’s issue. The new officers are

also in the process of updating the volunteer committees as well, so the listing you see on this issue is

likely to change for the next ones.

This issue features a special section on Scientific Workflows guest-edited by Bertram Ludäscher (Univ.

of California, Davis) and Carole Goble (Univ. of Manchester). As you can see from their introduction to

the special section, they were able to put good together a good set of papers covering several aspects of

this new area. I hope to be able to have similar guest-edited special section once or twice a year. If you

have an idea about one and are willing to work on it, please contact me.

On a sad note, Alberto Mendelzon passed away last June. I think that the following, excerpted from a

statement
1
 by his colleagues in the Toronto Database Group, summarizes everyone’s feelings well:

“Alberto was a great intellect, a charming friend, and an inspirational mentor. The citation for his recent

election into the Royal Society of Canada (the Canadian National Academy) gives a glimpse into his

intellectual legacy, but says nothing of the great man who will be sorely missed. His passing leaves a

hole in our community and in our hearts.” As I type this note, his colleagues in Toronto are working on

a tribute that should appear in December’s issue.

Finally, the Record does have a backlog of papers both to be printed and to be reviewed. While it is nice

to have a larger number of papers being submitted, this puts further stress on the reviewing process

(which I mentioned on June’s issue). I assure you that all submitted papers are given fair attention,

which, sometimes, means a longer review time. As well, all those accepted will be published as soon as

possible. I wish all could be published as they are accepted, but I have to work within a pre-determined

page budget, which means all papers have to wait for its turn “in line”. I am sure you all understand

(though I also understand you may not like it when it is your paper that is delayed, but c’est la vie).

I hope you enjoy this issue and that you have had a good Summer time (or Winter time depending on

which hemisphere you are).

Mario Nascimento, Editor.

July 2005

1
 http://www.sigmod.org/NEWS/05/alberto.16june2005.html

2 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Guest Editors’ Introduction to the Special Section on
Scientific Workflows

Bertram Ludäscher
Dept. of Computer Science & Genome Center

University of California, Davis
1 Shields Ave, Davis, CA 95616, USA

ludaesch@ucdavis.edu

Carole Goble
School of Computer Science
The University of Manchester

Manchester, M13 9PL, UK

carole@cs.man.ac.uk

1. INTRODUCTION
Business-oriented workflows have been studied since the 70’s
under various names (office automation, workflow manage-
ment, business process management) and by different com-
munities, including the database community. Much basic
and applied research has been conducted over the years, e.g.
theoretical studies of workflow languages and models (based
on Petri-nets or process calculi), their properties, transac-
tional behavior, etc.

Recently, and largely unnoticed by the database com-
munity, scientific workflows have gained momentum due
to their central role in e-Science and cyberinfrastructure
applications, i.e., where scientists need to “glue” together
data management, analysis, simulation, and visualization
services over often voluminous and (structurally and seman-
tically) complex, distributed scientific data and services.
While sharing commonalities with their business workflow
relatives, scientific workflows often pose different challenges.
For example, scientific workflows are typically data-centric,
dataflow-oriented “analysis pipelines” (as opposed to task-
centric and control-flow oriented business workflows) and
can be very computationally expensive (often requiring par-
allel and/or Grid computing capabilities).

Another characteristic is that scientific workflows are of-
ten more metadata and annotation-intensive, since repur-
posing of a scientific data product in another scientist’s
study requires detailed (and preferably machine-processable)
context and data provenance information. Finally, scientists
typically are rather individualistic and are more likely to
create their own “knowledge discovery workflows”, whereas
in business, users are commonly restricted to using care-
fully designed and predetermined automation workflows in
a constrained way.

Scientific workflow systems are related to (and can have
features of) mathematical problem solving environments [1],
LIMS (Laboratory Information Management Systems), data-
flow visualization systems (AVS, IBM’s OpenDX, SciRUN,
etc.), and distributed (Grid) scheduling and execution envi-
ronments. Users of scientific workflow systems range from
bench scientists to computational scientists and of course in-
clude the new breed of “hybrid” e-scientists. Scientific work-
flows are useful to capture, document, archive, share, exe-
cute, and reproduce scientific data analysis pipelines from
all disciplines (e.g., biology, medicine, ecology, chemistry,
physics, geosciences, and astronomy). Clearly, different dis-
ciplines and subdisciplines can have different requirements
and characteristics w.r.t. data volume, (structural and se-
mantic) heterogeneity, computational complexity, etc.

Grid computing (now largely web service based) has stim-
ulated workflow developments, from the orchestration of
long running applications to the scheduling of job submis-
sions to marshalled compute resources. Many scientific work-
flow systems can execute remote web services and local tools
(e.g., via a command-line interface).

2. SPECIAL SECTION OVERVIEW
With this special section we aim at providing a glimpse of a
number of research and development activities and technical
challenges in scientific workflows. Due to space limitations,
we can only provide a very limited snapshot of ongoing work.
Nevertheless, we hope that this special section can serve as
a first sample of the range of issues that define the current
state-of-the-art in scientific workflows and that provide a
starting point for further research and contributions by the
database community.

The call for papers attracted 31 submissions, indicating
the large interest in the topic. Based on the peer reviews
by about thirty external reviewers, 9 papers were accepted.
Several of the papers use case studies from the life sciences:
two papers use applications in biomedical image analysis,
and two others use bioinformatics and phylogenetics exam-
ples. The geosciences are also represented. These disci-
plines are characterized by large, distributed and hetero-
geneous data sets, which are subject to change and regular
re-interpretation, and need to be combined and processed in
differing and non-prescriptive ways by third party scientists.

Scientific Workflow Systems. There is a plethora of sci-
entific workflow environments covering a range of scientific
disciplines. Yu and Buyya’s “Taxonomy of Scientific Work-

flow Systems for Grid Computing” sets the scene by briefly
characterizing and classifying various approaches for build-
ing and executing workflows on the Grid. A comprehensive
scientific workflow system has demanding execution require-
ments. They should be able to schedule workflow tasks (typ-
ically in a distributed/Grid environment), monitor and con-
trol execution, allow on-the-fly visualization and computa-
tional steering, facilitate “pause and rerun”, gracefully man-
age failure, and support various static and dynamic analysis
and optimization techniques.

Metadata for Workflow Reuse and Provenance. Sci-
entific workflows are pivotal knowledge components in e-
Science. The scientific protocol encapsulated by the work-
flow provides a context and history for its products that

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 3

enables their interpretation. Data provenance is such a crit-
ical component of scientific workflows, that the “Survey of

Data Provenance in e-Science” by Simmhan, Plale and
Gannon is a welcome summarization of the key research
efforts and open challenges.

A workflow is itself is know-how about a scientific method
that can be shared and reused, or act as a template for
new versions of workflows. By reusing workflows we can
spread best practice, avoid wasteful duplicated effort, and
foster scientific collaboration. Along with shared data ware-
houses and service registries, we envision shared catalogues
of workflows indexed by metadata, as do Mederios et al

in “WOODSS and the Web: Annotating and Reusing Sci-

entific Workflows”. This presents challenges of how to de-
scribe and query workflows, understanding models of reuse,
and presenting the workflows in terms of a user model rather
than a delivery paradigm.

In “Simplifying Construction of Complex Workflows for

Non-Expert Users of the Southern California Earthquake

Centre Community Modelling Environment” Maechling et

al pick up this theme by returning the scientist at the cen-
ter of a real scientific workflow application. Workflow tem-
plates are shared and reused by scientists; metadata is used
to intelligently guide scientists to build and refine their own
workflows.

Workflow Support for Data Collections. As scientific
data analysis is the main use of workflows, it is becoming
apparent that large-scale data-intensive workflows will dom-
inate e-Science. Two papers take the management of data
collections in workflow as their theme, whilst two more take
a more conventional database line, arguing that database
technologies can support workflow environments.

When constructing workflows that operate on large and
complex datasets, the ability to describe and introspect on
the types of both datasets and workflow components is in-
valuable – for type checking and iteration over collections,
for example. If the datasets were described using clearly
defined and shared metadata, and stored in well-organized
databases, then this would be straightforward. However, the
real world is not like this. Datasets are commonly files, and
metadata is encoded in directory and file names, employed
in ad-hoc ways. The physical manifestation of the dataset
is conflated with its logical structure.

In “A Notation and System for Expressing and Execut-

ing Cleanly Typed Workflows on Messy Scientific Data”,
Zhao et al present a typed workflow notation and system
that allows workflows to be expressed in terms of abstract
XML data types that are then executed over diverse physical
representations, decoupling the physical and logical descrip-
tions without forcing change in the datasets themselves.

McPhillips and Bowers in “An Approach for Pipelin-

ing Nested Collections in Scientific Workflows” take up the
theme of appropriate approaches for workflow execution over
large-scale nested data collections. Their framework illus-
trates a new scientific workflow programming paradigm, em-
phasizing extensibility through collection-aware actors, con-
current operations, on the fly component customization and
exception management.

Database Support for Workflow Execution. Several
works focus on database support for scientific workflows.
Shannon et al pick up on the prevalence of XML for

describing and representing datasets, that there should be
“XML Database Support for Distributed Execution of Data-

intensive Scientific Workflows”. They use the Mobius frame-
work for on demand creation and federation of XML data-
bases and DataCutter for streaming data between processes.

Shanker et al go further by arguing in “Integrating

Databases and Workflow Systems” that workflow execution
and data management are so co-dependent that this calls for
a workflow modelling language that tightly integrates work-
flow management systems and database management sys-
tems. Rather than a process dominated viewpoint, where
data is a product of a workflow engine, they see workflow
execution as a means of generating data products as an ex-
tension of SQL, putting the database at the center rather
than the workflow execution machinery.

This resonates with the Virtual Data Language discussed
by Zhao et al. A more loosely coupled approach has been
proposed by the OGSA-DQP project; they suggest that
database queries can be workflow jobs and workflow com-
ponents can be queries [2].

Workflow Scheduling. In “Scheduling of Scientific Work-

flows in the ASKALON Grid Environment”, Wieczorek,
Prodan and Fahringer’s paper focuses particularly on ex-
ecution performance for scheduling in Grid environments,
and represent a particular use of workflow, that is scheduling
job submissions over compute resources, sometimes termed
“workflow in the small”. This is in contrast to workflows for
orchestrating applications, termed “workflow in the large”,
such as those developed by myGrid’s Taverna system [3] or
Kepler [4].

Conclusion. It has been recognized by funding agencies
and their respective programmes and initiatives (e.g., NIH
Roadmap, NSF ITR, Cyberinfrastructure, DOE SciDAC,
UK e-Science, various EU programmes, etc.) that scientific
advances and discoveries are facilitated through novel IT in-
frastructure and tools. Scientific workflows provide the in-
terface between scientists and this infrastructure. We think
that the many and various types of technical challenges in
scientific workflow modeling, design, optimization, verifica-
tion etc. provide a rich playing field and great opportunity
for database researchers.

Acknowledgements. We thank the SIGMOD-Record ed-
itor, Mario Nascimento, and all external reviewers of this
special section for their support.

3. REFERENCES

[1] R. F. Boisvert and E. N. Houstis, editors.
Computational Science, Mathematics, and Software.
Purdue University Press, 1999.

[2] OGSA-DQP: Service Based Distributed Query
Processor. http://www.ogsadai.org.uk/dqp/.

[3] myGrid. http://www.mygrid.org.uk/.

[4] Kepler. http://kepler-project.org/.

4 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Integrating databases and workflow systems
Srinath Shankar Ameet Kini David J DeWitt Jeffrey Naughton

Department of Computer Sciences
University of Wisconsin

Madison, WI 53706-1685
{srinath,akini,dewitt,naughton}@cs.wisc.edu

Abstract
There has been an information explosion in fields of sci-
ence such as high energy physics, astronomy, environ-
mental sciences and biology. There is a critical need for
automated systems to manage scientific applications and
data. Database technology is well-suited to handle sev-
eral aspects of workflow management. Contemporary
workflow systems are built from multiple, separately de-
veloped components and do not exploit the full power
of DBMSs in handling data of large magnitudes. We
advocate a holistic view of a WFMS that includes not
only workflow modeling but planning, scheduling, data
management and cluster management. Thus, it is worth-
while to explore the ways in which databases can be aug-
mented to manage workflows in addition to data. We
present a language for modeling workflows that is tightly
integrated with SQL. Each scientific program in a work-
flow is associated with anactive tableor view. The def-
inition of data products is in relational format, and in-
vocation of programs and querying is done in SQL. The
tight coupling between workflow management and data-
manipulation is an advantage for data-intensive scientific
programs.

1 Introduction
Cutting edge science has been witness to an information
explosion. In recent years, scientists from fields such as
high energy physics, astronomy, environmental sciences
and biology have been overwhelmed by the task of man-
aging the vast quantities of data generated by their ex-
periments. Some examples are ATLAS [7], SDSS [10],
GEON [5] and BIRN [1]. In addition to the data, scien-
tists also have to deal with a large number of specialized
programs. There is a critical need for automated sys-
tems to manage scientific applications and data. Thus,
the study of scientific workflows has gained importance
in its own right. Several WFMSs (GriPhyn [6], Griddb
[29], Zoo [26], Kepler [12]) have been proposed to pro-
vide functionality such as workflow modeling, execu-
tion, provenance, auditing and visualization. The im-
portance of the Grid and systems like Condor [4] to
workflow management has also been recognized. While
database technology has been utilized to some extent in
each of these systems, none of them really explore the
full power of DBMSs in handling large magnitudes of

data. Furthermore, contemporary WFMSs are built from
multiple components, each of which performs a separate
function. We believe it is a mistake to study the different
aspects of workflow management in isolation. Databases
should play a crucial role in the big picture, and this must
motivate architectural decisions with respect to workflow
modeling, planning, execution and data management.

2 The Grid - An added dimension
Recent research in scientific workflow management has
focused on the Grid. Several definitions of the grid ex-
ist [16]. Theoretically, a computing grid is like a power
grid. Users can ‘plug into’ it and avail themselves of the
vast computing resources available around the world.

The most popular distributed computing system that
approximates this behavior is Condor, which is used to
manage clusters (or pools) of machines. Condor is an ex-
cellent way to harvest the CPU cycles of idle machines.
It provides useful virtualizing services, such as migrat-
ing jobs and transferring the input and output files for a
job to the right machine. Furthermore, it is easy to cus-
tomize on a per-job basis. Users can specify the type of
environments they need to run their jobs, and individual
machines in the pool can implement policies regarding
the kinds of jobs they are willing to run. Thus, it is an in-
valuable tool for scientists with long-running, resource-
intensive jobs.

Condor has established itself as the work-horse of
scientific computing. At last count, (Jul 2005) it was
installed on more than 58000 machines organized across
1500 pools in universities and organizations world-wide.
Condor was developed in the early ‘80s primarily as a
cycle harvesting system. Since then a lot of the assump-
tions that motivated the design of Condor have changed.
In the ‘80s computing resources were scarce and expen-
sive. Now, large clusters of commodity machines have
become affordable for almost everyone. Although the
volumes of data available to and processed by typical
scientific applications has increased, the cost of storage
has also plummeted. In light of the advances in proces-
sor and disk technology over the last decade, we believe
it is worthwhile to re-evaluate some of the design de-
cisions made in the architecture of Condor. As the need
for cycle harvesting on idle desktop machines diminishes
and the need for better cluster management comes to the

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 5

fore, we feel that grid computing systems such as Con-
dor can exploit database technology to provide improved
functionality, scalability and reliability.

3 Related work
A lot of research has already been done in the field of
managingbusiness workflows with databases. Exam-
ples include active databases [31], enhanced datalog [15]
and relational transducers [11]. Oracle 9i introduced job
queues for the periodic execution of administrative and
house-keeping tasks defined in the procedural PL/SQL
language. Oracle 10g offers database views for moni-
toring the status of jobs, programs, program arguments
and schedules. Solutions for business workflows have
mainly concentrated on thecontrol flow between pro-
cesses.

Scientific workflows, on the other hand, pose an en-
tirely new set of challenges. Scientific jobs are usually
long-running and highly resource-intensive. Thus, ef-
ficient data-flow management is essential. In addition,
scientists require sophisticated tools to query and visual-
ize their data products. One of the first systems built to
handle workflows in this domain was Zoo [26], a desk-
top experiment management environment. It used the
object-oriented language Moose to model control flow
between jobs as relationships between entities that rep-
resented jobs, input data and output data. Job invoca-
tion was handled by assigning rules on these relation-
ships. Zoo also provided a variety of workflow auditing
capabilities that allowed users to query the state of the
database using the Fox query language. The Zoo system
was architected with a data-centric view of workflows
and was built on the Horse OODBMS.

The GriPhyn project [6] is a collaborative effort to-
ward a standard solution for handling scientific work-
flows. Its components include Chimera [23], Pegasus
[21] and a Replica Location Service [19]. Chimera al-
lows users to declare programs, their logical data prod-
ucts and the composite workflow graph in a Virtual Data
Language. Given a request for a particular virtual data
product, Chimera analyzes the Virtual Data Catalog and
comes up with an abstract DAG representing the se-
quence of operations that produce that data. Pegasus,
the planner, locates physical file replicas (using RLS)
and uses resource information (from the Globus Mon-
itoring and Discovery Service [25]) to come up with a
concrete plan of execution. The concrete plans produced
by Pegasus are in fact Condor DAGMan [2] submit files.
The DAGMan scheduler in Condor is used to execute
the programs on a Condor pool. Pegasus uses artificial
intelligence techniques to choose amongst multiple pos-
sible physical replicas and minimize resource usage in
its planning algorithms.

The Ptolemy II [9] is based on the concept of actors,

which are independent components that perform tasks
such as data transformations, specific steps in an algo-
rithm or simply opening a browser or a shell program.
Actors have well-defined interfaces called ports and can
be composed into scientific workflows. The idea is to
promote the reuse of entities and thus make scientific
workflows easy to design and more modular. Kepler [12]
provides extensions to Ptolemy such as aWebservice ac-
tor to enable access to remote resources andFileStager,
FileFetcher andGlobusJob actors to enable workflows
to make use of the Grid. It also provides aDirector ac-
tor, similar to Condor’s DAGMan, that can be used to
schedule the execution order of individual actors. The
Kepler system has been used in scientific projects such
as GEON, SEEK and SciDAC/SDM. While Kepler pro-
vides a useful way to model scientific workflows, it does
not address the larger issues of planning workflows or
providing fault-tolerance measures.

In GridDB [29], the inputs and outputs of programs
are modeled as relational tables. It allows users to define
programs and the relationship between their inputs and
ouptuts in a functional data modeling language (FDM).
Insertion of tuples in input tables triggers the execution
of programs in the workflow. Programs are executed by
submitting them to Condor.

Turning to workflow execution substrates, the Con-
dor team at UW-Madison has worked on a number
of projects aimed at increasing the functionality and
efficiency of Condor. These include Stork [28] and
DiskRouter [3] for efficient data placement, Condor-G
(which integrates Condor with the Globus toolkit [25])
and Hawkeye [8] (which lets users monitor their jobs).
These have been integrated with Condor in varying de-
grees.

Perhaps the most relevant work with respect to the
execution of scientific programs was done by Gray et
al. [24]. Using the cluster-finding example from the
Sloan Digital Sky Survey, they demonstrated the benefits
of modern DBMSs, such as using indices, parallelizing
query execution and using efficient join algorithms. The
performance obtained by using a database (Microsoft’s
SQL Server) to store and query astronomical data was or-
ders of magnitude better than previous implementations
of the algorithm. They advocate a tighter integration of
computation and data, i.e. involving the DBMS in the
analysis and computation of scientific applications and
not relegating it to a passive store.

4 Limitations of current workflow systems
Most of the workflow management systems described
above are composed of multiple components that were
developed independently. Thus, inter-component com-
munication is set up along very rigid channels. For ex-
ample, consider the role of planning in a WFMS. In their

6 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

analysis of batch workloads across remote compute clus-
ters, Bent et al. [14] showed that there are qualitative
differences in the types of I/O performed by an individ-
ual job during its lifetime.Batch I/O refers to the input
that is common to all jobs in a batch, whilepipeline I/O
is the data flow that occurs between jobs in a particular
DAG. The authors recognized the importance of exploit-
ing the sharing characteristics of batch input and provid-
ing locality of execution for programs that share pipeline
I/O to minimize network traffic. Current WFMSs are not
closely integrated with the user data, and are thus unable
to do such detailed planning. For example Pegasus, the
planning component of GriPhyN, which uses AI tech-
niques to arrive at globally optimal solutions, doesn’t
have access to detailed job characteristics. GridDB cur-
rently has no way of planning workflows at all, since
it is constrained by the Condor job-submission inter-
face. Incorporating planning into such systems will re-
quire a substantial reworking of their design. While the
approach pursued by Gray et al. seems the most holis-
tic solution, it involves invoking program modules from
within SQL statements (in the form of user-defined func-
tions or stored procedures). Most databases do not di-
rectly execute binaries or interpret arbitrary code. Pro-
grammers who wish to invoke modules as part of SQL
statements have to conform to strict specifications while
writing and compiling them, and are usually constrained
in the languages they can use (C,C++ and Java). Scien-
tists may balk at having to rewrite their applications to
allow them to be run by a database. We feel the con-
tinued usage of legacy applications in languages such
as Fortran, and the importance of file-based (as opposed
to database) I/O in the scientific domain may hinder the
adoption of the technique espoused by Gray et al. Fur-
thermore, rewriting workflows in SQL is not sufficient.
Scientists also want ways to set up and execute work-
flows.

The Zoo system used objects and relationships to
model workflows. Like GridDB, triggers were used to
activate workflows. However, Zoo was designed as a
desktop management system and not for cluster manage-
ment, which is an important component of a WFMS. Zoo
had no mechanisms for gathering workload characteris-
tics, maintaining data replicas across nodes and schedul-
ing data transfers between machines.

5 Why a database is essential
At this juncture, it is important to concretize the notion
of a WFMS. How is it used, and what demands do we
make of it in terms of functionality? From the user’s per-
spective, there are three important aspects to a WFMS.

• The declaration and specification of workflows,
processes and data

• The invocation of scientific workflows

• The ability to monitor workflows.
A WFMS must make it easy for a user to do the
above while successfully abstracting away the following
behind-the-scenes activities:
Workflow Planning – The various processes that com-

prise a workflow and the attendant data transfer
must be planned to maximize system efficiency and
throughput.

Scheduling – It is the responsibility of the WFMS to in-
voke individual programs and schedule data trans-
fers according to a plan.

Data management –A WFMS must keep track of the
data produced by user workflows, manage data
replicas and consistency, provide data recovery in
the face of failure and maintain versions of user pro-
grams and data as a workflow evolves.

Cluster management –A WFMS must monitor the
state of its cluster, including network connectivity
and machine parameters such as disk space and load
averages. It must handle temporary and permanent
machine failure in a transparent manner while dis-
tributing load evenly.

As Sections 3 and 4 show, database technology has been
used only to a limited extent, mostly to store metadata
and task descriptions. For instance, Griphyn’s RLS sim-
ply uses a database to store its replica catalog. GridDB
uses a database to storememo tables, which are corre-
spondences between the inputs and outputs of a program
that has completed, andprocess tables that contain state
information of currently executing programs. In com-
mercial databases, job queues have been used to sched-
ule administrative tasks and for interprocess communi-
cation. We believe database technology has a lot more to
offer the realm of scientific workflow management.

Planning – The research in [14] demonstrates the
need for workflow planning if clusters are to scale to
a large number of machines (about 100,000) executing
huge batch workloads. No satisfying solution currently
exists to this problem, and we believe it is an important
one to solve in the near future. Database technology has
long concerned itself with the issue of optimizing queries
over distributed data sources to minimize CPU time and
network and disk I/O ([22],[30]). Moreover a great deal
of attention has been paid to dynamic query optimiza-
tion [20], which uses feedback from currently executing
queries to make plan adjustments. Thus, databases are
ideally suited to planning data-intensive scientific work-
flows in dynamic environments.

Provenance– A good workflow management sys-
tem should provide administrative assistance in addi-
tion to job scheduling services. The importance of data
provenance has already been recognized in the GriPhyn
and GridDB projects. Data provenance has been stud-
ied from both theoretical [17] and practical perspectives

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 7

by the database community. Data management systems
such as [32] have demonstrated the ability of databases
in providing real provenance services to users.

Concurrency control – As cluster and workload
sizes increase, it becomes necessary to recognize and
prevent interference between simultaneously executing
jobs. Current WFMSs do not address this problem ade-
quately. Databases are good at handling concurrent ac-
cess at various levels of granularity, maintaining replica
consistency for data objects and resolving conflicts. In
addition, databases can provide different degrees of con-
sistency for different transactions.

Recovery– Recognizing and handling multiple fail-
ure modes in a grid computing environment is very im-
portant. For example, a job must not be ‘lost’ or ‘for-
gotten’ when machines involved in its execution crash.
Databases are good at recovering data and system state
in a transparent way while minimizing the impact on cur-
rently executing processes and efficiently balancing load
on the remaining machines.

Transactional semantics and persistence– The no-
tion of a transaction is essential to workflows. The atom-
icity and durability of certain sequences of actions, such
as moving data and jobs from one machine to another,
is important. Condor’s DAGMan is a custom-designed
tool that allows users to specify workflow graphs that
are guaranteed to be executed. Even this popular tool
doesn’t allow users to ‘rollback’ portions of a graph
when their programs fail or abort jobs that were mistak-
enly submitted or violated certain constraints. Transac-
tional semantics would provide greater functionality and
simplify the design of WFMSs.

Querying capabilities–In addition to user data, grid
compute clusters generate large amounts of operational
data on a daily basis. This data includes the status of ma-
chines and jobs in the cluster, user information and file
access information. For example, in Condor, such data is
spread over log files across multiple machines, making it
very hard to administer. In fact, a lot of it is thrown away
due to archaic space management policies. The tasks of
managing a pool of machines, monitoring its health and
diagnosing problems could be simplified and even auto-
mated if its operational data were accessible using SQL
in a uniform, declarative fashion. The support for SQL
provided by a DBMS would also allow users to query the
status of their personal jobs and data without impinging
the privacy of other users.

To summarize, many components required of a sci-
entific WFMS have been a part of DBMS technology
for a long time. A comprehensive system that encom-
passes workflow planning, data and cluster management
must have a database system as its core. In fact, since
databases provide much of the functionality required of
a WFMS, we feel it makes sense to ask – Can we aug-

ment databases to handle workflows in addition to data?
A tightly integrated architecture is needed and the de-
sign of all components of a WFMS must be motivated
by the use of database technology. No aspect of work-
flow management should be viewed in isolation from the
others. For instance, a workflow modeling language that
is similar to SQL could leverage database query opti-
mization techniques for the efficient execution of data-
intensive scientific jobs. In addition, in order to plan and
schedule workflows, query optimizers must have access
to information such as replica locations, machine avail-
ability and load in relational format. This would allow
most WFMS management operations to be performed in
a way analogous to traditional data management opera-
tions.

6 A modeling framework
In this section we present a workflow modeling language
that tightly integrates WFMSs and DBMSs. First, we
identify some of the features a workflow modeling lan-
guage should possess:
Program specification – The language should let users

declare programs and specify an ‘invocation for-
mat’ for the programs. By invocation format we
mean the format in which the program and its pa-
rameters are presented to a cluster for execution.
For example, the invocation format could be a shell
command, or a Condor submit file.

Data specification – Users may wish to explicitly
model the input and output of their programs, and
a modeling language must allow users to assign a
schema to this data.

Data ‘transducers’ – Almost all scientific programs
are written to deal with data in files. Thus, a mod-
eling language must provide for transducers that in-
terpret data resident in flat files and provide a rela-
tional ‘view’ of it.

Specification of control and data flow – Users must
be able to compose their programs and data into a
unified workflow.

Workflow invocation – The modeling language must
allow users to activate workflows in a transparent
and well-defined manner.

To demonstrate our modeling language we use the AT-
LAS high energy physics workflow ([29]). An event gen-
erator program (gen) is used to feed two different simu-
lator (atlsim and atlfast) and their output is compared
(Figure 1).

The modeling language we present is based on the
concept of anactive table. Every program in a workflow
is associated with an active relational table. An active
table has two parts to its schema – one for the input of the
program and one for its output. For example, the event
generatorgen is declared in the following way (keywords
are in uppercase)

8 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Figure 1: The simplified Atlas Workflow

Example I (GEN):
CREATE ACTIVE TABLE Gen
WITH PROGRAM ’/path/to/gen’
INPUT (pmas INTEGER) INVOCATION (" $pmas")
OUTPUT (eventfile VARCHAR) FORMAT ’genschema.xml’

Programgen takes as input an integerpmas and pro-
duces a file of events (to be used by the simulators).
The INPUT and OUTPUT clauses capture this informa-
tion – pmas contains the integer parameter forgen, and
eventfile contains the name of the file it produces.
The schema of an active table is the concatenation of
its input and output fields. Thus, the tableGen has the
schemaGen(pmas INTEGER,eventfile VARCHAR).
The INVOCATION clause specifies that the program is
invoked by issuing the command ‘gen <pmas>’. The
purpose of theFORMAT clause is explained in the next
example.

Workflows are composed by declaring active views,
which are similar to active tables. Consider the program
atlfast, which takes as input the event file produced by
gen. The declaration ofatlfast is as follows
Example II (ATLFAST):
CREATE ACTIVE VIEW Atlfast
WITH PROGRAM ’/path/to/atlfast’
INPUT (eventfile varchar)
INVOCATION ("-events $eventfile")
AS SELECT Gen.eventfile FROM Gen
OUTPUT (imas integer) FORMAT ’atlschema.xml’

As was the case in the Example I, the rela-
tional view Atlfast is associated with the pro-
gram atlfast. The active view has been defined to
take as input the filenameGen.eventfile, which
is output by the programgen. (It is not required
that the INPUT field in Atlfast also be called
eventfile). The tableAtlfast has the schema
Atlfast(eventfile VARCHAR, imas INTEGER).

Most scientific programs process data in a filesystem.
For instance, the output of theatlfast program is an inte-
ger which it stores in a file. To interpret data in files, the

WFMS needs to know the format in which it is stored,
and what the desired relational format is. TheFORMAT

clause is used to specify an XML file containing this in-
formation.

Workflow automation is accomplished in the follow-
ing way – In examples I and II,Gen is the base table, and
Atlfast is the derived table. The workflow is set up by
populating the base table with input data. Each record
of input corresponds to a separate execution of the work-
flow. A section of the workflow is invoked by issuing a
query on the corresponding derived table. For instance,
Gen could be populated as follows:
INSERT INTO Gen(pmas) VALUES (100)
INSERT INTO Gen(pmas) VALUES (200)
etc.

The gen-atlfast section of the ATLAS workflow can
be explicitly started using the SQL query:
SELECT Atlfast.imas FROM Atlfast

The general idea is that a program is invoked when-
ever a query is issued on theOUTPUT fields of its ac-
tive table (in the above example, the output field is
imas). Thus, gen is invoked for each value ofpmas
(100,200,. . .), andatlfast is called for each event filegen
produces. If a program fails due to an error or abnormal-
ity, the correspondingOUTPUT field is filled with null
or an appropriate error value. For example, suppose the
programgen with input 200 fails. Then the correspond-
ing Gen.eventfile field is set tonull. The exact in-
put that caused the error can be detected by the simple
query:
SELECT Gen.pmas FROM Gen
WHERE Gen.eventfile IS NULL

To complete the ATLAS example, here is the decla-
ration of theatlsim program. Its input and output are
similar toatlfast
Example III (ATLSIM):
CREATE ACTIVE VIEW Atlsim
WITH PROGRAM ’/path/to/atlsim’
INPUT (eventfile varchar)
INVOCATION ("-events $eventfile")
AS SELECT Gen.eventfile FROM Gen
OUTPUT (imas integer) FORMAT ’atlschema.xml’

The comparison between the output of the two sim-
ulator programs can now be done by means of a SQL
query
Example IV (COMPARE):
SELECT F.imas, S.imas FROM Atlfast F, Atlsim S
WHERE F.eventfile = S.eventfile

Thus, in this workflow modeling language, initial in-
put data and programs are represented as active tables,
and derivative programs and data as active views. For
each program in the workflow, exactly one table/view
has to be defined. Any section of the workflow can be
explicitly invoked by issuing a SQL query on the corre-
sponding views or tables (Such a query is the compari-
son query in Example IV). Workflow automation is sim-
ply an extension of active view maintenance. Since the

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 9

views are generated by the output of possibly long run-
ning programs, it might be best to materialize them in-
stead of regenerating them on each query. This prevents
unnecessary re-execution of programs. Like traditional
materialized views, active views can be updated in two
ways

• When base data changes (that is, input is inserted
into the initial tables in the workflow), successive
stages of the workflow can be invoked – the ‘push’
method

• When a query is issued (explicit invocation) views
can be updated if necessary – the ‘pull’ method.

If the ‘pull’ mechanism is adopted, users might have to
wait long periods of time for the result of a query. We
feel a ‘push’ mechanism would increase the degree of
automation the WFMS provides.

The modeling language presented above is meant for
tight integration with a database. The declaration and
definition of workflows is in relational format, and the
invocation and querying is done in SQL. Thus, as ex-
ample IV shows, data manipulation can be closely in-
tegrated with workflow execution. Moreover, the query
graph that represents the output (in this case, example
IV) is the same as the workflow graph. Coupled with a
knowledge of the data products, this opens the door to
workflow optimization using database techniques. For
instance, the WFMS need not materialize the outputs of
atlfast andatlsim before executing the join – a pipelined
plan can be chosen in which the join is executed ‘on the
fly’, thus improving efficiency. Architectures that simply
layer a modeling framework over an execution substrate
do not lend themselves to such optimizations.

7 An execution framework
We now turn to the execution substrate, with Condor as
the standard. Condor consists of several daemons such
as theschedd to which users present jobs for submission,
thestartd which is responsible for advertising machines
in the pool, and thenegotiator which matches jobs to ma-
chines. The task of managing, debugging and querying
the system is a complex task involving multiple daemon
log files across hundreds of machines in the pool. Re-
cent research at UW-Madison has addressed many of the
problems facing system administrators and users by pro-
viding a powerful window into the system while simulta-
neously laying the foundation for a more comprehensive
DB-managed cluster architecture. The original Condor
daemons on different machines in the pool were modi-
fied to report operational data to a central database. This
data lends itself to diagnostic queries (Which machines
are down and for how long? Why hasn’t a job run?),
as well as user queries (What is the status of my jobs?
How much system run-time have I got?). Additionally,
certain information that was hard to obtain previously is

now easily accessible. For instance, any aggregate query
on the I/O performed by a job would previously involve
scanning multiple log files over all the machines the job
ever executed on – now it’s a simple SQL query.

The instrumentation of the Condor daemons is also
an important first-step toward building a WFMS around
a DBMS – the operational data collected could be used
to compile statistics about jobs (such as run-time, I/O
activity, disk usage), data (such as file usage, size and
sharing characteristics) and machines (load average, job
preference etc). This data would be invaluable in plan-
ning, scheduling and executing scientific workloads. In-
deed, fundamental changes can be made to the Condor
architecture itself. For example, a regular database join
can be adapted to perform the task ofmatchmaking –
pairing jobs and machines based on their requirements.
Initial work in this area has produced encouraging re-
sults [27]. The daemons themselves can be simplified
if the database is used smartly. For example, job sub-
mission can be reduced to inserting a few records in a
‘Jobs’ table in the database. Log files can eventually be
eliminated. This architecture paves the way for a more
active role for the database in tasks such as planning, job
scheduling, data transfer and cluster management.

8 Challenges and conclusion
Several challenges lie in the way of a DB-integrated
workflow management system. Firstly, there is an ob-
vious ‘impedance mismatch’ between the execution en-
vironment offered by a database and that offered by a
traditional OS. Most scientists are used to programs that
handle data in a traditional file system. Storing data in
relations is quite different. Databases usually require a
fixed schema and do not allow arbitrarily complex ob-
jects. While traditional user programs can access files in
any pattern, access to relations is usually done via cur-
sors. A practical approach would involve allowing the
database to execute external user programs and provid-
ing a real-time relational ‘view’ of user data, queryable
via SQL. A preliminary implementation of this function-
ality has been made in the PostgreSQL open source OR-
DBMS. It allows users to specify a schema for data res-
ident in the file system hierarchy and query this data us-
ing SQL. It supports the creation of indices on these rela-
tional views of file data. However, updates to these views
via the database are not allowed. Handling complex data
types that scientists are used to and synchronizing up-
dates between the operating system and the database is
still an open problem. Ideally, the DBMS must allow
the integration of ‘external’ services such as filesystem
access with traditional SQL access. This would make it
possible to rewrite the more data-intensive portions of a
workflow in SQL for better performance.

Becla and Wang [13] present an interesting perspec-

10 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

tive on using database techniques for scientific work-
loads. The authors recognized the importance of concur-
rency control, scalability, durability and administrative
ease in dealing with two terabytes of data produced by
2000 nodes per day in the BaBar high energy physics ex-
periment. An initial OODBMS (Objectivity/DB) based
approach was eventually abandoned in favor of a hybrid
RDBMS/file-based solution. The authors felt that gen-
eral purpose solutions are not applicable in dealing with
systems of this magnitude, and that some customization
is required to tune off-the-shelf data and workflow man-
agement products to handle specific scientific computing
environments.

Scientific workflows have traditionally dealt with
compute-intensive tasks, while most databases are de-
signed to minimize disk I/O. In recent years, research
has been done in the optimization of queries with User-
Defined Functions [18]. Like scientific tasks, UDFs are
usually treated as black-boxes and are often compute-
intensive. However, unlike scientific programs, UDFs
are used in conjunction with SQL queries and run for
seconds instead of hours. Gathering statistics such as
job execution time and data access patterns is essential
to planning scientific computation. It remains to be seen
how such information can be obtained by the database
from the execution of scientific programs. Perhaps some
combination of user-provided hints and historical infor-
mation will be necessary.

In conclusion, though the area of scientific data man-
agement is still young, we feel that any direction it takes
will certainly incorporate database technology in a cru-
cial way. Research in the field must reflect this. Since
the contributions database research can make to the sci-
entific realm are quite clear, it is hoped that exploring the
relation between the two will open up new and exciting
avenues of research for the database community.

References
[1] Biomedical informatics research network.

http://www.nbirn.net.
[2] Condor dagman. http://www.cs.wisc.edu/condor/dagman/.
[3] Condor diskrouter. http://www.cs.wisc.edu/condor/diskrouter/.
[4] Condor high throughput computing.

http://www.cs.wisc.edu/condor.
[5] Cyberstructure for the geosciences.

http://www.geongrid.org.
[6] Grid physics network. http://www.griphyn.org.
[7] Grid physics network in atlas.

http://www.usatlas.bnl.gov/computing/grid/griphyn/.
[8] Hawkeye. http://www.cs.wisc.edu/condor/hawkeye/.
[9] Ptolemy ii: Heterogenous modeling and design.

http://ptolemy.eecs.berkeley.edu/ptolemyII/.
[10] Sloan digital sky survey. http://www.sdss.org.
[11] S. Abiteboul, V. Vianu, et al. Relational transducers for

electronic commerce. InPODS, pages 179–187, 1998.
[12] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher,

and S. Mock. Kepler: An extensible system for design
and execution of scientific workflows. InSSDBM, pages
423–424, 2004.

[13] J. Becla and D. L. Wang. Lessons learned from managing
a petabyte. InCIDR, pages 70–83, 2005.

[14] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and M. Livny. Explicit control in the batch-
aware distributed file system. InNSDI, pages 365–378,
2004.

[15] A. J. Bonner. Workflow, transactions, and datalog. In
Proceedings of the Eighteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems,
1999, pages 294–305. ACM Press, 1999.

[16] M. Bote-Lorenzo and E. Dimitriadis, Y.and Gomez-
Sanchez. Grid characteristics and uses: a grid definition.
In Proceedings of the First European Across Grids Con-
ference, pages 291–298, February 2003.

[17] P. Buneman, S. Khanna, and W. C. Tan. Why and where:
A characterization of data provenance. InICDT, pages
316–330, 2001.

[18] S. Chaudhuri and K. Shim. Optimization of queries with
user-defined predicates.ACM Trans. Database Syst.,
24(2):177–228, 1999.

[19] A. L. Chervenak et al. Giggle: a framework for construct-
ing scalable replica location services. InSC, pages 1–17,
2002.

[20] R. L. Cole and G. Graefe. Optimization of dynamic query
evaluation plans. InSIGMOD Conference, pages 150–
160, 1994.

[21] E. Deelman, J. Blythe, et al. Pegasus: Mapping scien-
tific workflows onto the grid. InEuropean Across Grids
Conference, pages 11–20, 2004.

[22] D. J. DeWitt and other. The gamma database machine
project. IEEE Trans. Knowl. Data Eng., 2(1):44–62,
1990.

[23] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao.
Chimera: Avirtual data system for representing, query-
ing, and automating data derivation. InSSDBM, pages
37–46, 2002.

[24] J. Gray et al. When database systems meet the grid. In
CIDR, pages 154–161, 2005.

[25] K. He, S. Dong, L. Zhang, and B. Song. Building grid
monitoring system based on globus toolkit: Architecture
and implementation. InCIS, pages 353–358, 2004.

[26] Y. E. Ioannidis, M. Livny, A. Ailamaki, A. Narayanan,
and A. Therber. Zoo: A desktop experiment management
environment. InSIGMOD Conference, pages 580–583,
1997.

[27] A. Kini, S. Shankar, D. DeWitt, and J. Naughton. Match-
making in database systems, submitted for publication.
Submitted for publication.

[28] T. Kosar and M. Livny. Stork: Making data placement a
first class citizen in the grid. InICDCS, pages 342–349,
2004.

[29] D. T. Liu and M. J. Franklin. The design of griddb:
A data-centric overlay for the scientific grid. InVLDB,
pages 600–611, 2004.

[30] G. M. Lohman, C. Mohan, et al. Query processing in R*.
In Query Processing in Database Systems, pages 31–47.
1985.

[31] N. W. Paton and O. Dı́az. Active database systems.ACM
Comput. Surv., 31(1):63–103, 1999.

[32] J. Widom. Trio: A system for integrated management
of data, accuracy, and lineage. InCIDR, pages 262–276,
2005.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 11

An Approach for Pipelining Nested Collections in
Scientific Workflows

Timothy M. McPhillips
Natural Diversity Discovery Project

tmcphillips@nddp.org

Shawn Bowers
∗

UC Davis Genome Center
sbowers@ucdavis.edu

ABSTRACT
We describe an approach for pipelining nested data collections in
scientific workflows. Our approach logically delimits arbitrarily
nested collections of data tokens using special, paired control to-
kens inserted into token streams, and provides workflow compo-
nents with high-level operations for managing these collections.
Our framework provides new capabilities for: (1) concurrent opera-
tion on collections; (2) on-the-fly customization of workflow com-
ponent behavior; (3) improved handling of exceptions and faults;
and (4) transparent passing of provenance and metadata within to-
ken streams. We demonstrate our approach using a workflow for
inferring phylogenetic trees. We also describe future extensions
to support richer typing mechanisms for facilitating sharing and
reuse of workflow components between disciplines. This work
represents a step towards our larger goal of exploiting collection-
oriented dataflow programming as a new paradigm for scientific
workflow systems, an approach we believe will significantly reduce
the complexity of creating and reusing workflows and workflow
components.

1. INTRODUCTION
New instrumentation, automation, computers, and networks are

catalyzing high-throughput scientific research. These technolo-
gies promise to deliver data at rates orders of magnitude greater
than in the past. Amid high expectations, however, is a growing
awareness that existing software infrastructure for supporting data-
intensive research will not meet future needs. Researchers in high-
energy physics, biology, nanotechnology, climate research, and
other disciplines recently reported at the 2004 Data-Management
Workshops [7] that current technologies for managing large-scale
scientific research do not satisfy even current needs and warned
of a “coming tsunami of scientific data.” They identified crit-
ical computing challenges including: (1) integrating large data
sets from diverse sources; (2) capturing data provenance and
other metadata; and (3) streaming data through geographically dis-
tributed experimental and computing resources in real time. An
emerging challenge is the need to make high-throughput automa-
tion technologies, developed and made cost-effective by large re-
search consortia, available to medium-sized collaborations, small
research groups, and individual investigators through virtual lab-
oratories composed of network-accessible research tools. Effec-
tive information-intensive research by small groups requires auto-
mated workflow approaches where computing infrastructure inte-
grates disparate resources and explicitly manages project data [7].

The goals of the Natural Diversity Discovery Project (NDDP)
[19] illuminate the challenges of supporting scientific workflows

∗Supported in part through NSF/ITR 0225676 (SEEK).

for genomics and bioinformatics. Aiming to help the public un-
derstand scientific explanations for the diversity of life, the NDDP
is developing a virtual laboratory for inferring and analyzing evo-
lutionary relationships between organisms, i.e., phylogenetic trees
[8]. Professional research tools and a web-based discovery envi-
ronment will enable evolutionary biologists and the general pub-
lic to: (1) infer, display, and compare phylogenetic trees based on
morphology, molecular sequences, and genome features; (2) cor-
relate these phylogenies with events in Earth history using molec-
ular clocks and the fossil record; (3) iterate over alternative phy-
logenetics methods, character weightings, and algorithm parameter
values; (4) maintain associations between phylogenies and the data,
methods, parameters, and assumptions used to infer them; (5) share
workflows and results; and (6) repeat studies reported by others and
note the effects of varying data sets, approaches, and parameters.

To support these research and discovery environments, the
NDDP is addressing the following requirements for scientific work-
flows:

• Workflows must support operations on nested collections
of data. Data sets for phylogenetics, and bioinformatics
in general, can be large, complex, and nested in structure
[10]. Workflows must operate efficiently on these sometimes
deeply nested collections of data, while maintaining the as-
sociations they signify.

• Workflow results must be repeatable. Researchers need
to be able to repeat the work of others easily and reliably.
Workflow infrastructure must automatically record how re-
sults were obtained and allow others to use this information
to reproduce the results. The provenance of input data and
important intermediate results must be associated automati-
cally with outputs.

• Workflow definitions must be reusable. Researchers must
be able to develop generic, reusable workflows from exist-
ing workflow components. Moreover, users of the NDDP
web-based discovery environment must be able to apply pre-
defined workflows to data sets of their choice. Running a
new set of data through a previously defined workflow must
not entail manual reconfiguration of component parameters
or interconnections.

• Workflows and components must be robust. Exceptions
thrown for particular data or parameter sets must not disrupt
operations on unrelated sets. Similarly, it should be possible
for a workflow author to specify the consequences of faults
during workflow processing.

12 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Figure 1: A collection-aware KEPLER workflow for inferring phylogenetic trees. The PhylipParsLoop composite actor (top) con-
tains a nested sub-workflow (bottom), which iteratively executes the PARS algorithm.

We report our experiences addressing these requirements using
the KEPLER scientific workflow system and detail the resulting ap-
proach. We give a brief description of KEPLER in Section 2 and
describe our extensions for supporting pipelined nested data col-
lections in scientific workflows in Section 3. Our approach treats
pipelined dataflow as sequences of data tokens containing special,
paired control tokens that delimit arbitrarily nested collections. We
show how our implementation of these capabilities within KEPLER
automates the management of nested collections and simplifies the
development of “collection-aware” pipelined components. In Sec-
tion 4 we describe planned extensions for supporting rich data typ-
ing of collections and workflow components. These extensions will
further support the design and development of pipelined workflows
and will facilitate mechanisms for workflow verification and anal-
ysis. Related work is discussed in Section 5.

2. THE KEPLER SYSTEM
KEPLER [12] is a Java-based, open-source scientific work-

flow system being developed jointly by a collaboration of
application-oriented scientific research projects. KEPLER extends
the PTOLEMY II1 system (hereafter, PTOLEMY) with new features
and components for scientific workflow design and for efficient
workflow execution using distributed computational and experi-
mental resources [16]. PTOLEMY was originally developed by the
electrical engineering community as a visual dataflow program-
ming application [14] that facilitates actor-oriented programming
[13]. In PTOLEMY and thus in KEPLER, users develop workflows
by selecting appropriate components (called actors or blocks) and
placing them on the design canvas. Once on the canvas, compo-
nents can be “wired” together to form the desired dataflow graph,
e.g., as shown in Figure 1. Actors have input ports and output ports
that provide the communication interface to other actors. Actors
can be hierarchically nested, using composite actors to contain sub-
1http://ptolemy.eecs.berkeley.edu/index.htm

workflows. Control-flow elements such as branches and loops are
also supported (see the bottom of Figure 1). In KEPLER, actors can
be written directly in Java or can wrap external components. For
example, KEPLER provides mechanisms to create actors from web
services, C/C++ applications, scripting languages, R2 and Matlab,
database queries, SRB3 commands, and so on.

In PTOLEMY, dataflow streams consist of data tokens, which are
passed from one actor to another via actor connections. PTOLEMY
differs from other similar systems (including those for scientific
workflows) in that the overall execution and component interaction
semantics of a workflow is not determined by actors, but instead is
defined by a separate component called a director. This separation
allows actors to be reused in workflows requiring different mod-
els of computation. PTOLEMY includes directors that specify, e.g.,
process network, continuous time, discrete event, and finite state
computation models.

As an example, the Process Network (PN) director executes each
actor in a workflow as a separate process (or thread). Connections
(or channels) are used to send (i.e., stream) sequences of data to-
kens between actors, and actors map input sequences to output se-
quences. Actors communicate asynchronously in process networks
through buffered channels implemented as queues of effectively
unbounded size. Thus, the PN director can be used to pipeline
data tokens through scientific workflows, enabling highly concur-
rent execution.

3. PIPELINING NESTED DATA COLLEC-
TIONS

As previously noted, scientific data sets are often large. Oper-
ating efficiently on such data sets can require pipelined process-
ing of data set contents, a task for which scientific workflows are

2http://www.r-project.org/
3Storage Resource Broker, http://www.sdsc.edu/srb/

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 13

potentially well suited. PTOLEMY, however, does not provide ex-
plicit support for pipelining the nested structures typical of scien-
tific data. PTOLEMY represents collections as individual tokens,
meaning that pipelining, e.g., using process networks, occurs at
the granularity of an entire collection. This approach precludes
efficiency gains that might be realized by operating on collection
members concurrently in a pipelined fashion.

To work around this limitation, workflow authors use a variety of
approaches. One approach, for example, is to send the members of
a collection as individual tokens, and use a separate channel (con-
nection) to send a token count denoting the size of the collection
being processed. For nested collections, this approach becomes
even more complicated as it requires a large number of additional
connections.

Alternatively, an actor can send special “control” tokens mixed
in with the data to delimit the beginning and end of a collection
(or nested collection). This approach is similar to the use of open-
bracket and close-bracket information packets described by Morri-
son [18] and the approach proposed in Ludäscher et al [15] for sup-
porting “pipelined arrays.”4 However, ad hoc use of control tokens
leads to code redundancy and tightly couples actor implementation
with workflow design. These problems in turn hamper rapid proto-
typing of workflows and associated data structures; make compre-
hension, reuse, and refactoring of existing workflows difficult; and
limit reuse of actors designed for these workflows.

Our solution is to provide explicit support within KEPLER for
pipelining nested data collections using control tokens. Specifi-
cally, we have extended KEPLER to denote nested collections using
explicit, paired opening and closing delimiter tokens inserted into
the data streams. We have also added to KEPLER generic opera-
tions for managing these collections.

Figure 2 illustrates how nested data collections can be streamed
through consecutive actors in our approach. The collection labeled
b is nested within the collection labeled a using explicit start and
end control tokens. Delimited collections may contain data tokens
(labeled di in Figure 2), explicit metadata tokens (labeled mj in
Figure 2), and other sub-collections (denoted using nested control
tokens, e.g., bstart and bend). Metadata tokens are used to carry
information that applies to a collection as a whole, including data
provenance. As shown in Figure 2, each actor within the pipeline is
able to execute concurrently on a collection’s contents. In particu-
lar, each actor is processing a part of a and its metadata simultane-
ously: actor 3 is processing the beginning of the a collection, actor
2 is processing the nested b collection, and actor 1 is processing the
end of the a collection.

…
Actor 1 Actor 2 Actor 3

aend d6 d5 astartm1d1d2d3bstartbend m2d4

…

Figure 2: Pipelining data collections via explicit control tokens.

The rest of this section describes the details of our implementa-
tion. We first discuss extensions to PTOLEMY for making actors
“collection-aware.” We describe how an actor can easily “listen”
for collections of interest. We discuss the use of collection meta-
data, support for provenance, and our approach to exception han-
dling. Finally, we describe a real-world, collection-based workflow
for inferring phylogenetic trees.

4This approach is also similar to the use of XML in stream-based
query frameworks.

3.1 Collection-Aware Actors
In PTOLEMY, atomic actors are implemented by extending one

of the existing actor classes. Creating a new atomic actor entails
overriding the fire operation (as well as other related methods),
which is called by a director when the actor is “activated.” Within
fire, an actor may read (consume) tokens from input ports, operate
on input data, and write (produce) tokens to output ports. In pro-
cess networks, for example, an indefinite number of tokens may be
received and sent each time fire is called.

We encapsulate the complexity of creating, managing, and pro-
cessing nested data collections by introducing a new type of actor
called CollectionActor, and a new system component for managing
collections called CollectionManager. Figure 3 shows a simplified
definition of these classes. Collection-processing actors are derived
from CollectionActor. Instances of CollectionManager are used to
manipulate particular collections. The CollectionActor base class
facilitates collection nesting by maintaining a stack of Collection-
Manager objects corresponding to all collections concurrently pro-
cessed by an actor.

Rather than reading tokens directly from input ports, collection
actors operate on collections from within methods analogous to
SAX API event handlers for parsing XML files. The CollectionAc-
tor fire method triggers calls to the handleCollectionStart method
when the opening delimiter for a collection is received; the han-
dleData or handleMetadata method when a data or metadata token
is received; and the handleCollectionEnd method when the closing
delimiter for a collection is received. These calls pass the Col-
lectionManager object associated with the incoming collection to
these event handlers, and the newly received token to the handle-
Data and handleMetadata methods. This event-based approach to
processing collections allows collection-aware actors to be mixed
freely with actors that operate on data tokens individually; the lat-
ter actors override the handleData method alone, thereby ignoring
events related to collection structures and metadata.

Collection actor output is “indirect” as well. An actor may add
data or metadata to a collection it is processing using methods pro-
vided by the associated CollectionManager object. An actor may
create a new collection within another collection and add data or
metadata to it; and it may replace data or metadata or copy the
information to other collections. Collection actors specify the dis-
position of incoming collections, data, and metadata via the return
values of the event handlers. The return value of the handleCol-
lectionStart method declares whether the actor will further pro-
cess a collection and whether the collection should be discarded
or forwarded to the next actor in the workflow. Similarly, the re-
turn values of the handleData and handleMetadata methods indicate
whether the token in question should be forwarded or discarded.
Incoming information not discarded by an actor is streamed to suc-
ceeding actors in the workflow as the collection is received and
processed.

3.2 Collection Types and Paths
Each collection is associated with a type (implemented as a Java

class) denoting a (conceptual) scientific or data-management re-
source. For example, a collection with the type Nexus contains data
or results associated with one or more phylogenetics computations,
while a TextFile collection contains string tokens representing the
contents of a text file.

Collection types simplify the processing of collections. Each
instance of a collection actor has a CollectionPath parameter that
specifies what conceptual types of collections and data the actor can
handle. Collections and data tokens with types matching the Col-
lectionPath value trigger collection-handling events, e.g., calls to

14 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Actor
fire()
…

CollectionActor

handleCollectionStart()
handleData(Token)
handleException(ExceptionToken)
handleMetadata(MetadataToken)
handleParameterChange(Parameter, Token)
handleCollectionEnd()

CollectionManager0..*

metadataValue(String name)
…

MetadataToken

String name
Token value

VariableToken

1..1

0..1

parentCollectionManager

Figure 3: A simplified UML representation of the collection
actor and manager classes.

the actor’s handleCollectionStart and handleData methods. Collec-
tions and data not matching the CollectionPath value are streamed
silently to the next actor in the workflow (i.e., no further processing
is required by the actor to forward the tokens). Collection paths are
expressed using a simplified XPath-style syntax expressed against
type names and may specify collection types occurring anywhere
in a hierarchy; parent and child collections not matching the path
are ignored (although metadata for parent collections are always
available). Thus, workflow developers may use the CollectionPath
parameter to operate selectively on particular collection and data
types, while actor authors may fix the value of these parameters to
simplify actor implementation.

3.3 Context-Dependent Operations
Independent data sets passing through a workflow may require

different actor behavior within a single workflow run. Actors used
in such workflows must be dynamically configurable and able to
operate context dependently. Metadata tokens can be used to com-
municate this context to actors.

An instance of the MetadataToken class (see Figure 3) stores the
name of a metadata item and an embedded token representing the
item’s value. Any number of metadata tokens with distinct names
may be placed within the sequence of tokens comprising a single
collection.

Actors may use metadata values to tune their own behavior ap-
propriately for the current collection. Actors may observe metadata
sequentially via the handleMetadata method or on demand using
the CollectionManager metadataValue method after the metadata
tokens have been received. The latter random access method tra-
verses the stack of successively enclosing collections to return the
first metadata value corresponding to the given name. Thus, the
context for actor behavior may be defined at any level within a set
of nested collections and overridden at successively lower levels.

In KEPLER, actor parameters can be used to specify default actor
behavior prior to workflow execution. Passing actor configuration
information within collections enhances this capability. In particu-
lar, our framework allows instances of VariableToken, a subclass
of MetadataToken, to automatically override the values of actor
parameters at run time. A previous value of the parameter is re-
stored when the end of a collection that overrides the parameter is
reached. Among other advantages, variable tokens make it easy
for workflow users to apply particular parameter values to subsets
of data flowing through dynamically reconfigurable workflows (see
the workflow described at the end of this section for an example).

3.4 Provenance Support
Collection metadata provide a convenient mechanism for record-

ing provenance. The origin of input data, intermediate results, and
workflow outputs can be described using metadata tokens, and this
provenance information can be used to reproduce workflow results
later. Inserting metadata directly into the data stream is an effective
alternative to storing provenance information within databases or
other persistent storage during workflow execution. The approach
ensures that metadata is associated with the appropriate collections
of data even when independent data sets are processed concurrently
by pipelined workflows. It also reduces the burden on the authors
of actors that do not require access to metadata: the event-based
model for handling data and metadata tokens makes provenance
annotations effectively “invisible ink” to actors that do not over-
ride the handleMetadata method of CollectionActor. Finally, the
in-stream approach to recording provenance is convenient for dis-
tributed computing environments where all nodes may not have ac-
cess to a single shared resource for storing metadata.

3.5 Exception Handling
Exception handling is a significant hurdle to supporting complex

scientific workflows [16]. Exceptions can occur for many reasons.
For example, many NDDP workflows include actors that wrap ex-
isting software. These legacy scientific application programs vary
widely in robustness. Inappropriate input data or parameters can
result in program faults. Moreover, many scientific applications
are prone to crashes even when given valid instructions and data.
Without mechanisms for handling exceptions in pipelined work-
flows, an error caused by a single data set (or collection) can result
in the sudden termination of an entire workflow run.

We have addressed these issues by adding support in KEPLER
for associating exceptions with collections. A collection-aware ac-
tor that catches an external application error (or other exception)
may add an ExceptionToken to the collection that caused the error.
This actor may then proceed to operate on the next collection. A
downstream exception-catching actor can filter out collections that
contain exception tokens, and may do so at a level in the collection
nesting appropriate for the particular application. This approach
limits the effects of exceptions to the collections that trigger them.

3.6 Example: Inferring Phylogenetic Trees
We have used all of the above KEPLER extensions in a number of

NDDP workflows. One such workflow for inferring phylogenetic
trees is shown in Figure 1. The workflow is run by specifying a
list of files containing input data in the Nexus file format [17]. The
TextFileReader actor reads these Nexus files from disk and outputs
a generic TextFile collection for each; NexusFileParser transforms
these text collections into corresponding Nexus collections. Phylip-
ParsLoop is a composite actor containing the sub-workflow shown
at the bottom of Figure 1. Within this sub-workflow the PhylipPars
actor executes the PARS program (as a separate system process) on
each Nexus collection it receives, adding the phylogenetic trees it
infers to the collection. The sub-workflow iteratively executes the
PARS application using the StartLoop-EndLoop construct.

The actors labeled Initialize seed and Increment seed are in-
stances of the SetVariable class. A SetVariable actor may add or
update the value of a VariableToken using a configurable expres-
sion referring to collection metadata or variable values. The first
instance of SetVariable adds a VariableToken named jumbleSeed to
each Nexus collection, while the second increments the value of
this variable. The VariableToken overrides the value of the jum-
bleSeed parameter of the PhylipPars actor, causing the PARS ap-

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 15

plication to jumble the order of analyzed taxa differently on each
execution.

The UniqueTrees actor removes redundant trees from the Nexus
collection on each pass through the loop. Both PhylipPars and Uni-
queTrees update the treeCount metadata item. The loop is exe-
cuted until a minimum number of unique trees has been found, or
the maximum allowed number of cycles has been performed. The
PhylipConsense actor applies the CONSENSE external application
to the trees inferred by the PhylipParsLoop sub-workflow, adding
a consensus tree (reflecting commonalities in the trees inferred by
PARS) to each Nexus collection. The rest of the workflow discards
Nexus collections that triggered exceptions and writes out the re-
maining Nexus collections to disk. The PARS and CONSENSE
programs are part of the Phylip phylogeny inference package5.

The visual simplicity of the workflow (as shown in Figure 1)
highlights the power of the pipelined collection approach in KE-
PLER. Fairly complex, nested data collections (including trees and
character matrices) are streamed through the pipeline; the actors
PhylipPars and PhylipConsense wrap external scientific applica-
tions; and conditional control-flow constructs are used. All this is
achieved without introducing numerous connections between ac-
tors or customizing actor Java code for the particular workflow.
Moreover, the flow of data is pipelined automatically, with work-
flow components operating concurrently.

An ad hoc approach to processing collections would signifi-
cantly complicate the visual appearance and development of this
workflow. Even the relatively straightforward UniqueTrees actor
likely would need at least two input ports, one for receiving to-
kens representing the trees to compare, and another for receiving a
token count indicating how many trees the actor should expect to
receive. This actor might require two output ports for similar rea-
sons. Other actors in the workflow would require multiple ports and
connections as well. Supporting the looping, exception handling,
and metadata processing features of this workflow would introduce
even more complexity. Passing aggregate tokens (e.g., tokens con-
taining arrays of other tokens) between actors would reduce this
complexity somewhat at the cost of limiting concurrent actor ex-
ecution. In contrast, our delimited-collections approach not only
allows multiple, independent collections to stream through work-
flows at the same time (e.g., if multiple Nexus input files are spec-
ified by the List actor in Figure 1), it also allows the members of
each collection to be processed concurrently in pipelined fashion as
appropriate (as illustrated in Figure 2). Most significant, the above
alternative implementations would require the scientist developing
the workflow to pay considerable attention to the detailed control-
flow aspects of the workflow, rather than focusing primarily on the
scientific tasks modeled succinctly in Figure 1.

4. TYPING EXTENSIONS
Type safety is a key element of robust programming environ-

ments. PTOLEMY provides type safety by enabling actor authors
to specify the types of tokens that may pass through actor input
and output ports. Exceptions are thrown if incompatible tokens
are received or sent by such ports. Further, it is possible to de-
termine prior to workflow execution if connections are type-safe.
Such static workflow analysis is desirable both for workflow de-
sign and for notifying users of potential problems prior to workflow
execution.

In the context of pipelining nested data collections, however, the
static typing approach employed by PTOLEMY is no longer appro-
priate. Any type of token can occur within a stream, including

5http://evolution.gs.washington.edu/phylip.html

metadata and delimiter token types. Only certain types of collec-
tions and data (specified, e.g., using collection paths) are processed
by an actor, while all non-relevant data is forwarded transparently
to downstream components. Restricting an input port to a partic-
ular structural type would unnecessarily limit the applicability of
an actor to streams containing information only of that type; and
restricting an output port to a particular type would cause unneces-
sary exceptions for all non-relevant data.

PTOLEMY type checking is disabled in our current implemen-
tation, but we intend as future work to “resurrect” the typing of
actors as follows. Using a collection-based typing language, sim-
ilar to content model definitions in XML Schema and DTDs (and
subtyping rules, e.g., [11]), we allow actors to explicitly define the
types of collections they process both conceptually (see below) and
structurally. In this way, collection paths are extended to support
structural collection types, expressed as restrictions on the allow-
able types of data tokens and sub-collections they may contain.

In addition, actor authors can provide output types specifying
the types of collections (both conceptually and structurally) an ac-
tor can produce upon firing. In a static analogy to the current dy-
namic use of return types in the CollectionActor class, we allow
actor authors to specify explicitly whether an input collection of a
certain type will be forwarded or discarded by the actor. Actor au-
thors can also specify whether an output collection will result from
creating a new collection or by altering particular input collections.
With these specifications, KEPLER can perform static type anal-
yses, e.g., to determine that a particular connection will result in
an actor never firing, or that an actor may receive a conceptually
appropriate collection from an upstream actor, but with an unsup-
ported structural type. For output types, KEPLER can also perform
runtime type checking using these specifications.

The current CollectionPath implementation defines conceptual
types using a hierarchy of Java classes. This approach works when
the number of collection types is small, the types are fairly static,
and the actors operating on these types are developed by the same
organization. As other organizations develop their own collection-
based actors, developers independently define their own collection
types, and users begin mixing collection actors and types originally
developed for different disciplines, more robust and richer typing
mechanisms will be needed. As future work we intend to adopt the
ontology-based hybrid typing approach [2, 3] in KEPLER to specify
both structural and conceptual types of collections.

In particular, KEPLER extends the type system of PTOLEMY by
separating the concerns of conventional data modeling (structural
data types) from conceptual data modeling (semantic data types).
A semantic type represents an ontology concept, expressed in de-
scription logic (e.g., in OWL-DL).6 Optionally, hybrid types permit
structural types and semantic types to be linked through semantic
annotations, expressed as logical constraints. Within KEPLER, hy-
brid types enable concept-based searching for actors, can be used to
further propagate and refine known (structural or semantic) types in
scientific workflows, and can help to infer (partial) structural map-
pings between structurally incompatible workflow components.

5. RELATED WORK
A number of scientific workflow systems have recently emerged

[1, 6, 20, 22, 21, 4]. To the best of our knowledge, none of-
fer approaches for pipelining and managing nested data collec-
tions for workflows consisting of external and opaque (as opposed

6Thus, different organizations can define their own ontologies (ter-
minologies) and easily articulate mappings among them for inter-
operability.

16 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

to declarative or query-based) components. We believe that KE-
PLER is well-suited for our extensions because of its advanced
and well-defined computation models inherited from PTOLEMY,
and because it provides an elegant extension mechanism via actor-
oriented design. The way collection actors and managers operate
on pipelined nested collections has similarities with some XML
stream processing techniques [9], which thus are good candidates
for collection processing optimization strategies. Finally, our ap-
proach to pipelining workflows is similar in spirit to list process-
ing constructs in functional programming [5] as well as dataflow
programming [18]. We believe that many constructs in these ap-
proaches may help make scientific-workflow design and develop-
ment simpler and more intuitive for scientists.

6. CONCLUDING REMARKS
Our approach and associated KEPLER extensions facilitate the

concurrent execution of collection-oriented scientific workflows.
In particular, our framework automates the pipelining of individ-
ual data tokens within nested collections passing through a work-
flow, and at the same time explicitly maintains the inherent struc-
ture of the collections. The approach also allows metadata to be
inserted into token streams on the fly; this metadata can be used for
recording provenance and dynamically customizing actor behavior.
Similarly, the repercussions of external application faults and other
exceptions can be limited and controlled through special excep-
tion tokens. Our event-based model for handling nested collections
makes collection-aware actors simple to implement and maintain,
and workflows based on them easy to prototype and extend. Our ap-
proach simplifies collection-oriented scientific workflows by elim-
inating the need for explicit control ports and workflow-specific
actors. Future extensions to support true semantic collection types
will enable static analysis of workflows and will provide better sup-
port for cross-discipline and inter-organization sharing and reuse of
workflow components.

The source code for the implementation described here is avail-
able in the latest release of KEPLER, which can be downloaded
from the KEPLER project web site [12].

7. REFERENCES
[1] A. Ailamaki, Y. Ioannidis, and M. Livny. Scientific workflow

management by database management. In SSDBM, 1998.
[2] C. Berkley, S. Bowers, M. Jones, B. Ludäscher,

M. Schildhauer, and J. Tao. Incorporating semantics in
scientific workflow authoring. In SSDBM, 2005.

[3] S. Bowers and B. Ludäscher. Actor-oriented design of
scientific workflows. In Proc. of the Intl. Conf. on
Conceptual Modeling (ER), 2005.

[4] L. Bright and D. Maier. Deriving and managing data
products in an environmental observation and forecasting
system. In Conf. on Innovative Data Systems Research
(CIDR), 2005.

[5] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles
of programming with complex objects and collection types.
Theoretical Computer Science, 149(1), 1995.

[6] D. Churches, G. Gombas, A. Harrison, J. Maassen,
C. Robinson, M. Shields, I. Taylor, and I. Wang.
Programming scientific and distributed workflow with Triana
services. Concurrency and Computation: Practice and
Experience, Special Issue on Scientific Workflows, 2005.

[7] The office of science data-management challenge. Report
from the DOE Office of Science Data-Management
Workshops, March–May 2004.

[8] J. Felsenstein. Inferring Phylogenies. Sinauer Associates,
Inc., 2004.

[9] L. Golab and M. T. Özsu. Issues in data stream management.
ACM SIGMOD Record, 2003.

[10] P. Gordon. XML for molecular biology.
http://www.visualgenomics.ca/gordonp/xml/.

[11] H. Hosoya and B. C. Pierce. Regular expression pattern
matching for XML. Journal of Functional Programming,
13(6), 2003.

[12] The Kepler Project. http://www.kepler-project.org.
[13] E. A. Lee and S. Neuendorffer. Actor-oriented models for

codesign: Balancing re-use and performance. In Formal
Methods and Models for Systems. Kluwer, 2004.

[14] E. A. Lee and T. M. Parks. Dataflow process networks. Proc.
of the IEEE, 83(5):773–801, 1995.

[15] B. Ludäscher and I. Altintas. On providing declarative design
and programming constructs for scientific workflows based
on process networks. Technical report,
SciDAC-SPA-TN-2003-01, 2003.

[16] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience,
Special Issue on Scientific Workflows, 2005.

[17] D. Maddison, D. Swofford, and W. Maddison. NEXUS: An
extensible file format for systematic information. Systematic
Biology, 46(4), 1997.

[18] J. Morrison. Flow-Based Programming. Van Nostrand
Reinhold, 1994.

[19] Natural Diversity Discovery Project. http://www.nddp.org.
[20] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,

M. Greenwood, T. Carver, K. Glover, M. Pocock, A. Wipat,
and P. Li. Taverna: A tool for the composition and enactment
of bioinformatics workflows. Bioinformatics Journal, 20(17),
2004.

[21] SciTegic. http://www.scitegic.com/.
[22] D. Weinstein, S. Parker, J. Simpson, K. Zimmerman, and

G. Jones. Visualization Handbook, chapter Visualization in
the SCIRun Problem Solving Environment. Elsevier, 2005.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 17

WOODSS and the Web: annotating and reusing scientific workflows

C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri, G. Z. Pastorello Jr, A. Santanche

R. S. Torres, E. Madeira and E. Bacarin

Institute of Computing – University of Campinas – UNICAMP CP 6176, 13084-971 Campinas, SP, Brazil

{cmbm,jperez,luciano,gilberto,santanch,rtorres,edmundo,bacarin}@ic.unicamp.br

Abstract

This paper discusses ongoing research on scientific work-
flows at the Institute of Computing, University of
Campinas (IC - UNICAMP) Brazil. Our projects with
bio-scientists have led us to develop a scientific work-
flow infrastructure named WOODSS. This framework has
two main objectives in mind: to help scientists to spec-
ify and annotate their models and experiments; and to
document collaborative efforts in scientific activities. In
both contexts, workflows are annotated and stored in a
database. This “annotated scientific workflow” database
is treated as a repository of (sometimes incomplete) ap-
proaches to solving scientific problems. Thus, it serves
two purposes: allows comparison of distinct solutions to a
problem, and their designs; and provides reusable and ex-
ecutable building blocks to construct new scientific work-
flows, to meet specific needs. Annotations, moreover, al-
low further insight into methodology, success rates, un-
derlying hypotheses and other issues in experimental ac-
tivities.

The many research challenges faced by us at the mo-

ment include: the extension of this framework to the Web,

following Semantic Web standards; providing means of

discovering workflow components on the Web for reuse;

and taking advantage of planning in Artificial Intelligence

to support composition mechanisms. This paper describes

our efforts in these directions, tested over two domains –

agro-environmental planning and bioinformatics.

1 Introduction
Scientific activities involve complex multidisciplinary
processes and demand cooperative work from peo-
ple in distinct institutions. While the Web provides
a good environment for this kind of work, on the
other hand it introduces the problems of data, process
and tool proliferation. Challenges in this scenario in-
clude how to understand and organize these resources
and provide interoperability among tools to achieve a
given goal, as well as appropriate mechanisms to doc-
ument, share, deploy, construct and re-execute scien-
tific experiments.

Scientific workflows [23] are being used to help
solve some of these questions. In particular, their ex-

ecution must allow for issues such as human curator
intervention, flexibility in specification to accommo-
date distinct approaches to a problem, deviation from
the specification while the workflow is being executed
and unfinished executions.

Our work with environmental and bioinformat-
ics applications have shown us that scientific work-
flows are moreover a good documentation paradigm.
In other words, workflows not only help specification
and execution, but keeping track of evolution of ex-
periments and their annotation. We are testing these
concepts using WOODSS (WOrkflOw-based spatial
Decision Support System) [7, 11, 15, 19], a scientific
workflow infrastructure developed at IC - UNICAMP.
Originally conceived for decision support in environ-
mental planning, it has evolved to an extensible envi-
ronment that supports specification, reuse and anno-
tation of scientific workflows and their components.

We are now extending this work to the Web, sup-
porting flexibility in workflow design, experiment an-
notation, customization and reuse. This paper de-
scribes this work, being centered on the following is-
sues: the database of workflow building blocks, that
induces a workflow design methodology; the use of
component technology to encapsulate these blocks,
enabling their reuse and composition; and the explo-
ration of advances in planning in AI to support auto-
matic and semi-automatic composition of workflows.
We briefly mention our testbed efforts in two domains
- agro-environmental planning and bioinformatics.

2 Overview of WOODSS
WOODSS was initially conceived to support environ-
mental planning activities. It was implemented on
top of a commercial Geographic Information System
(GIS) and has been tested in several contexts, mostly
within agro-environmental applications.

The original idea was to dynamically capture user
interactions with a GIS in real time, and document
them by means of scientific workflows, which could
then be re-executed invoking the GIS functions.

In environmental applications, user interactions

18 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

with a GIS express models for solving a given prob-
lem. Fig. 1, adapted from [11] illustrates the interac-
tion modes of WOODSS. In the first mode, users in-
teract with the GIS, to implement some model, whose
execution is materialized into a map. WOODSS pro-
cesses this interaction and generates the correspond-
ing scientific workflow specification, stored in the Work-
flow Repository. In the second interaction mode,
users access WOODSS’ visual workflow editing and
annotation interface to query, update and/or com-
bine repository elements, annotating and construct-
ing workflows that can be stored in the repository
and subsequently executed invoking the GIS. This
allows workflow evolution and lets scientists find out
about previous solutions to a similar problem. The
geographic database contains domain-specific data.

The present version of WOODSS is implemented
in JavaTM, with the repository in POSTGRESQL. It
contains scientific workflows (and parts thereof) and
associated annotations (keywords, free text, meta-
data and domain ontologies [7]). The graphical in-
terface allows user-friendly workflow editing and ma-
nipulation. More details appear in [11, 19].

Our extensions to this framework, described in
the next sections, can be sketched in terms of Fig. 1.
First, the geographic database is replaced by sets of
databases for scientific application domains – e.g.,
genomics, agriculture. Second, instead of the func-
tions of a proprietary GIS, we consider invoking third
party applications/services (the “execute workflow”
arrow). The “capture interaction” arrow can be re-
placed, for specific applications, by monitoring mod-
ules that generate the appropriate workflow speci-
fications. Third, the Workflow Repository contains
annotated (sub)workflows and their building blocks,
designed according to a specific model (see Sect. 3)
and encapsulated into our reuse unit Digital Content
Components – DCC, see Sect. 4.

3 WOODSS’ data model

This section gives an overview of the base data model
used for representing scientific workflows in WOODSS;
more details are available in [14, 15]. The workflow
terms used here have the usual meaning, e.g., (i) a
workflow is a model of a process; (ii) a process is a set
of inter-dependent steps needed to complete a certain
action; (iii) an activity can be a basic unit of work
or another workflow; (iv) a transition establishes a
dependency relation between two activities; (v) an
agent is responsible for the execution of a basic unit
of work; (vi) a role specifies the expected behavior of
an agent executing an activity; and so on.

The model supports the storage of several ab-
straction levels of a workflow in a relational database.

This induces a methodology for correctly construct-
ing workflows, whereby users must first specify types
of workflow building blocks, next combine them into
abstract specifications (abstract workflows), and fi-
nally instantiate these specifications into executable
(sub)workflows (concrete workflows).

Figure 1: WOODSS interactions - adapted from [11]

The building blocks can be split in three major
levels, which can be refined into many intermediate
levels. The three levels reflect the methodology – see
Fig. 2. The first level corresponds to definitions of
data and activity types, and roles to be fulfilled by
agents. Fig. 2(a) shows two activity types (Combine
Maps and Classify), typical of environmental tasks.
Activity types are specified in terms of their inter-
faces, which are based on the previously defined data
types. In the figure, Combine Maps’s interface has
two inputs, I1 and I2, and one output O1.

Figure 2: Levels of workflow specification

Activity and data types are used to create blocks
at the second abstraction level, where a workflow
structure – the abstract workflow – is specified, through
transitions and dependencies among activities – e.g.
the activity labeled ActivityCM is of type Combine
Maps – see Fig. 2(b). At this level, it is also pos-
sible to refine activity types by associating roles to
them – e.g., ActivityCM is associated with role Map-
Combiner. The transition T1 connects interface el-
ements O1 and I3. The specification of types and
of abstract workflows capture the notion of workflow
design independent of execution aspects (agents and
data connections), allowing design reuse, as will be
seen in Sect. 4.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 19

The last level involves creating an executable ver-
sion of an abstract workflow – i.e., the concrete work-
flow. This is achieved by associating agents with ac-
tivities and actual data sources with activities’ inter-
faces. Fig. 2(c) shows map1 and map5 data sources
as the input parameters for the ActivityCM activity,
which can be executed by invoking the specific GIS
Ag-1.

We point out four important issues covered in our
model. First, the distinction among the levels is not
so clearcut, since a characteristic of scientific work-
flows is their incremental construction – see Sect. 4.
Second, the specification of an activity separating
its interface from its functionality is the basis of the
mechanism for allowing definition of arbitrary nesting
of sub-workflows. Indeed, a sub-workflow is just an-
other activity, accessed via its interface, and whose
specification is encapsulated. A workflow/activity
thus references any other workflow/activity specifica-
tion inside the database, without violating the encap-
sulation. Third, at any moment scientists can attach
annotations to the building blocks. Finally, blocks
are encapsulated into DCCs – see Sect. 4.

Workflow blocks are serializable in WS-BPEL, in
order to make them available on the Web. The se-
lection of an XML-based language to represent work-
flows took into consideration current standard pro-
posals. In spite of shortcomings for representing work-
flows, WS-BPEL turned out to be the most suitable
to our representation needs [14]. More details can be
found in [14, 15].

4 Reuse
Workflow building blocks – types, abstract and con-
crete workflows – are stored in a database for docu-
mentation and reuse. WOODSS considers two kinds
of workflow reuse: that of reusing a workflow design,
and that of reusing executable workflow elements. To
facilitate their discovery and combination, we encap-
sulate these reusable units into Digital Content Com-
ponents (DCCs) [17], special content managing units
that we have been using to build applications.

DCCs are self-contained stored entities that may
comprise any digital content, such as pieces of soft-
ware, multimedia or text. Their specification takes
advantage of Semantic Web standards and ontolo-
gies, both of which are used in their discovery process.
In our workflow repository, we differentiate between
two kinds of DCC – design and executable DCCs. A
design DCC contains an abstract process specifica-
tion, represented as a WOODSS abstract workflow
(see Sect. 3). An executable DCC is a component
ready to be used in some execution and encapsu-
lates any kind of executable process description, as

Figure 3: Reuse levels.

the concrete workflows (see Sect. 3).
DCC interfaces have been designed to semanti-

cally describe how DCCs can be accessed and com-
bined. Interface description uses WSDL (syntactic
specification) and OWL-S (www.daml.org/services)
(semantic specification via ontologies). DCCs and
Web services are homogeneously treated in our model,
since they have WSDL interfaces and are able to han-
dle the same protocols. Semantically enriched de-
scriptions have a key role as they [18]: (i) enable
similarity-based search that explores ontological re-
lationships; (ii) support an unambiguous and more
precise verification and assistance during workflow
building.

Fig. 3 shows the two kinds of workflow reuse sup-
ported by WOODSS via encapsulation of building
blocks into DCCs – executable components and de-
sign reuse.

Executable components reuse, represented by the
cycle ①–②–③, is based on executable DCCs. This
kind of DCC encapsulates third party software ①
or a concrete workflow ③. Workflows are produced
or modified by retrieving and composing previously
stored executable DCCs ②.

In design reuse, represented through the cycle
④–(⑤/⑥)–⑦ we are interested in the abstract work-
flow inside the design DCC. Design DCCs can result
from a process abstraction ④, stored in the reposi-
tory ⑤; or can be produced by third party designer
⑥. Furthermore, a design DCC can be used in the

20 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

construction of a concrete workflow ⑦.
Scientific workflows can, by nature, be designed

and modified on the fly during their execution. Thus,
it is important to point out that the distinction, in
the figure, of separate reuse cycles for design and ex-
ecutable DCCs has only didactical purposes, since we
can intersperse both. Indeed, an abstract workflow,
inside a design DCC, can have portions that are con-
crete specifications. Nonetheless, it still maintains its
characteristics of design DCC, and may be executed
considering only the concrete portions. During its ex-
ecution, scientists can convert the abstract portions
into concrete specifications, filling in the missing de-
tails. Other possible updates are: modification of the
workflow structure (e.g., by changing control struc-
tures, deleting or including DCCs); and annotations.

Reuse via DCC is comparable to software engi-
neering’s software component reuse, with two advan-
tages: (i) reuse is not limited to program code, but
also to design encapsulated inside components; (ii)
interfaces provide semantically enriched descriptions.
Moreover, we also allow encapsulation of complex
data within DCCs, providing thus an unified model
for design, process and data. Data DCC are outside
the scope of this paper – see [17].

Finally, we point out that workflow building blocks
have two kinds of annotation mechanisms. First,
users can associate information to them while con-
structing or executing a workflow (see Sect. 3) – e.g.,
providing pointers to documentation such as bibliog-
raphy, reasons for adopting a model, and even com-
menting on success rate of a given experiment. Such
annotations can be attached to (sub)workflows, ac-
tivities, agents, data, data types, etc. Second, DCC
interfaces provide semantic annotations that are used
for searching and composing the appropriate work-
flow blocks (using among others ontology alignment
solutions) [18].

5 Case studies

5.1 Agro-Environmental Management

WOODSS’ workflow base started from environmen-
tal studies, and evolved to agro-environmental plan-
ning with help of experts from the Brazilian Agri-
culture Ministry. Agro-environmental management
combines environmental (preservation) and agricul-
tural (exploitation) issues, thus presenting an inter-
esting challenge to scientific workflow specification.
Examples of factors involved include regional topog-
raphy, soil properties, climate, crop requirements, so-
cial and environmental issues. Data sources include
sensors such as weather stations and satellites, and
may be stored in a variety of databases, with differ-

ent spatial, temporal and thematic scopes [8].
Examples of an abstract workflow specification is,

for instance, a sub-workflow that computes an esti-
mate of soil erosion for an area given a crop’s needs.
This would use, among others, sub-workflows such
as those indicated in Fig. 2(b). This can become
a concrete sub-workflow if actual data instances are
provided, and agents are defined (e.g., a Web ser-
vice). This sub-workflow can be composed with an-
other one, that for instance evaluates which parts
within the area have to be left alone in order to de-
crease erosion risk.

Within the agricultural domain, we are now inves-
tigating the interesting problem of integration of sci-
entific workflows into agricultural supply chains [2],
thereby breaching the gap between business and sci-
entific workflows. A supply chain is a network of
heterogeneous and distributed elements – retailers,
distributors, transporters, storage facilities and sup-
pliers that participate in the sale, delivery and pro-
duction of a particular product.

The workflows that run within an agricultural sup-
ply chain are mainly business workflows. They are
concerned with controlling production processes, and
selling and delivery of goods. Although most chain
activities are business driven, scientific workflows can
be needed in these environments.

For instance, precision farming, land use and cli-
mate monitoring and forecasting can be supported
by scientific workflows. The result of such workflows
can feed planning activities within business supply
chain workflows – e.g., to forecast harvest productiv-
ity and thus distribution logistics within the supply
business chain. On the other hand, business work-
flows can produce feedback to such scientific work-
flows. For example, market demand for a given pro-
duce may require expanding its production at the
start of the chain, which will influence factors such
as area planted, water consumption and fertilizer uti-
lization. These factors will then affect the ecological
balance of the regions involved; calculating this im-
pact involves drawing upon scientific workflows.

5.2 Planning in Bioinformatics

The appropriate composition of blocks to construct a
concrete or abstract workflow is a challenge. Artifi-
cial Intelligence research in planning (also called plan
synthesis) concerns the (semi-)automatic creation of
a sequence of actions to meet a specific goal. This
research domain appeared in the sixties, heavily in-
fluenced by work on automated theorem proving and
operations research. Nowadays, such techniques are
employed in various domains – e.g., robotics, manu-
facturing processes, satellite control [9]. In particular,

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 21

a new trend is to use them to solve the problem of
automatic composition of Web Services [10].

We are exploring this kind of initiative to sup-
port the semi-automatic or automatic composition of
(reusable) workflow blocks for bioinformatics. Bioin-
formatics experiments are, most of the times, com-
posed of several related activities, so they can be
modeled as workflows [4].

Scientific workflows are being utilized in in sil-
ico experiments at the Laboratory for Bioinformat-
ics (LBI) (www.lbi.ic.unicamp.br) at IC – UNI-
CAMP. LBI was the first Brazilian bioinformatics
laboratory, being responsible for the coordination of
the assembly and annotation of the Xylella fastidiosa
genome [6]. At present, LBI is dedicating efforts in
the specification and implementation of a framework
for the management of bioinformatics scientific work-
flows [5]. For instance, a genome assembly abstract
workflow is composed by, among others, sequence fil-
ters and sequence assembly activities. This can next
become a concrete workflow through instantiation of
data and using tools such as crossmatch and phrap.

A large part of bioinformatics workflows are de-
signed manually, using simple resources like script
languages and invocation of Web services. However,
manual composition is a hard work and susceptible
to errors. Therefore, it is necessary to design tools to
support the composition of bioinformatics services in
an automatic or interactive (semi-automatic) way [12].

In order to support these issues, we have defined a
system architecture that allows semi-automatic and
automatic composition. This architecture is based
in the SHOP2 [20] domain independent planner. It
takes advantage of the WOODSS workflow compo-
nent repository to select elements to construct ab-
stract and concrete workflows, using DCC interface
specification for service description and matching.

6 Related Work
Scientific workflows appear increasingly in the litera-
ture. One trend is concerned with showing how spe-
cific kinds of systems support application domains
such as bioinformatics or geosciences. Another issue
is their execution, raising questions such as transac-
tion management or grid initiatives (e.g., [22]). Grid
architectures support flexible execution options, as-
signing each part of a workflow for execution in a
distinct node, considering factors such as availability
or computational power.

Our work in extending WOODSS to the Web adds
another dimension to the notion of flexibility in work-
flow handling. Not only does it allow distinct exe-
cutable components to be stored in distributed sources
on the Web, but it also allows their dynamic reuse,

adaptation and configuration. Furthermore, it intro-
duces the notion of design components, which are also
stored and can be retrieved and reused to construct
abstract workflow specifications.

The issue of composition presents several chal-
lenges to supporting scientific activities. We con-
sider composing DCCs (design and executable) at two
levels: manual or semi-automatic composition (using
AI techniques). Planning in AI has recently consid-
ered workflow composition [10]. Interactive model-
ing and specification is another new trend, answering
the need of customizing and tailoring workflows for a
specific goal [12, 20]. In general, most efforts are ori-
ented to business workflows. An exception is [12], a
pioneer framework to support interactive composition
of domain independent scientific workflows based in
ontologies and planning. Our model extends this pro-
posal by supporting interactive and automatic com-
position of DCCs using planning strategies.

There are several proposals for composition and
serialization on the Web via languages such as XPDL
(XML Process Definition Language) or WS-BPEL
[13]. The latter is based on using a Web services
infrastructure. This facilitates the standard utiliza-
tion of several distributed heterogeneous activities
and data sources. We have also adopted WS-BPEL
as the standard to export the content of a workflow
component, even though we had to extend the lan-
guage to support specific workflow structures [14].

One of our major contributions lies in reuse. Reuse
technologies can be divided in two major groups [3].
One of these groups is based on composition technolo-
gies, adopted in our reuse approach. Composition
technologies consider two players: components and
composition. Components are akin to our executable
DCCs, serving as building blocks in the new product
construction. Compositions (our design DCCs) con-
nect components establishing relationships between
them and defining how they will work together.

The WOODSS architecture also considers these
two levels, extending them to workflow building and
reuse activities. The DCC model, furthermore, allows
seamless integration of mechanisms to reuse design
and executable elements, whereas other approaches
in the literature require distinct formalisms to han-
dle these problems. The use of this model enables
workflows to invoke not only Web services, but also
any kind of facility encapsulated within a DCC.

Finally, workflow execution on the Web is not
our main concern at this stage. Initiatives such as
CHIMERA [1], MyGRID [21, 22] worry about execu-
tion aspects. Nonetheless, WOODSS’ workflows can
be executed by serializing the workflow specification
into a WS-BPEL document, which can be submitted

22 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

to execution on a WS-BPEL execution engine such
as the one in www.activebpel.org.

7 Concluding Remarks
This paper presented the ongoing research on the
WOODSS scientific workflow framework. Originally
conceived for supporting scientific work in environ-
mental planning, it is now being extended to dis-
tributed web-based applications for other scientific
domains. The core of this work is based on creat-
ing repositories containing workflow specifications at
several abstraction levels. These specifications are en-
capsulated in DCCs, which provide a standard search
and composition interface based on metadata and se-
mantic annotations linked to domain ontologies.

Scientists can query repositories to reuse and com-
pose workflow elements at the design and execution
stages. This allows, for instance, comparing various
versions of workflows that solve a given problem.

The main contributions are: (i) discussion of is-
sues concerning a data model that induces a method-
ology for workflow design; (ii) presentation of the
DCC reuse model, which integrates the two different
levels of workflow production – specification and exe-
cution. We support furthermore several requirements
of scientific workflows, such as on-the-fly intervention
and modification. The data model and WS-BPEL ex-
port facilities have been implemented [14] and DCCs
manual composition has been implemented for map
management in environmental applications [16]. On-
going work concerns porting the graphical interface to
the Web, creating DCCs for bioinformatics applica-
tions and checking the suitability of SHOP2 to com-
position, first in bioinformatics and subsequently to
other domains. Another activity is the study men-
tioned in Sect. 5.1 of interoperation of business and
scientific workflows for agriculture.

Acknowledgments. This work was partially financed by
CNPq, CAPES, FAPESP and UNIFACS, CNPq WebMaps and
AgroFlow projects, and a Microsoft eScience grant.

References

[1] K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr.
Chimera: hypermedia for heterogeneous software devel-
opment enviroments. ACM Transactions on Information
Systems (TOIS), 18(3):211–245, 2000.

[2] E. Bacarin, C. B. Medeiros, and E. Madeira. A Collab-
orative Model for Agricultural Supply Chains. In Proc
COOPIS 2004, volume LNCS 3290, pages 319–336, 2004.

[3] T. J. Biggerstaff and C. Richter. Reusability framework,
assessment, and directions, pages 1–17. ACM Press, 1989.

[4] M. C. Cavalcanti, R. Targino, F. Baião, S. C. Rössle, P. M.
Bisch, P. F. Pires, M. L. M. Campos, and M. Mattoso.
Managing structural genomic workflows using Web ser-
vices. Data & Knowledge Engineering, 53(1):45–74, 2005.

[5] L. A. Digiampietri, C. B. Medeiros, and J. C. Setubal. A
framework based in Web services orchestration for bioin-
formatics workflow management. In Proc III Brazilian
Workshop in Bioinformatics, 2004.

[6] A. J. G. Simpson et al. The genome sequence of the
plant pathogen Xylella fastidiosa. Nature, 406(1):151–
157, 2000.

[7] R. Fileto. The POESIA Approach for Services and Data
Integration On the Semantic Web. PhD thesis, IC–
UNICAMP, Campinas–SP, 2003.

[8] R. Fileto, L. Liu, C. Pu, E. Assad, and C. B. Medeiros.
POESIA: An Ontological Workflow Approach for Com-
posing Web Services in Agriculture. VLDB Journal,
12(4):352–367, 2003.

[9] M. Ghallab, D. Nau, and P. Traverso. Automated Plan-
ning, Theory and Practice. Elsevier, 2004.

[10] Proc. of the Workshop on Planning and Scheduling for
Web and Grid Services, June 2004. http://www.isi.edu/
ikcap/icaps04-workshop/ (as of 2005-07-11).

[11] D. Kaster, C. B. Medeiros, and H. Rocha. Supporting
Modeling and Problem Solving from Precedent Experi-
ences: The Role of Workflows and Case-Based Reasoning.
Environmental Modeling and Software, 20:689–704, 2005.

[12] J. Kim and Y. Gil. Towards Interactive Composition of
Semantic Web Services. In Proc. of the AAAI Spring
Symposium on Semantic Web Services, march 2004.

[13] Oasis-Open. OASIS Web Services Business Pro-
cess Execution Language Technical Committee.
http://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=wsbpel (as of 2005-07-11).

[14] G. Z. Pastorello Jr. Publication and Integration of Scien-
tific Workflows on the Web. Master’s thesis, UNICAMP,
2005. In Portuguese.

[15] G. Z. Pastorello Jr, C. B. Medeiros, S. Resende, and
H. Rocha. Interoperability for GIS Document Manage-
ment in Environmental Planning. Journal on Data Se-
mantics, 3(LNCS 3534):100–124, 2005.

[16] A. Santanchè and C. B. Medeiros. Geographic Digital
Content Components. In Proc. of VI Brazilian Sympo-
sium on GeoInformatics, November 2004.

[17] A. Santanchè and C. B. Medeiros. Managing Dynamic
Repositories for Digital Content Components. In EDBT
2004 Workshops, volume LNCS 3268/2004, pages 66–77,
2004.

[18] A. Santanchè and C. B. Medeiros. Self describing compo-
nents: Searching for digital artifacts on the web. In Proc.
of XX Brazilian Symp. on Databases, October 2005.

[19] L Seffino, C. B. Medeiros, J. Rocha, and B. Yi. WOODSS
- A Spatial Decision Support System based on Workflows.
Decision Support Systems, 27(1-2):105–123, 1999.

[20] E. Sirin, B. Parsia, D. Wu, J. A. Hendler, and D. S. Nau.
HTN planning for Web Service composition using SHOP2.
Journal of Web Semantics, 1(4):377–396, 2004.

[21] R. D. Stevens, H. J. Tipney, C. J. Wroe, T. M. Oinn,
M. Senger, P. W. Lord, C. A. Goble, A. Brass, and
M. Tassabehji. Exploring Williams-Beuren syndrome us-
ing myGrid. Bioinformatics, 20(suppl 1):i303–310, 2004.

[22] The myGrid Consortium. myGrid: Middleware for in sil-
ico experiments in biology. http://www.mygrid.org.uk/

(as of 2005-07-11).

[23] J. Wainer, M. Weske, G. Vossen, and C. B. Medeiros.
Scientific Workflow Systems. In Proc. of the NSF Work-
shop on Workflow and Process Automation Information
Systems, 1996.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 23

Simplifying Construction of Complex Workflows for Non-Expert Users of the
Southern California Earthquake Center Community Modeling Environment

Philip Maechling (3), Hans Chalupsky (2), Maureen Dougherty (2), Ewa Deelman (2), Yolanda Gil (2),
Sridhar Gullapalli (2), Vipin Gupta (3), Carl Kesselman (3), Jihie Kim (2), Gaurang Mehta (2), Brian
Mendenhall (1), Thomas Russ (2), Gurmeet Singh (2), Marc Spraragen (2), Garrick Staples (1), Karan Vahi (2)
(1) Center for High Performance Computing and Communications, USC, Los Angeles, CA 90089, USA, (2)
Information Sciences Institute, USC, Marina del Rey, CA 90292, (3) Southern California Earthquake Center,
USC, Los Angeles CA, 90089, USA, {Corresponding Author: maechlin@usc.edu}

Abstract:
Workflow systems often present the user with rich
interfaces that express all the capabilities and
complexities of the application programs and the
computing environments that they support. However,
non-expert users are better served with simple
interfaces that abstract away system complexities and
still enable them to construct and execute complex
workflows. To explore this idea, we have created a
set of tools and interfaces that simplify the
construction of workflows. Implemented as part of
the Community Modeling Environment developed by
the Southern California Earthquake Center, these
tools, are integrated into a comprehensive workflow
system that supports both domain experts as well as
non expert users.

Keywords:
Workflow, Grid, Intelligent Assistant, Seismic
Hazard Analysis, Data Management, Scheduling,
Pegasus, Meta-scheduler, Metadata, Semantic Web

1. Introduction:

For many regions of the globe, earthquakes
represent a significant hazard to life and property.
This has lead geophysicists to study the earth as a
system, to gain a better understanding of the complex
interactions between crustal stress, fault ruptures,
wave propagations through 3D velocity structures,
and ultimately, ground motions. While the holy grail
of this work is earthquake prediction, a more prosaic
goal is to estimate the potential for earthquake
damage at specific locations on the earth and this
seismic hazard analysis (SHA) is one of the main
objectives of earthquake geophysics investigation.

Recent advances have resulted in increasingly
more accurate models of the different system
components: fault models, rupture dynamics, wave
propagation, etc. Given this progress, it becomes
obvious that attention must turn to combining these
diverse elements into an integrated model of the
earth. It is with this goal in mind that that the
Southern California Earthquake Center (SCEC)
created the Community Modeling Environment
(SCEC/CME) [14]. The CME is an integrated
environment in which a broad user community
encompassing geoscientists, civil and structural
engineers, educators, city planners, and disaster
response teams can have access to powerful physics-
based simulation techniques for SHA. The diversity
and distribution of the user community combined
with the complexity of the problem space imposes

some demanding requirements on any proposed
solution. These include:
• The need to deliver complex computational

methods to wide range of users, from non-expert
(i.e. non-geophysicists) who need hazard
information to domain experts who are using the
environment as part of their research program.

• The need to support multiple models, and data
types. For example, the community has
developed alternative earth velocity models each
of which has valid uses, but produces different
results.

• The distributed nature and specializations of the
geophysical research community leads to
distributed model development with models
being developed by different organizations with
differing expertise and computational resources.

• The computational requirements of earthquake
models require high performance and high
throughput computing techniques and the
computational and data resources may be
dispersed across institutions and administrative
domains.
To address these requirements, the approach we

take is to represent computational models as
scientific workflows targeted towards execution in a
distributed Grid environment. While many options
exist for specification and execution of scientific
workflows, addressing the SCEC community
requirements dictates that existing Grid workflow
solutions be combined with new user-centric
interfaces in unique ways. The result has been the
creation of a system for the specification and
execution of scientific workflows with the following
features:
• User-centered knowledge based interface that

helps users express geophysical problems as
high-level workflow specifications.

• Knowledge-based metadata search tools
integrated with data and metadata management
tools allowing users to search for data by concept
rather than by metadata attribute name and value.

• Workflow refinement tools based on the Virtual
Data Systems (VDS) [11] toolkit for mapping
workflow specifications into executable form.

• A Grid based execution environment that enables
execution of workflows against domain specific
software libraries, data sources, information
services and national class execution and storage
resources such as the National Science
Foundation’s TeraGrid environment.
We note that while the CME consists of many

components and offers a rich set of functionalities,

24 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

we focus on the system’s workflow specification and
management capabilities in this paper.

2. SCEC/CME Workflow System Overview

During development of the SCEC/CME
workflow system, we have found it useful to analyze
the construction and execution of workflows in three
phases which are: (1) workflow specification (2) data
discovery and workflow refinement, and (3) grid-
based workflow execution. Fig. 1 shows the tools and
data stores used in SCEC/CME workflow system and
how they map to these phases.

In the workflow specification phase, the user
describes the problem to be solved in high-level
geophysical terms and the CME assists in mapping
these into high-level workflow descriptions or
workflow templates. These descriptions define the
process but do not yet include information about
specific data instances or other detailed configuration
information needed to execute the workflow. The
data discovery and workflow refinement step fills in
this missing detail, identifying data sets, selecting
compute resources to execute simulation steps,
determining when and where to stage data. In the
final phase, a Grid-based workflow execution engine
is used to execute the descriptions, keeping track of
what tasks have been completed, and executing new
tasks as they become ready.

One of our development challenges is to support
both expert and non-expert users. A characteristic of
our system is to provide the user with a selection of
tools in each of these workflow phases. In order to
support users with differing levels of domain and
computational sophistication our system includes
both manual and knowledge-based tools. For
example, in the workflow specification phase, we
provide a standard graphical workflow specification
tool (the Pathway Composition Tool), as well as a
knowledge-based intelligent assistant (Composition
Analysis Tool) interface that guides users to a

computational solution defined as a workflow. Also,
in the data discovery and workflow refinement phase,
we provide both text-matching metadata search tools
as well as semantic metadata search tools to help
users locate existing data.

3. Workflow Specification

The first step in generating PSHA data is to
identify a simulation workflow that solves the user’s
problem by generating the desired data. We provide
two browser-based workflow specification tools to
help map problem specifications in terms of domain
semantics into high-level workflow templates that
define the basic computational steps in a solution.

To aid non-expert users we provide an Intelligent
Assistant workflow construction tool called the
Composition Analysis Tool (CAT) [15,16]. CAT
facilitates interactive construction of computational
pathways where users select and connect existing
SCEC components, and the system assists in
completing a correctly formulated computation.
Given an outline of a workflow, CAT analyzes it
using the semantic description of components, reports
errors and gaps, and generates specific suggestions
on how to fix these errors. Users often construct a
workflow template using CAT by specifying a
starting data type and a target data type and then
CAT provides suggestions on which computational
modules are needed in the workflow to transform the
starting data type to the target data type.

The CAT system is implemented in two
components; 1) a browser-based user interface tool
that guides the user through the creation of a
workflow template, and 2) a web service-based
reasoner (called the Composition Analysis Tool
Service (CAT-S)) that includes the reasoning and
validation algorithms. One of the features of CAT is
that it can check workflows for validity, i.e.: (a) all
links are consistent with the component descriptions
and their input and output data types, (b) all
computational steps have linked inputs, (c) an end
result has been specified, (d) all computational steps
are executable, and (e) all computational steps
contribute to the results. CAT uses the Web Ontology
Language (OWL) standard as its knowledge
representation language so the component ontology
used by CAT-S for validation is expressed in OWL.

For expert users we also provide a fairly standard
browser-based graphical workflow editing tool called
the Pathway Composition Tool (PCT). Both tools
(CAT and PCT) output workflow templates in a
common XML format. However, in the case of PCT,
the output workflow template has not been validated
while a workflow template produced by CAT has
been validated based on the semantic description of
the task and constituent components.

Pathway
Composition

Tool
(PCT)

4. Interactive Workflow Refinement
Given a specification of the processing steps that

need to be performed, the workflow must be refined
to identify what input data to apply the processing to,
what implementations to use and where to perform
the computations. The first step in this process is to
identify the input data to be used for the workflow.

Figure 1: The SCEC/CME system supports
workflow specification, refinement, and grid-
based execution.

Intelligent Workflow
Template Editor

(CAT)

Conceptual
Query Engine
(DataFinder)Data

Selection Tool
(WIT)

Workflow
Mapping

(Pegasus)

Workflow Template (WT)

Workflow Instance as
Abstract Workflow (DAX)

Executable Workflow as
Concrete Workflow (DAG)

DAGMan
CondorG

Grid
Services

Workflow
Data

Products

Metadata
Search Tool

(MCS-Search)

Workflow Specification

Interactive Workflow Refinement

Automated Workflow Refinement

Grid-based Workflow Execution

Workflow
Library

Component
Library

Domain
Ontology

Replica
Location
Service

Transform-
ation

Catalog

Metadata
Catalog

Computer
Resource Pool

Grid Resource and
Data Management

Tools

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 25

Before a workflow template can be used, the user
must identify what data sets to which the workflow
should be applied. We refer to the process of
discovering, selecting, and specifying initial input
files as the interactive workflow refinement phase.

In the SCEC/CME system, a user performs
interactive workflow refinement using a tool we call
the Workflow Instantiation Tool (WIT). WIT is a
browser-based tool with which the user selects the
input data instances to be used in the workflow
computation. Data instances that will be calculated
during the workflow execution do not need to be
specified. However, data files that represent initial
inputs to the workflow must be specified.

The WIT interface presents the user with each
computational step in the workflow under refinement,
and it shows the input data types, the computation
type, and the output data types for each step. For each
non-computed input data file, it presents the user with
a list of existing data files of the appropriate type.
WIT obtains information about the existing data files
in the workflow system through the use of a Metadata
Catalog Service (MCS) [7] that contains entries for
all data files instances, and their associated data
types, currently in the system. MCS metadata is
represented by name-value pairs where each data
type in the SCEC/CME system has a minimum set of
required metadata attributes. As workflows execute,
the workflow computational modules generate the
required metadata for the data files that they produce
and they register this metadata into the MCS.

In order to enable file replication, the MCS does
not store file names directly but rather records a
globally unique name in the form of a Uniform
Resource Identifier (URI). When data files are
imported into the system, or are created by
computational modules, we form a URI by
concatenating a SCEC namespace, a data type name,
and a sequence number generated from the database.
The URI can be mapped to one or more actual file
names by another component of the SCEC/CME
system called the Globus Replica Location Service
(RLS).

If the user knows the URI of the desired input
data, they may be specified directly. Otherwise, the
SCEC/CME system provides two browser-based data
discovery tools to help the user locate the appropriate
files. One of the tools, designed for sophisticated
users, provides string-based metadata attribute search
capabilities. The other data discovery tool, designed
to support non-expert users, provides concept-based
metadata searches. With both data discovery tools,
the user specifies some information describing the
desired file(s) and the search tools query the system
metadata to return the URIs of matching files.

The first tool, called MCS-Search, is a simple,
metadata attribute-based, search tool. The user enters
attribute names and values, and the system uses
string-based matching to locate logical files with the
desired attributes.

To improve upon this basic name-value, string-
matching metadata search capability, we have also
developed a semantic metadata search tool called
DataFinder based on the PowerLoom knowledge

representation system [18]. DataFinder utilizes a
concept-based domain and metadata attribute
ontology that links geophysical and seismic hazard
domain concepts with the metadata attributes that
describe the computational products.

DataFinder provides semantic overlays for the
existing metadata attributes, enriching the
information content. The DataFinder domain and
metadata attribute ontology is represented in the
PowerLoom representation language, based on KIF
[13]. DataFinder is implemented using a hybrid
reasoning approach based on combining the strengths
of the PowerLoom logical reasoning engine with the
database technology underlying the MCS.

The direct connection between DataFinder and
the MCS database is achieved via PowerLoom’s
database access layer, which provides DataFinder
with the necessary scalability to handle the task of
locating relevant data products in a large repository.
It also allows us to add semantic enhancements by
overlaying the raw metadata with a hierarchy of
concepts, providing for more abstract views. The
DataFinder system translates the domain concepts
specified by the user into SCEC/CME metadata
attributes. The DataFinder search system allows users
to find data instances without requiring detailed
knowledge of the (multiple) specific metadata
attributes used to describe the data.

When all initial, non-computed, input data files
have been discovered, the user can interactively
refine the workflow specification by specifying a
URI for each input file. Once URIs have been
specified for all non-calculated data instances,
interactive workflow refinement is complete.

The output of the interactive workflow
refinement phase is a representation of the workflow
we call an abstract workflow. An abstract workflow
specifies the workflow using logical references to
both the files, and to the computational modules to be
used. This has several advantages. By specifying the
data file instances logically, the automated workflow
refinement parts of the system can select the most
appropriate file replicas. By specifying the
transformations logically, later elements of the
workflow system can select both the transformation
instance and computing resources to be used during
execution.

5. Automated Workflow Refinement

In the automated workflow refinement phase, we
use a sophisticated execution planning system to
convert an abstract workflow into a concrete
workflow. In this process, URIs must be mapped to
actual input files, alternative implementations for
computational steps chosen and execution sites
selected. In addition, we must orchestrate the
movement of data between computational sites as
required by the execution sites and data sources.

This conversion is performed during the
automated workflow refinement phase of our system
using Pegasus (Planning for Execution in Grids)
[4,5,6]. The Pegasus system performs automated
workflow refinement utilizing a variety of tools
including the Virtual Data System (VDS) that

26 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

includes Chimera, Condor DAGMan, MCS, RLS,
and Globus. Program scheduling and execution tools
are based on the high throughput Condor job
submission and scheduling tools.

The automated workflow refinement capabilities
of the Pegasus system are one more way that the
SCEC/CME system shields users from workflow
complexities. Non-expert users are frequently not
familiar with computing details such as how to match
executables to hosts. Our system supports these users
by establishing transformation to compute resource
mappings in data stores such as the VDS
transformation catalog and then using Pegasus to
automatically select appropriate execution
environments for each transformation in a workflow.

Pegasus interacts with other VDS and Globus
components to drive the process of refinement of
workflows from an abstract format to an executable
concrete workflow specification. These include a
transformation catalog that contains descriptions of
the SCEC/CME transformations and RLS which is
used to map URIs specified during interactive
refinement into specific file instances.

During the conversion from DAX to DAG, the
system queries RLS and maps each URI to an
appropriate physical file name based on the location
of the replicas and the location where the data file
needs to be read, and replaces each URI with a URL.
The system also converts each logical transformation
name to physical transformation name. Pegasus also
selects an appropriate computer resource on which to
run the transformation by mapping each
transformation’s required computing capabilities to
available computing resources as specified in the
Pegasus resource pool configuration file. If Pegasus
determines there is more than one computing
resource available for use for a computational
module, it selects one of the appropriate grid
resources using a user selected algorithms. Supported
resource selection algorithms include both round
robin and random approaches.

During the conversion from abstract workflow to
concrete workflow, Pegasus may augment a
workflow by adding data or module staging into the
workflow if the data and executable movements are
required to execute on the selected computing
resources. If, as Pegasus converts an abstract
workflow to a concrete workflow, it recognizes that
data movement is required by the workflow to run on
the selected grid-resources, it will automatically add
the data movement module into the workflow.

The automated workflow refinement phase in the
SCEC/CME workflow system shields users from the
complexities of the grid-based execution
environment. Development of the resource
descriptions such as the transformation catalog and
the resource pool configuration can be performed by
specialists knowledgeable about these environments
and through Pegasus, deliver the flexible computing
and data management capabilities of the Grid to non-
expert users.

6. Grid-based Execution

Once the SCEC/CME system has produced a
DAG, the workflow is ready for execution on a
Globus-based grid. Grid-based execution is the final
phase our workflow system.

As our workflow is now represented as an
executable DAG, we submit the DAG to the Condor
DAGMan workflow execution system. Since the
Condor DAGMan interacts with Globus tools, a
workflow constructed by our non-expert user now
executes securely distributed across a wide variety of
computing and storage devices accessible through the
SCEC grid. Our grid-based workflows benefits from
the job submission and scheduling capabilities of the
Condor DAGMan tools. DAGMan analyzes a
workflow for parallel elements and will run the
computational steps in parallel where possible.

During grid-based execution, the SCEC/CME
system provides workflow monitoring tools that
allow users to follow the progress of their workflow
as it executes on the grid. As a workflow executes
and produces new data instances, the system assigns
logical file names to the new files, and inserts logical
file name to physical file name mappings into RLS.
Modules output metadata which is written into MCS
to maintain metadata for each new data instance.

At the completion of the workflow, the solution
to the user’s geophysical problem is stored in the
system as a data file and an associated metadata
description. This data instance is now available for
use an input into the next geophysical problem that
the scientist wishes to solve address using a
workflow-based solution.

7. Case Study: Probabilistic Hazard Maps

As a discipline, explorations in geophysics are
particularly well suited to be represented as scientific
workflows. Probabilistic seismic hazard analysis
(PSHA) hazard curve calculations are a good case in
point. A PSHA hazard curve shows the probability
that a specific site will exceed a specified amount of
ground motion due to likely earthquakes over some
period of time, for example, 50 years. A collection of
PSHA hazard curves can be combined into
probabilistic hazard maps.

The issues of component selection, configuration
and computation management are complex even for
members of the geophysics community. For a
practicing engineer or city planner, the complexity
can be overwhelming.

Representing PSHA calculation as a workflow
mitigates many of these issues. Workflows help
manage the complexity of the analysis in terms of the
number of different types of calculations that must be
performed, the number of alternatives for each
processing step, and the number of data files that
must be managed. Also, by enabling configuration
and reuse of a pre-defined set of automatically
configurable workflow templates we can make it
possible to deliver this complex analysis to
unsophisticated users, enabling them to generate
PSHA maps on demand, customized to their use case
requirements.

SCEC scientists utilized the SCEC/CME
workflow system to perform a series of hazard map

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 27

calculations [9]. In these studies, a probabilistic
seismic hazard map workflow was modeled in our
system as a three transformation workflow. We will
discuss this example to help illustrate the capabilities
of our system.

In this example, the user wants to calculate a
hazard map for the southern California region. The
user begins in the workflow specification phase. To
construct this workflow, the user begins the
workflow specification using the CAT interface.

One way a non-sophisticated user may interact
with CAT is to specify the target data type that they
want to create. In this case the user wants to create a
Hazard Map which is identified by the system as a
Hazard Map JPEG. Once the user has identified this
target data type, CAT is now able to suggest to the
user which transformation are required to generate a
files of this type. By interacting with CAT, and
adding transformations into the workflow, the user
develops a workflow-based solution to their problem.
The workflow developed by the user with the
assistance of the CAT is shown in Fig 2.

The workflow template produced by CAT
indicates that each of the transformations requires
two or more input data files. The figure shows that as
the workflow executes output data sets will be used
as inputs to subsequent transformations. However,
some initial data sets must be supplied by the user in
order to run this workflow. There are three user
supplied initial inputs to the Hazard Map Calculator.
The transformation called Hazard Map Dataset to
Geo-Referenced Ground Motion Converter requires
three inputs. One of these inputs will be calculated
during the workflow. The other two inputs must be
specified before the workflow can be run. The
transformation called Map Plotter also requires three
inputs, one of which is calculated during the
workflow, and two of which must be specified prior
to workflow execution.

Next, the user performs data discovery to find
appropriate existing data files. For example, one
input to the Hazard Map Calculator is a file of type
Region of Interest. This file contains a description of

the geographical boundaries of the seismic hazard
study. The user can search for a file with the desired
boundaries using either the MCS-Search or
DataFinder tools.

The user now begins the interactive workflow
refinement. The WIT tool shows the user each
transformation indicating the user supplied inputs and
the calculated inputs. For each user-specified input
file, WIT provides the user with a list of available
files of the correct type. Once the user has selected a
specific logical file name for each of the seven user-
supplied, initial inputs to this workflow, the user
submits the abstract workflow to the Pegasus system.

The Pegasus system now begins automated
workflow refinement. The abstract workflow is
converted to a concrete workflow. By making calls to
the RLS system, each logical file name in the DAX is
converted to a physical file name. The logical
transformation names are converted to actual
executable names. A hazard map calculation for the
southern California region may require 10,000 hazard
curve calculations and our workflow system must
manage this number of files for each map.

 Once Pegasus has generated a DAG, the DAG is
submitted to the Condor DAGMan for job
submission tools for execution on the grid. The data
files created during the workflow execution are
entered into the MCS and RLS.

When the workflow is submitted for execution,
the system returns a logical file name identifying the
desired final result of our workflow, which in this
case is a Hazard Map JPEG. This file represents the
solution to our geophysical problem, and it can be
accessed as soon as the workflow completes.

Hazard Map
Calculator

Region of Interest

Site Parameters

Earthquake Rupture
Forcast

Collection of Hazard
Curves

Intensity Measure
Relationship

Collection of Hazard
Curves

Hazard Map
Specification

Hazard Map
Dataset to Geo-

Referenced
Ground Motion

Converter

Geo-Referenced
Ground Motion File

Geo-Referenced
Ground Motion File

Map Color
Parameters

Region to Map

Map Plotter Hazard Map JPEG 8. Related Work
There has been increasing effort to enable

scientists to create and manage complex scientific
workflows. The myGrid project [21] exploits
semantic web technology to support data intensive
bioinformatics experiments in a grid environment.
The semantic description of services in RDF and
OWL is used for service discovery and match-
making. They also provide interactive tools called
Taverna for authoring and executing workflows.
Kepler [1] is also a data-driven workflow system
where the user can author data processing steps as a
network of pre-defined workflow components called
‘actors’ and use ‘directors’ for describing execution
models. The system allows semantic annotations of
data and actors, and can support semantic
transformation of data. Triana [3] allows the user to
specify execution behavior easily by supporting an
abstract layer for Grid computing called GAP, a
subset of the GridLab GAT. Using a graphical
interface, the user can drag and drop workflow
component to form a workflow and also specify
distribution policy for a group of nodes in the
workflow. GAP services can be advertised,
discovered and communicated with using abstract
high level calls on Grids and P2P networks. Our
work presents complementary capabilities in that the
workflow composition tools in these systems provide
limited assistance in validating user authored

Figure 2: Probabilistic Seismic Hazard Map
calculation defined as a three step workflow.

28 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

workflows and providing suggestions to generate
complete and consistent workflows. Also these
systems do not employ sophisticated resource
management approaches and cannot fully make use
of grid resources.

There are many Grid tools that are developed to
help end-users manage complex workflows. ICENI
(Imperial College e-Science Network Infrastructure)
[17] provides a component based Grid middleware.
Users can construct an abstract workflow from a set
of workflow components and the system generates a
concrete workflow using its scheduler. ICENI also
support different views of composed workflows: it
uses spatial view to allow flexibility during
composition and provides temporal view to support
scheduling optimization. GridAnt [20] developed by
Argonne National Laboratory is a client-side
workflow system that assists users to express and
control execution sequences and test Grid services. It
uses Java Cog Kit that provides access to Grid
services through a Java framework. GridFlow [2]
provides user portal and services of both global grid
workflow management and local grid sub-workflow
scheduling. Unicore [19] provides a programming
environment where users can design and execute job
flows with advanced flow controls. Our workflow
system presents a more comprehensive grid-based
environment for scientific workflows and we believe
that integrating our approach with these capabilities
may result in improved environments to support
complex scientific workflows.

9. Discussion

The SCEC/CME system helps geoscientist
execute a wide variety of geophysical simulation
codes including serial Probabilistic Seismic Hazard
calculations, MPI-based high performance
earthquake wave propagation simulations, and I/O
intensive volumetric data post-processing software.

The SCEC/CME Workflow system represents a
comprehensive grid-based workflow environment
that addresses a full range of workflow capabilities
from interactive composition of workflows, to data
and metadata management, semantic metadata search
capabilities, and job scheduling that makes full use of
grid resources. The system‘s use of well-established
workflow tools including Globus and VDS enhances
its stability, robustness, and maintainability. Through
its support for grid environment, the system supports
workflows that run from simple Condor Pool-based
applications to high performance computing system
on the TeraGrid.

The SCEC/CME system utilizes standard
semantic web technologies including OWL, SOAP,
and WSDL to enhance platform independence and
interoperability. The system supports a wide variety
of computational modules, including, but not limited
to web service invocations. This support for a variety
of computational module types eases the integration
of existing programs into the workflow system.

During this work, we simplified user interactions
with the system by introducing intelligent assistants
and knowledge driven resource selections. These
tools utilize a variety of data stores including

computing and domain ontologies, as well as
metadata, computational module, and computer
resource descriptions. It is through these descriptive,
rather than computational, data stores, that we are
able to provide user assistance, and to simplify the
user experience.

In our view, the development and use of these
knowledge repositories shifts the burden of detailed
knowledge of workflows, in an appropriate way,
towards our domain and computing experts and away
from end users of our workflow system. By capturing
the knowledge of domain and computing experts in
knowledge bases, and by constructing our tools to use
this captured knowledge, we reduced the expertise
required to use our scientific workflow system
making the system more accessible to non-expert
users.

Acknowledgements

This work was support by the SCEC Community
Modeling Environment Project which is funded by
the National Science Foundation (NSF) under
contract EAR-0122464 (The SCEC Community
Modeling Environment (SCEC/CME): An
Information Infrastructure for System-Level
Earthquake Research). This work was also supported
by the NSF GriPhyN Project, grant ITR-800864.
SCEC is funded by NSF Cooperative Agreement
EAR-0106924 and USGS Cooperative Agreement
02HQAG0008. The SCEC contribution number for
this paper is 915.

10. References
[1] Altintas, I., C. Berkley, E. Jaeger, M. Jones, B.
Ludäscher, S. Mock, Kepler: Towards a Grid-
Enabled System for Scientific Workflows, In the
Workflow in Grid Systems Workshop in GGF10 -
The Tenth Global Grid Forum, Berlin, Germany,
March 2004.
[2] Cao, J., S. A. Jarvis, S. Saini, and G. R. Nudd.
GridFlow: Workflow Management for Grid
Computing. In 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGrid 2003), Tokyo, Japan, May 2003.
[3] Churches, D., G. Gombas, A. Harrison, J.
Maassen, C. Robinson, M. Shields, I. Taylor and I.
Wang, Programming Scientific and Distributed
Workflow with Triana Services. In Grid Workflow
2004 Special Issue of Concurrency and Computation:
Practice and Experience, to be published, 2005.
[4] Deelman, E., James Blythe, Yolanda Gil, Carl
Kesselman, Scott Koranda, Albert Lazzarini,
Gaurang Mehta, Maria Alessandra Papa, Karan Vahi
(2003a). Pegasus and the Pulsar Search: From
Metadata to Execution on the Grid, Applications Grid
Workshop, PPAM 2003, Czestochowa, Poland 2003.
[5] Deelman E., James Blythe, Yolanda Gil, Carl
Kesselman (2003b). Workflow Management in
GriPhyN, Grid Resource Management, Kluwer,
2003.
[6] Deelman, E., James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, Kent
Blackburn, Albert Lazzarini, Adam Arbree, Richard
Cavanaugh, and Scott Koranda (2003c). Mapping

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 29

Abstract Complex Workflows onto Grid
Environments, Journal of Grid Computing, Vol.1, no.
1, 2003, pp. 25-39.
[7] Deelman, E., James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Sonal Patil, Mei-Hui Su,
Karan Vahi, Miron Livny (2004), Pegasus : Mapping
Scientific Workflows onto the Grid, Across Grids
Conference 2004, Nicosia, Cyprus, 2004
[8] Domenico B.,John Caron, Ethan Davis, Robb
Kambic and Stefano Nativi (2002). Thematic Real-
time Environmental Distributed Data Services
(THREDDS): Incorporating Interactive Analysis
Tools into NSDL, Journal of Digital Information,
Volume 2 Issue 4 Article No. 114, 2002-05-29
[9] Field, E.H.,V. Gupta, N. Gupta, P. Maechling,
and T.H Jordan (2005). Hazard Map Calculations
Using GRID Computing, to be published to
Seismological Research Letters, 2005
[10] Foster, I., C. Kesselman, S. Tuecke,The
Anatomy of the Grid: Enabling ScalableVirtual
Organizations, International J. Supercomputer
Applications, 15(3), 2001.
[11] Foster, I., J. Voeckler, M. Wilde, and Y. Zhao.
Chimera: A Virtual Data System for Representing,
Querying and Automating Data Derivation
Proceedings of the 14th Conference on Scientific and
Statistical Database Management, Edinburgh,
Scotland, July 2002.
[12]Frey, J. T. Tannenbaum, I. Foster, M. Livny, S.
Tuecke, Condor-G: A Computation Management
Agent for Multi-Institutional Grids,Cluster
Computing, 5(3):237-246, 2002.
[13] Genesereth, M.R. (1991). Knowledge
interchange format. In J. Allen, R. Fikes, and E.
Sandewall, editors, Proceedings of the 2nd
International Conference on Principles of Knowledge
Representation and Reasoning, pages 599--600, San
Mateo, CA, USA, April 1991.
[14] Jordan, T. H., P. J Maechling, and the
SCEC/CME Collaboration (2003). The SCEC
community modeling environment: an information
infrastructure for system-level science, Seism. Res.
Lett. 74, 324-328
[15] Kim, J., M. Spraragen, and Y. Gil (2004a), An
Intelligent Assistant for Interactive Workflow
Composition, In Proceedings of the International
Conference on Intelligent User Interfaces (IUI-2004);
Madeira, Portugal, 2004.
[16] Kim, J., M. Spraragen, and Y. Gil (2004b), A
Knowledge-Based Approach to Interactive Workflow
Composition, In Proceedings of the 2004 Workshop
on Planning and Scheduling for Web and Grid
Services, at the 14th International Conference on
Automatic Planning and Scheduling (ICAPS 04);
Whistler, Canada, 2004.
[17] McGough, S., L. Young, A. Afzal, S. Newhouse,
and J. Darlington, WorkflowEnactment in ICENI In
UK e-Science, All Hands Meeting, p. 894--900,
Nottingham, UK, Sep. 2004
[18] PowerLoom:
http://www.isi.edu/isd/LOOM/PowerLoom/
 [19] Romberg, R., The UNICORE Architecture-
Seamless Access to Distributed Resources,
Proceedings of 8th IEEE International Symposium on

High Performance Computing, Redondo Beach, CA,
USA, August 1999, pp. 287-293
[20] von Laszewski,G. K. Amin, M. Hategan, N. J.
Zaluzec, S. Hampton, and A. Rossi, GridAnt: A
Client-Controllable Grid Workflow System. In 37th
Annual Hawaii International Conference on System
Sciences (HICSS'04) IEEE Computer Society Press,
Los Alamitos, CA, USA, January 5-8, 2004.
[21] Wroe C., C.A. Goble, M. Greenwood, P. Lord,
S. Miles, J. Papay, T. Payne, L. Moreau (2004),
Automating Experiments Using Semantic Data on a
Bioinformatics Grid, In IEEE Intelligent Systems
special issue on e-Science Jan/Feb 2004.

30 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

A Survey of Data Provenance in e-Science
Yogesh L. Simmhan Beth Plale Dennis Gannon

Computer Science Department
Indiana University, Bloomington, IN 47405

{ysimmhan, plale, gannon}@cs.indiana.edu

ABSTRACT
Data management is growing in complexity as large-
scale applications take advantage of the loosely coupled
resources brought together by grid middleware and by
abundant storage capacity. Metadata describing the data
products used in and generated by these applications is
essential to disambiguate the data and enable reuse. Data
provenance, one kind of metadata, pertains to the
derivation history of a data product starting from its
original sources.
In this paper we create a taxonomy of data provenance
characteristics and apply it to current research efforts in
e-science, focusing primarily on scientific workflow
approaches. The main aspect of our taxonomy
categorizes provenance systems based on why they
record provenance, what they describe, how they
represent and store provenance, and ways to disseminate
it. The survey culminates with an identification of open
research problems in the field.

1. Introduction
The growing number and size of computational and data
resources coupled with uniform access mechanisms
provided by a common Grid middleware stack is
allowing scientists to perform advanced scientific tasks
in collaboratory environments. Scientific workflows are
the means by which these tasks can be composed. The
workflows can generate terabytes of data, mandating
rich and descriptive metadata about the data in order to
make sense of it and reuse it. One kind of metadata is
provenance (also referred to as lineage and pedigree),
which tracks the steps by which the data was derived
and can provide significant value addition in such data
intensive e-science projects.
Scientific domains use different forms of provenance
and for various purposes. Publications are a common
form of representing the provenance of experimental
data and results. Increasingly, Digital Object Identifiers
(DOIs) [1] are used to cite data used in experiments so
that the papers can relate the experimental process and
analysis – which form the data’s lineage – to the actual
data used and produced. Some scientific fields go
beyond this and store lineage information in a machine
accessible and understandable form. Geographic
information system (GIS) standards suggest that
metadata about the quality of datasets should include a
description of the lineage of the data product to help the
data users to decide if the dataset meets the requirement

of their application [2]. Materials engineers choose
materials for the design of critical components, such as
for an airplane, based on their statistical analysis and it
is essential to establish the pedigree of this data to
prevent system failures and for audit [3]. When sharing
biological and biomedical data in life sciences research,
presence of its transformation record gives a context in
which it can be used and also credits the author(s) of the
data [4]. Knowledge of provenance is also relevant from
the perspective of regulatory mechanisms to protect
intellectual property [5]. With a large number of datasets
appearing in the public domain, it is increasingly
important to determine their veracity and quality. A
detailed history of the data will allow the users to
discern for themselves if the data is acceptable.
Provenance can be described in various terms depending
on the domain where it is applied. Buneman et al [6],
who refer to data provenance in the context of database
systems, define it as the description of the origins of
data and the process by which it arrived at the database.
Lanter [7], who discusses derived data products in GIS,
characterizes lineage as information describing materials
and transformations applied to derive the data.
Provenance can be associated not just with data
products, but with the process(es) that enabled their
creation as well. Greenwood et al [8] expand Lanter’s
definition and view it as metadata recording the process
of experiment workflows, annotations, and notes about
experiments. For the purposes of this paper, we define
data provenance as information that helps determine the
derivation history of a data product, starting from its
original sources. We use the term data product or dataset
to refer to data in any form, such as files, tables, and
virtual collections. The two important features of the
provenance of a data product are the ancestral data
product(s) from which this data product evolved, and the
process of transformation of these ancestral data
product(s), potentially through workflows, that helped
derive this data product.
In this survey, we compare current data provenance
research in the scientific domain. Based on an extensive
survey of the literature on provenance [9], we have
developed a taxonomy of provenance techniques that we
use to analyze five selected systems. Four of the projects
use workflows to perform scientific experiments and
simulations. The fifth research work investigates
provenance techniques for data transformed through
queries in database systems. The relationship between

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 31

workflows and database queries with respect to lineage
is evident1. Research on tracking the lineage of database
queries and on managing provenance in workflow
systems share a symbiotic relationship, and the
possibility of developing cross-cutting techniques is
something we expose in this study. We conclude this
survey with an identification of open research problems.
The complete version of this survey [9] reviews an
additional four systems and also investigates the use of
provenance in the business domain.
While data provenance has gained increasing interest
recently due to unique desiderata introduced by
distributed data in Grids, few sources are available in
the literature that compare across approaches. Bose et al
[10] survey lineage retrieval systems, workflow
systems, and collaborative environments, with the goal
of proposing a meta-model for a systems architecture for
lineage retrieval. Our taxonomy based on usage, subject,
representation, storage, and dissemination more fully
captures the unique characteristics of these provenance
systems. Miles et al [11] study use cases for recording
provenance in e-science experiments for the purposes of
defining the technical requirements for a provenance
architecture. We prescribe no particular model but
instead discuss extant models for lineage management
that can guide future provenance management systems.

2. Taxonomy of Provenance Techniques
Different approaches have been taken to support data
provenance requirements for individual domains. In this
section, we present a taxonomy of these techniques from
a conceptual level with brief discussions on their pros
and cons. A summary of the taxonomy is given in Figure
1. Each of the five main headings is discussed in turn.

2.1 Application of Provenance
Provenance systems can support a number of uses [12,
13]. Goble [14] summarizes several applications of
provenance information as follows:
� Data Quality: Lineage can be used to estimate data

quality and data reliability based on the source data
and transformations [4]. It can also provide proof
statements on data derivation [15].

� Audit Trail: Provenance can be used to trace the audit
trail of data [11], determine resource usage [8], and
detect errors in data generation [16].

� Replication Recipes: Detailed provenance information
can allow repetition of data derivation, help maintain
its currency [11], and be a recipe for replication [17].

� Attribution: Pedigree can establish the copyright and
ownership of data, enable its citation [4], and
determine liability in case of erroneous data.

1 Workflows form a graph of processes that transform data

products. Database queries can form a graph of operations
that operate on tables.

� Informational: A generic use of lineage is to query
based on lineage metadata for data discovery. It can
also be browsed to provide a context to interpret data.

2.2 Subject of Provenance
Provenance information can be collected about different
resources in the data processing system and at multiple
levels of detail. The provenance techniques we surveyed
focus on data, but this data lineage can either be
available explicitly or deduced indirectly. In an explicit
model, which we term a data-oriented model, lineage
metadata is specifically gathered about the data product.
One can delineate the provenance metadata about the
data product from metadata concerning other resources.
This contrasts to a process-oriented, or indirect, model
where the deriving processes are the primary entities for
which provenance is collected, and the data provenance
is determined by inspecting the input and output data
products of these processes [18].
The usefulness of provenance in a certain domain is
linked to the granularity at which it is collected. The
requirements range from provenance on attributes and
tuples in a database [19] to provenance for collections of
files, say, generated by an ensemble experiment run
[20]. Increasing use of abstract datasets [17, 18] that
refer to data at any granularity or format allows a flexible
approach. The cost of collecting and storing provenance
can be inversely proportional to its granularity.

2.3 Representation of Provenance
Different techniques can be used to represent
provenance information, some of which depend on the
underlying data processing system. The manner in
which provenance is represented has implications on the
cost of recording it and the richness of its usage. The
two major approaches to representing provenance
information use either annotations or inversion. In the
former, metadata comprising of the derivation history of
a data product is collected as annotations and
descriptions about source data and processes. This is an
eager form [21] of representation in that provenance is
pre-computed and readily usable as metadata.
Alternatively, the inversion method uses the property by
which some derivations can be inverted to find the input
data supplied to them to derive the output data.
Examples include queries and user-defined functions in
databases that can be inverted automatically or by
explicit functions [19, 22, 23]. In this case, information
about the queries and the output data may suffice to
identify the source data.
While the inversion method has the advantage of being
more compact than the annotation approach, the
information it provides is sparse and limited to the
derivation history of the data. Annotations, on the other
hand, can be richer and, in addition to the derivation
history, often include the parameters passed to the
derivation processes, the versions of the workflows that

32 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Provenance
Taxonomy

Use of
Provenance

Subject of
Provenance

Provenance
Representation

Storing
Provenance

Data Quality

Audit Trail

Replication

Attribution

Process
Oriented

Granularity

Representation
Scheme

Annotation

Inversion

Informational

Data Oriented

Contents

Syntactic
Information

Semantic
Information

Fine Grained
Coarse
Grained

Scalability

Provenance
Dissemination

Overhead

Visual Graph

Queries

Service API

Provenance
Taxonomy

Use of
Provenance

Subject of
Provenance

Provenance
Representation

Storing
Provenance

Data Quality

Audit Trail

Replication

Attribution

Process
Oriented

Granularity

Representation
Scheme

Annotation

Inversion

Informational

Data Oriented

Contents

Syntactic
Information

Semantic
Information

Fine Grained
Coarse
Grained

Scalability

Provenance
Dissemination

Overhead

Visual Graph

Queries

Service API

Figure 1 Taxonomy of Provenance

will enable reproduction of the data, or even related
publication references [24].
There is no metadata standard for lineage representation
across disciplines, and due to their diverse needs, it is a
challenge for a suitable one to evolve [25]. Many current
provenance systems that use annotations have adopted
XML for representing the lineage information [11, 18,
25, 26]. Some also capture semantic information within
provenance using domain ontologies in languages like
RDF and OWL [18, 25]. Ontologies precisely express
the concepts and relationships used in the provenance
and provide good contextual information.

2.4 Provenance Storage
Provenance information can grow to be larger than the
data it describes if the data is fine-grained and
provenance information rich. So the manner in which
the provenance metadata is stored is important to its
scalability. The inversion method discussed in section
2.3 is arguably more scalable than using annotations
[19]. However, one can reduce storage needs in the
annotation method by recording just the immediately
preceding transformation step that creates the data and
recursively inspecting the provenance information of
those ancestors for the complete derivation history.
Provenance can be tightly coupled to the data it
describes and located in the same data storage system or
even be embedded within the data file, as done in the
headers of NASA Flexible Image Transport System
files. Such approaches can ease maintaining the integrity
of provenance, but make it harder to publish and search
just the provenance. Provenance can also be stored with
other metadata or simply by itself [26]. In maintaining
provenance, we should consider if it is immutable, or if
it can be updated to reflect the current state of its
predecessors, or whether it should be versioned [14].
The provenance collection mechanism and its storage
repository also determine the trust one places in the
provenance and if any mediation service is needed [11].
Management of provenance incurs costs for its
collection and for its storage. Less frequently used

provenance information can be archived to reduce
storage overhead or a demand-supply model based on
usefulness can retain provenance for those frequently
used. If provenance depends on users manually adding
annotations instead of automatically collecting it, the
burden on the user may prevent complete provenance
from being recorded and available in a machine
accessible form that has semantic value [18].

2.5 Provenance Dissemination
In order to use provenance, a system should allow rich
and diverse means to access it. A common way of
disseminating provenance data is through a derivation
graph that users can browse and inspect [16, 18, 25, 26].
Users can also search for datasets based on their
provenance metadata, such as to locate all datasets
generated by a executing a certain workflow. If semantic
provenance information is available, these query results
can automatically feed input datasets for a workflow at
runtime [25]. The derivation history of datasets can be
used to replicate data at another site, or update it if a
dataset is stale due to changes made to its ancestors [27].
Provenance retrieval APIs can additionally allow users
to implement their own mechanism of usage.

3. Survey of Data Provenance Techniques
In our full survey of data provenance [9], we discuss
nine major works that, taken together, provide a
comprehensive overview of research in this field. In this
paper, five works have been selected for discussion. A
summary of their characteristics, as defined by the
taxonomy, can be found in Table 1.

3.1 Chimera
Chimera [27] manages the derivation and analysis of
data objects in collaboratory environments and collects
provenance in the form of data derivation steps for
datasets [17]. Provenance is used for on-demand
regeneration of derived data (“virtual data”), comparison
of data, and auditing data derivations.
Chimera uses a process oriented model to record
provenance. Users construct workflows (called

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 33

derivation graphs or DAGs) using a Virtual Data
Language (VDL) [17, 27]. The VDL conforms to a
schema that represents data products as abstract typed
datasets and their materialized replicas. Datasets can be
files, tables, and objects of varying granularity, though
the prototype supports only files. Computational process
templates, called transformations, are scripts in the file
system and, in future, web services [17]. The
parameterized instance of the transformations, called
derivations, can be connected to form workflows that
consume and produce replicas. Upon execution,
workflows automatically create invocation objects for
each derivation in the workflow, annotated with runtime
information of the process. Invocation objects are the
glue that link input and output data products, and they
constitute an annotation scheme for representing the
provenance. Semantic information on the dataset
derivation is not collected.
The lineage in Chimera is represented in VDL that maps
to SQL queries in a relational database, accessed
through a virtual data catalog (VDC) service [27].
Metadata can be stored in a single VDC, or distributed
over multiple VDC repositories with inter-catalog
references to data and processes, to enable scaling.
Lineage information can be retrieved from the VDC
using queries written in VDL that can, for example,
recursively search for derivations that generated a
particular dataset. A virtual data browser that uses the
VDL queries to interactively access the catalog is
proposed [27]. A novel use of provenance in Chimera is
to plan and estimate the cost of regenerating datasets.
When a dataset has been previously created and it needs
to be regenerated (e.g. to create a new replica), its
provenance guides the workflow planner in selecting an
optimal plan for resource allocation [17, 27].

3.2 myGrid
myGrid provides middleware in support of in silico
(computational laboratory) experiments in biology,
modeled as workflows in a Grid environment [18].
myGrid services include resource discovery, workflow
enactment, and metadata and provenance management,
which enable integration and present a semantically
enhanced information model for bio-informatics.
myGrid is service-oriented and executes workflows
written in XScufl language using the Taverna engine
[18]. A provenance log of the workflow enactment
contains the services invoked, their parameters, the start
and end times, the data products used and derived, and
ontology descriptions, and it is automatically recorded
when the workflow executes. This process-oriented
workflow derivation log is inverted to infer the
provenance for the intermediate and final data products.
Users need to annotate workflows and services with
semantic descriptions to enable this inference and have
the semantic metadata carried over to the data products.

In addition to contextual and organizational metadata
such as owner, project, and experiment hypothesis,
ontological terms can also be provided to describe the
data and the experiment [8]. XML, HTML, and RDF are
used to represent syntactic and semantic provenance
metadata using the annotation scheme [14]. The
granularity at which provenance can be stored is flexible
and is any resource identifiable by an LSID [18].
The myGrid Information Repository (mIR) data service
is a central repository built over a relational database to
store metadata about experimental components [18]. A
number of ways are available for knowledge discovery
using provenance. For instance, the semantic
provenance information available as RDF can be viewed
as a labeled graph using the Haystack semantic web
browser [18]. COHSE (Conceptual Open Hypermedia
Services Environment), a semantic hyperlink utility, is
another tool used to build a semantic web of
provenance. Here, semantically annotated provenance
logs are interlinked using an ontology reasoning service
and displayed as a hyperlinked web page. Provenance
information generated during the execution of a
workflow can also trigger the rerun of another workflow
whose input data parameters it may have updated.

3.3 CMCS
The CMCS project is an informatics toolkit for
collaboration and metadata-based data management for
multi-scale science [24, 25]. CMCS manages
heterogeneous data flows and metadata across multi-
disciplinary sciences such as combustion research,
supplemented by provenance metadata for establishing
the pedigree of data. CMCS uses the Scientific
Annotation Middleware (SAM) repository for storing
URL referenceable files and collections [25].
CMCS uses an annotation scheme to associate XML
metadata properties with the files in SAM and manages
them through a Distributed Authoring and Versioning
(WebDAV) interface. Files form the level of granularity
and all resources such as data objects, processes, web
services, and bibliographic records are modeled as files.
Dublin Core (DC) verbs like Has Reference, Issued, and
Is Version Of are used as XML properties for data files
and semantically relate them to their deriving processes
through XLink references in SAM [24]. DC elements
like Title and Creator, and user-defined metadata can
provide additional context information. Heterogeneous
metadata schemas are supported by mapping them to
standard DC metadata terms using XSLT translators.
Direct association of provenance metadata with the data
object makes this a data-oriented model.
There is no facility for automated collection of lineage
from a workflow’s execution. Data files and their
metadata are populated by DAV-aware applications in
workflows or manually entered by scientists through a
portal interface [25]. Provenance metadata properties

34 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Table 1 Summary of characteristics of surveyed data provenance techniques

 Chimera myGRID CMCS ESSW Trio

Applied
Domain

 Physics,
Astronomy Biology Chemical Sciences Earth Sciences None

Workflow Type Script Based Service Oriented Service Oriented Script Based Database Query

Use of Provenance Informational; Audit;
Data Replication

Context Information;
Re-enactment

Informational;
update data Informational Informational; up

date propagation
Subject Process Process Data Both Data

Granularity Abstract datasets
(Presently files)

Abstract resources
having LSID Files Files Tuples in

Database
Representation
Scheme

Virtual Data Language
Annotations

XML/RDF
Annotations

DublinCore XML
Annotations

XML/RDF
Annotations

Query
Inversion

Semantic Info. No Yes Yes Proposed No
Storage Repository/
Backend

Virtual Data Catalog/
Relational DB

mIR repository/
Relational DB

SAM over DAV/
Relational DB

Lineage Server/
Relational DB Relational DB

User Overhead
User defines
derivations;

Automated WF trace

User defines Service
semantics; Automated

WF Trace

Manual: Apps use
DAV APIs; Users

use portal

Use Libraries to
generate

provenance

Inverse queries
automatically

generated
Scalability
Addressed Yes No No Proposed No

Dissemination Queries Semantic browser;
Lineage graph

Browser;Queries;
GXL/RDF Browser SQL/TriQL

Queries
can be queried from SAM using generic WebDAV
clients. Special portlets allow users to traverse the
provenance metadata for a resource as a web page with
hyperlinks to related data, or as a labeled graph
represented in the Graphics eXchange Language (GXL).
The provenance information can also be exported to
RDF that semantic agents can use to infer relationships
between resources. Provenance metadata that indicate
data modification can generate notifications that trigger
workflow execution to update dependent data products.

3.4 ESSW
The Earth System Science Workbench (ESSW) [28] is a
metadata management and data storage system for earth
science researchers. Lineage is a key facet of the
metadata created in the workbench, and is used for
detecting errors in derived data products and in
determining the quality of datasets.
ESSW uses a scripting model for data processing i.e. all
data manipulation is done through scripts that wrap
existing scientific applications [26]. The sequence of
invocation of these scripts by a master workflow script
forms a DAG. Data products at the granularity of files
are consumed and produced by the scripts, with each
data product and script having a uniquely labeled
metadata object. As the workflow script invokes
individual scripts, these scripts, as part of their
execution, compose XML metadata for themselves and
the data products they generate. The workflow script
links the data flow between successive scripts using
their metadata ids to form the lineage trace for all data
products, represented as annotations. By chaining the
scripts and the data using parent-child links, ESSW is
balanced between data and process oriented lineage.

ESSW puts the onus on the script writer to record the
metadata and lineage using templates and libraries that
are provided. The libraries store metadata objects as
files in a web accessible location and the lineage
separately in a relational database [26]. Scalability is not
currently addressed though it is proposed to federate
lineage across organizations. The metadata and lineage
information can be navigated as a workflow DAG
through a web browser that uses PHP scripts to access
the lineage database [28]. Future work includes
encoding lineage information semantically as RDF
triples to help answer richer queries [26].

3.5 Trio
Cui and Widom [22, 29] trace lineage information for
view data in data warehouses. The Trio project [23]
leverages some of this work in a proposed database
system which has data accuracy and data lineage as
inherent components. While data warehouse mining and
updation motivates lineage tracking in this project, any
e-science system that uses database queries and
functions to model workflows and data transformations
can apply such techniques.
A database view can be modeled as a query tree that is
evaluated bottom-up, starting with leaf operators having
tables as inputs and successive parent operators taking
as input the result of a child operator [22]. For ASPJ
(Aggregate-Select-Project-Join operator) views, it is
possible to create an inverse query of the view query
that operates on the materialized view, and recursively
moves down the query tree to identity the source tables
in the leaves that form the view data’s lineage [22].
Trio [23] uses this inversion model to automatically
determine the source data for tuples created by view

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 35

queries. The inverse queries are recorded at the
granularity of a view tuple and stored in a special
Lineage table. This direct association of lineage with
tuples makes this a data-oriented provenance scheme.
Mechanisms to handle (non-view) tuples created by
insert and update queries, and through user-defined
functions are yet to be determined. Lineage in Trio is
simply the source tuples and the view query that created
the view tuple, with no semantic metadata recorded.
Scalability is not specifically addressed either. Other
than querying the Lineage table, some special purpose
constructs will be provided for retrieving lineage
information through a Trio Query Language (TriQL).

4. Conclusion
In this paper, we presented a taxonomy to understand
and compare provenance techniques used in e-science
projects. The exercise shows that provenance is still an
exploratory field and several open research questions are
exposed. Ways to federate provenance information and
assert its truthfulness need study for it to be usable
across organizations [12]. Evolution of metadata and
service interface standards to manage provenance in
diverse domains will also contribute to a wider adoption
of provenance and promote its sharing [11]. The ability
to seamlessly represent provenance of data derived from
both workflows and databases can help in its portability.
Ways to store provenance about missing or deleted data
(phantom lineage [23]) require further consideration.
Finally, a deeper understanding of provenance is needed
to identify novel ways to leverage it to its full potential.

5. References
[1] J. Brase, "Using Digital Library Techniques - Registration
of Scientific Primary Data," in ECDL, 2004.
[2] D. G. Clarke and D. M. Clark, "Lineage," in Elements of
Spatial Data Quality, 1995.
[3] J. L. Romeu, "Data Quality and Pedigree," in Material
Ease, 1999.
[4] H. V. Jagadish and F. Olken, "Database Management for
Life Sciences Research," in SIGMOD Record, vol. 33, 2004.
[5] "Access to genetic resources and Benefit-Sharing (ABS)
Program," United Nations University, 2003.
[6] P. Buneman, S. Khanna, and W. C. Tan, "Why and Where:
A Characterization of Data Provenance," in ICDT, 2001.
[7] D. P. Lanter, "Design of a Lineage-Based Meta-Data Base
for GIS," in Cartography and Geographic Information
Systems, vol. 18, 1991.
[8] M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis,
D. Marvin, L. Moreau, and T. Oinn, "Provenance of e-Science
Experiments - experience from Bioinformatics," in
Proceedings of the UK OST e-Science 2nd AHM, 2003.
[9] Y. L. Simmhan, B. Plale, and D. Gannon, "A Survey of
Data Provenance Techniques," in Technical Report TR-618:
Computer Science Department, Indiana University, 2005.
[10] R. Bose and J. Frew, "Lineage retrieval for scientific data
processing: a survey," in ACM Comput. Surv., vol. 37, 2005.
[11] S. Miles, P. Groth, M. Branco, and L. Moreau, "The
requirements of recording and using provenance in e-Science

experiments," in Technical Report, Electronics and Computer
Science, University of Southampton, 2005.
[12] D. Pearson, "Presentation on Grid Data Requirements
Scoping Metadata & Provenance," in Workshop on Data
Derivation and Provenance, Chicago, 2002.
[13] G. Cameron, "Provenance and Pragmatics," in Workshop
on Data Provenance and Annotation, Edinburgh, 2003.
[14] C. Goble, "Position Statement: Musings on Provenance,
Workflow and (Semantic Web) Annotations for
Bioinformatics," in Workshop on Data Derivation and
Provenance, Chicago, 2002.
[15] P. P. da Silva, D. L. McGuinness, and R. McCool,
"Knowledge Provenance Infrastructure," in IEEE Data
Engineering Bulletin, vol. 26, 2003.
[16] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-
A. Saita, "Improving Data Cleaning Quality Using a Data
Lineage Facility," in DMDW, 2001.
[17] I. T. Foster, J. S. Vöckler, M. Wilde, and Y. Zhao, "The
Virtual Data Grid: A New Model and Architecture for Data-
Intensive Collaboration," in CIDR, 2003.
[18] J. Zhao, C. A. Goble, R. Stevens, and S. Bechhofer,
"Semantically Linking and Browsing Provenance Logs for E-
science," in ICSNW, 2004.
[19] A. Woodruff and M. Stonebraker, "Supporting Fine-
grained Data Lineage in a Database Visualization
Environment," in ICDE, 1997.
[20] B. Plale, D. Gannon, D. Reed, S. Graves, K.
Droegemeier, B. Wilhelmson, and M. Ramamurthy, "Towards
Dynamically Adaptive Weather Analysis and Forecasting in
LEAD," in ICCS workshop on Dynamic Data Driven
Applications, 2005.
[21] D. Bhagwat, L. Chiticariu, W. C. Tan, and G.
Vijayvargiya, "An Annotation Management System for
Relational Databases," in VLDB, 2004.
[22] Y. Cui and J. Widom, "Practical Lineage Tracing in Data
Warehouses," in ICDE, 2000.
[23] J. Widom, "Trio: A System for Integrated Management of
Data, Accuracy, and Lineage," in CIDR, 2005.
[24] C. Pancerella, J. Hewson, W. Koegler, D. Leahy, M. Lee,
L. Rahn, C. Yang, J. D. Myers, B. Didier, R. McCoy, K.
Schuchardt, E. Stephan, T. Windus, K. Amin, S. Bittner, C.
Lansing, M. Minkoff, S. Nijsure, G. v. Laszewski, R. Pinzon,
B. Ruscic, Al Wagner, B. Wang, W. Pitz, Y. L. Ho, D.
Montoya, L. Xu, T. C. Allison, W. H. Green, Jr, and M.
Frenklach, "Metadata in the collaboratory for multi-scale
chemical science," in Dublin Core Conference, 2003.
[25] J. Myers, C. Pancerella, C. Lansing, K. Schuchardt, and
B. Didier, "Multi-Scale Science, Supporting Emerging
Practice with Semantically Derived Provenance," in ISWC
workshop on Semantic Web Technologies for Searching and
Retrieving Scientific Data, 2003.
[26] R. Bose and J. Frew, "Composing Lineage Metadata with
XML for Custom Satellite-Derived Data Products," in
SSDBM, 2004.
[27] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao,
"Chimera: A Virtual Data System for Representing, Querying,
and Automating Data Derivation," in SSDBM, 2002.
[28] J. Frew and R. Bose, "Earth System Science Workbench:
A Data Management Infrastructure for Earth Science
Products," in SSDBM, 2001.
[29] Y. Cui and J. Widom, "Lineage tracing for general data
warehouse transformations," in VLDB Journal, vol. 12, 2003.

36 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

A Notation and System for Expressing and Executing

Cleanly Typed Workflows on Messy Scientific Data

Yong Zhao
1

Jed Dobson
2

Ian Foster
1,3

 Luc Moreau
4
 Michael Wilde

3

1 Department of Computer Science, University of Chicago, Chicago, IL 60637, U.S.A.
2 Department of Psychology, Dartmouth College, Hanover, NH 03755, U.S.A.

3 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
4 School of Electronics and Computer Science, University of Southampton, Southampton, U.K.

Abstract

The description, composition, and execution of

even logically simple scientific workflows are

often complicated by the need to deal with

“messy” issues like heterogeneous storage

formats and ad-hoc file system structures. We

show how these difficulties can be overcome

via a typed, compositional workflow notation

within which issues of physical representation

are cleanly separated from logical typing, and

by the implementation of this notation within

the context of a powerful runtime system that

supports distributed execution. The resulting

notation and system are capable both of

expressing complex workflows in a simple,

compact form, and of enacting those

workflows in distributed environments. We

apply our technique to cognitive neuroscience

workflows that analyze functional MRI image

data, and demonstrate significant reductions in

code size relative to other approaches.

1 Introduction

When constructing workflows that operate on large and

complex datasets, the ability to describe and introspect

on the types of both datasets and workflow components

can be invaluable, enabling discovery, type checking,

composition, and iteration over compound datasets.

Such typing should in principle be straightforward,

because of the hierarchical structure of most scientific

datasets. For example, in the functional Magnetic

Resonance Imaging (fMRI) applications used for

illustrative purposes in this paper, we find a hierarchical

structure of studies, groups, subjects, experimental runs,

and images (see Figure 1). A typical application might

build a new study by applying a program to each image

in each run for each subject in each group in a study.

Unfortunately, we find that such clean logical

structures are typically represented in terms of messy

physical constructs (e.g., metadata encoded in directory

and file names) employed in ad-hoc ways. For example,

the fMRI physical representation is a nested directory

structure, with ultimately a single 3D image (“volume”)

represented by two files located in the same directory,

distinguished only by file name suffix (Figure 1).

Such messy physical representations make program

development, composition, and execution unnecessarily

difficult. While we can incorporate knowledge of file

system layouts and file formats into application

programs and scripts, the resulting code is hard to write

and read, cannot easily be adapted to different

representations, and is not clearly typed.

Figure 1: fMRI structure, logical (left) & physical (right)

We have previously proposed that these concerns be

addressed by separating abstract structure and physical

representation [1]. (Woolf et al. [2] have recently

proposed similar ideas.) We describe here the design,

implementation, and evaluation of a notation that

achieve this separation.

We call this notation a virtual data language (VDL)

because its declarative structure allows datasets to be

defined prior to their generation and without regard to

their location and representation. For example, given a

VDL procedure “Run Y=foo_run(Run X)” that builds a

new run Y by applying a program ‘foo’ to each image in

run X (X and Y being dataset variables of type Run), we

can specify via the statement “run2=foo_run(run1)” that

dataset “run2” was (or, alternatively, will be) derived

from dataset “run1.” Independence from location and

DBIC Archive
 Study_2004.0521.hgd
 Group 1
 Subject_2004.e024
 volume_anat.img
 volume_anat.hdr
 bold1_001.img
 bold1_001.hdr
 ...
 bold1_275.img
 bold1_275.hdr
 ...
 bold5_001.img
 ...
 snrbold*_*
 ...air*
 ...
 Group 5
 ...
 Study ...

DBIC Archive
 Study #’2004 0521 hgd’
 Group #1
 Subject #’2004 e024’
 Anatomy
 high-res volume
 Functional Runs
 run #1
 volume #001
 ...
 volume #275
 ...
 run #5
 volume #001
 ...
 volume #242
 …
 Group #5
 ...
 Study #...

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 37

representation is achieved via the use of XML Dataset

Typing and Mapping (XDTM) [3] mechanisms, which

allow the types of datasets and procedures to be defined

abstractly, in terms of XML Schema. Separate mapping

descriptors then define how such abstract data

structures translate to physical representations. Such

descriptors specify, for example, how to access the

physical files associated with “run1” and “run2.”

VDL’s declarative and typed structure makes it easy

to define increasingly complex procedures via

composition. For example, a procedure “Subject Y =

foo_subject(Subject X)” might apply “foo_run” to each

run in a supplied subject. The repeated application of

such compositional forms can ultimately define large

directed acyclic graphs (DAGs) comprising thousands

or even millions of calls to “atomic transformations”

that each operate on just one or two image files.

The expansion of dataset definitions expressed in

VDL into DAGs, and the execution of these DAGs as

workflows in uni- or multi-processor environments, is

the task of an underlying virtual data system (VDS).

We have applied our techniques to fMRI data

analysis problems [4]. We have modeled a variety of

dataset types (and their corresponding physical

representations) and constructed and executed

numerous computational procedures and workflows

that operate on those datasets. Quantitative studies of

code size suggest that our VDL and VDS facilitate

workflow expression, and hence improve productivity.

We summarize the contributions of this paper as

follows:

(1) the design of a practical workflow notation and

system that separate logical and physical

representation to allow for the construction of

complex workflows on messy data using cleanly

typed computational procedures;

(2) solutions to practical problems that arise when

implementing such a notation within the context of

a distributed system within which datasets may be

persistent or transient, and both replicated and

distributed; and

(3) a demonstration and evaluation of the technology

via the encoding and execution of large fMRI

workflows in a distributed environment.

The rest of the paper is as follows. In Section 2, we

review related work. In Section 3, we introduce the

XDTM model and in Section 4 we describe VDL, using

an fMRI application for illustration. In Section 5 we

describe our implementation, and in Section 6 we

conclude with an assessment of results and approach.

2 Related Work

The Data Format Description Language (DFDL)

 [5], like XDTM, uses XML Schema to describe abstract

data models that specify data structures independent

from their physical representations. DFDL is concerned

with describing legacy data files and complex binary

formats, while XDTM focuses on describing data that

spans files and directories. Thus, the two systems can

potentially be used together.

XPDL [6], BPEL, and WSDL also use XML

Schema to describe data or message types, but assume

that data is represented in XML; in contrast, XDTM can

describe “messy” real-world data. Ptolemy [7] and

Kepler [8] provide a static typing system; Taverna [9]

and Triana [10] do not mandate typing. The ability to

map logical types from/to physical representations is

not provided by these languages and systems.

 When composing programs into workflows, we

must often convert logical types and/or physical

representations to make data accessible to downstream

programs. XPDL employs scripting languages such as

JavaScript to select subcomponents of a data type, and

BPEL uses XPath expressions in Assign statements for

data conversion. Our VDL permits the declarative

specification of a rich set of data conversion operations

on composite data structures and substructures.

BPEL, YAWL, Taverna, and Triana emphasize web

service invocation, while Ptolemy, Kepler, and XPDL

are concerned primarily with composing applications.

XDTM defines an abstract transformation interface that

is agnostic to the procedure invoked, and its binding

mechanism provides the flexibility to invoke either web

services or applications as needed.

VDL’s focus on DAGs limits the range of programs

that can be expressed relative to some other systems.

However, we emphasize that workflows similar to those

presented here are extremely common in scientific

computing, in domains including astronomy,

bioinformatics, and geographical information systems.

VDL can be extended with conditional constructs (for

example) if required, but we have not found such

extensions necessary to date.

Many workflow languages allow sequential,

parallel, and recursive patterns, but do not directly

support iteration. Taverna relies on its workflow engine

to run a process multiple times when a collection is

passed to a singleton-argument process. Kepler adopts a

functional operator ‘map’ to apply a function that

operates on singletons to collections. VDL’s typing

supports flexible iteration over datasets—and also type

checking, composition, and selection.

3 XDTM Overview

In XDTM, a dataset’s logical structure is specified

via a subset of XML Schema, which defines primitive

scalar data types such as Boolean, Integer, String, Float,

and Date, and also allows for the definition of complex

types via the composition of simple and complex types.

A dataset’s physical representation is defined by a

mapping descriptor, which describes how each element

in the dataset’s logical schema is stored in, and fetched

38 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

from, physical structures such as directories, files, and

database tables. In order to permit reuse for different

datasets, mapping descriptors can refer to external

parameters for such things as dataset location(s).

In order to access a dataset, we need to know three

things: its type schema, its mapping descriptor, and the

value(s) of any external parameter(s). These three

components can be grouped to form a dataset handle.

Note that multiple mappings may be defined for the

same logical schema (i.e., for a single logical type). For

example, an array of numbers might in different

contexts be physically represented as a set of relations,

a text file, a spreadsheet, or an XML document.

XDTM defines basic constructs for defining and

associating physical representations with XML

structures. However, it does not speak to how we write

programs that operate on XDTM-defined data: a major

focus of the work described here.

4 XDTM-Based Virtual Data Language

Our XDTM-based Virtual Data Language (VDL)—

derived loosely from an earlier VDL [11], which dealt

solely with untyped files—allows users to define

procedures that accept, return, and operate on datasets

with type, representation, and location defined by

XDTM. We introduce the principal features of VDL via

an example from fMRI data analysis.

4.1 Application Example

fMRI datasets are derived by scanning the brains of

subjects as they perform cognitive or manual tasks. The

raw data for a typical study might consist of three

subject groups with 20 subjects per group, five

experimental runs per subject, and 300 volume images

per run, yielding 90,000 volumes and over 60 GB of

data. A fully processed and analyzed study dataset can

contain over 1.2 million files. In a typical year at the

Dartmouth Brain Imaging Center, about 60 researchers

preprocess and analyze about 20 concurrent studies.

Experimental subjects are scanned once to obtain a

high-resolution image of their brain anatomy

(“anatomical volume”), then scanned with a low-

resolution imaging modality at rapid intervals to

observe the effects of blood flow from the “BOLD”

(blood oxygenated level dependant) signal while

performing some task (“functional runs”). These

images are pre-processed and subjected to intensive

analysis that begins with image processing and

concludes with a statistical analysis of correlations

between stimuli and neural activity.

4.2 VDL Type System

VDL uses a C-like syntax to represent XML Schema

types. (There is a straightforward mapping from this

syntax to XML Schema.) For example, the first twelve

lines of Figure 2 include the VDL types that we use to

represent the data objects of Figure 1. (We discuss the

procedures later.) Some corresponding XML Schema

type definitions are in Figure 3. A Volume contains a

3D image of a volumetric slice of a brain image,

represented by an Image (voxels) and a Header

(scanner metadata). As we do not manipulate the

contents of those objects directly within this VDL

program, we define their types simply as (opaque)

String. A time series of volumes taken from a

functional scan of one subject, doing one task, forms a

Run. In typical experiments, each Subject has multiple

input and normalized runs, and anatomical data, Anat.

Figure 2: VDL Dataset Type and Procedure Examples

Specific output formats involved in processing raw

input volumes and runs may include outputs from

various image processing tools, such as the automated

image registration (AIR) suite. The type Air

corresponds to one dataset type created by these tools.

type Volume { Image img; Header hdr; }
type Image String;
type Header String;
type Run { Volume v[]; }
type Anat Volume;
type Subject { Anat anat; Run run []; Run snrun []; }
type Group { Subject s[]; }
type Study { Group g[]; }
type Air String;
type AirVector { Air a[]; }
type Warp String;
type NormAnat {Anat aVol; Warp aWarp; Volume nHires;}
airsn_subject(
 Subject s, Volume atlas, Air ashrink, Air fshrink) {
 NormAnat a = anatomical(s.anat, atlas, ashrink);
 Run r, snr;
 foreach r in s.run {
 snr = functional (r, a, fshrink);
 s.snrun[name(r)] = snr;
 }
}
(Run snr) functional(Run r, NormAnat a, Air shrink) {
 Run yroRun = reorientRun(r , "y");
 Run roRun = reorientRun(yroRun , "x");
 Volume std = roRun[0];
 Run rndr = random_select(roRun, .1); //10% sample
 AirVector rndAirVec =
 align_linearRun(rndr, std, 12, 1000, 1000, [81,3,3]);
 Run reslicedRndr = resliceRun(rndr,rndAirVec,"o","k");
 Volume meanRand = softmean(reslicedRndr, "y", null);
 Air mnQAAir =
 alignlinear(a.nHires, meanRand,6,1000,4, [81,3,3]);
 Volume mnQA = reslice(meanRand, mnQAAir, "o","k");
 Warp boldNormWarp =
 combinewarp(shrink, a.aWarp, mnQAAir);
 Run nr = reslice_warp_run(boldNormWarp, roRun);
 Volume meanAll = strictmean (nr, "y", null)
 Volume boldMask = binarize(meanAll, "y");
 snr = gsmoothRun(nr, boldMask, 6, 6, 6);
}

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 39

4.3 Procedures

Datasets are operated on by procedures, which take

XDTM data as input, perform computations on those

data, and produce XDTM data as output. An atomic

procedure defines an interface to an executable program

or service (more on this below); a compound procedure

composes calls to atomic procedures, compound

procedures, and/or foreach statements.

A VDL procedure can be viewed as a named

workflow template. It defines a workflow comprising

either a single node (atomic procedure) or multiple

nodes (compound procedure). It is a template in that its

arguments are formal not actual parameters; a call to a

VDL procedure instantiates those arguments to define a

concrete workflow. Shared variables in the body of a

compound procedure specify data dependencies and

thus the directed arcs for the DAG corresponding to the

compound procedure’s workflow.

Figure 3: Type Definitions in XML Schema

We use as our illustrative example a workflow,

AIRSN, that performs spatial normalization for pre-

processing raw fMRI data prior to analysis. AIRSN

normalizes sets of time series of 3D volumes to a

standardized coordinate system and applies motion

correction and Gaussian smoothing. Figures 4 and 5

show two views of the most data-intensive segment of

the AIRSN workflow, which processes the data from

the functional runs of a study. Figure 4 is a high-level

representation in which each oval represents an

operation performed on an entire Run. Figure 5 expands

the workflow to the Volume level, for a dataset of 10

functional volumes. (The alert reader may note that the

random_select call is missing; this is an unimportant

artefact.) In realistic fMRI science runs, Runs might

include hundreds or thousands of volumes.

reorientRun

reorientRun

reslice_warpRun

random_select

alignlinearRun

resliceRun

softmean

alignlinear

combinewarp

strictmean

gsmoothRun

binarize

Figure 4: AIRSN workflow high-level representation

reorient/01

reorient/02

reslice_warp/22

alignlinear/03 alignlinear/07alignlinear/11

reorient/05

reorient/06

reslice_warp/23

reorient/09

reorient/10

reslice_warp/24

reorient/25

reorient/51

reslice_warp/26

reorient/27

reorient/52

reslice_warp/28

reorient/29

reorient/53

reslice_warp/30

reorient/31

reorient/54

reslice_warp/32

reorient/33

reorient/55

reslice_warp/34

reorient/35

reorient/56

reslice_warp/36

reorient/37

reorient/57

reslice_warp/38

reslice/04 reslice/08reslice/12

gsmooth/41

strictmean/39

gsmooth/42gsmooth/43gsmooth/44 gsmooth/45 gsmooth/46 gsmooth/47 gsmooth/48 gsmooth/49 gsmooth/50

softmean/13

alignlinear/17

combinewarp/21

binarize/40

reorient

reorient

alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

Figure 5: AIRSN workflow expanded to show all atomic

file operations, for a 10 volume run

We present a subset of the VDL for AIRSN in Figure 2.

The procedure functional expresses the steps in Figure

4; airsn_subject calls both functional and procedure

anatomical (not shown) to process a Subject.

The VDL foreach statement allows programs to

apply an operation to all components of a compound

data object. For example, airsn_subject creates in the

Subject dataset a new spatially normalized Run for each

raw Run. Such procedures define how the workflow is

expanded as in Figure 5.

To apply a VDL procedure to a specific physical

dataset, we simply pass a reference to that dataset as an

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="http://www.fmri.org/schema/airsn.xsd"
 xmlns="http://www.fmri.org/schema/airsn.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Image">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>

 <xs:simpleType name="Header">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>

 <xs:complexType name="Volume">
 <xs:sequence>
 <xs:element name="img" type="Image"/>
 <xs:element name="hdr" type="Header"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Run">

<xs:sequence minOccurs="0 maxOccurs="unbounded">
 <xs:element name="v" type="Volume"/>
 </xs:sequence>
 </xs:complexType>

</xs:schema>

40 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

actual parameter. The resulting call will execute

correctly regardless of the physical representation of a

passed dataset (assuming that the dataset and procedure

have matching logical types). Internally, dataset

references take the form of handles, which, as described

in Section 3, contain type, mapping, and location

information. As in languages in which every variable is

an object reference, handles are never seen by the user.

4.4 Invoking Programs and Services

A workflow such as Figure 2 must ultimately invoke

external executable programs and/or Web Services.

VDL atomic procedures define the necessary

interfaces, specifying the name of the program or

service to be invoked, how to set up its execution

environment, how program arguments or service

messages should be mapped from and to VDL

procedure arguments, and what physical data objects

need to be moved to and from remote execution sites.

Figure 6 Program Invocation

For example, the procedure alignlinear called in

Figure 2 defines a VDL interface to the AIR utility of

the same name. There are two important things to

understand about this definition. First, the VDS ensures

that if this call is executed on a remote computer (as is

usually the case in a distributed environment), the

physical representations of datasets passed as input

arguments are transferred to the remote site, thus

ensuring that the executable can access the required

physical files. In the case of output data (e.g., “Air a”),

the physical data is left on the remote site, registered in

a replica location service, and optionally copied to

another specified site to create an additional replica

(which often serves as an archival copy).

Second, the statements in the body assemble the

command to invoke the program, so that for example

the VDL call:

Air a = alignlinear(t1a, t3, 12, 1000, 1000, [81 3 3])
requests the execution of the following command:

alignlinear a.air t1a.hdr t3.hdr -m 12 \
 -t1 1000 -t2 1000 -s 81 3 3

Alternative atomic procedures can be provided to

specify Web Service interfaces to the utilities. These

alternative procedures would implement the same

procedure prototype, but provide a different body.

5 Implementation

We have developed a prototype system that can process

VDL type definitions and mappings, convert a typed

workflow definition into an executable DAG, expand

DAG nodes dynamically to process sub-components of

a compound dataset, and submit and execute the

resulting DAG in a Grid environment. The separation

of dataset type and physical representation that we

achieve with VDL can facilitate various runtime

optimizations and graph rewriting operations [12].

Our prototype does not yet include a parser for the

syntax presented here. However, the prototype does

implement the runtime operations needed to support

typed VDL dataset processing and execution, which is

the principal technical challenge of implementing VDL.

We have also verified that we can invoke equivalent

services and applications from the same VDL.

The prototype extends an earlier VDS

implementation with features to handle data typing and

mapping. We use the VDS graph traversal mechanism

to generate an abstract DAG in which transformations

are not yet tied to specific applications or services, and

data objects are not yet bound to specific locations and

physical representations. The extended VDS also

enhances the DAG representation by introducing

“foreach” nodes (in addition to the existing “atomic”

nodes) to represent foreach statements in a VDL

procedure. These nodes are expanded at runtime (see

Section 5.2), thus enabling datasets to have a

dynamically determined size.

The abstract DAG is concretized by a Grid planner

called Euryale, which produces a concrete DAG that,

for each node in the input abstract DAG, performs the

following steps. (See Sections 5.1 and 5.2 for details on

how Euryale performs data mapping during these steps,

and expands foreach statements, respectively.)

1. Preprocess:

if (atomic procedure node) {

 identify node inputs and outputs;

 choose Grid site that meets job requirements;

 locate and transfer inputs to that site;

 }

 else if (foreach node)

 expand foreach statement(s) into sub-dag(s);

2. Execute: Submit job or sub-DAG; wait for it to

execute.

3. Postprocess: Check job exit status; transfer and

register outputs; cleanup.

The resulting concrete DAG is executed by the

DAGman (“DAG manager”) tool. DAGman provides

many necessary facilities for workflow execution, such

as logging, job status monitoring, workflow persistence,

and recursive fault recovery. DAGman submits jobs to

Grid sites via the Globus GRAM protocol.

(Air out) alignlinear(Volume std, Volume v,
 Int m, Int t1, Int t2, Int s[]) {
 argument = out;
 argument = get_member(std, hdr);
 argument = get_member (v, hdr);
 argument = "-m " m;
 argument = "-t1" t1;
 argument = "-t2" t2;
 argument = "-s " s[0] s[1] s[2];
}

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 41

5.1 Data Mapping

The Eurayle planner needs to operate on the physical

data that lies behind the logical types defined in VDL

procedures. Such operations are accessed via a mapping

descriptor associated with the dataset, which controls

the execution of a mapping driver used to map between

physical and abstract representations. In general, a

mapping driver must implement the functions create-

dataset, store-member, get-member, and get-member-

list. Our prototype employs a table-driven approach to

implement a mapping driver for file-system-stored

datasets. Each table entry specifies:
 name: the data object name

 pattern: the pattern used to match file names

 mode: FILE (find matches in directory)

 RLS (find matches via replica location service),

 ENUM (dataset content is enumerated)

 content: used in ENUM mode to list content

When mapping an input dataset, this table is

consulted, the pattern is used to match a directory or

replica location service according to the mode, and the

members of the dataset are enumerated in an in-

memory structure. This structure is then used to expand

foreach statements and to set command-line arguments.

For example, recall from Figure 1 that a Volume is

physically represented as an image/header file pair, and

a Run as a set of such pairs. Furthermore, multiple Runs

may be stored in the same directory, with different

Runs distinguished by a prefix and different Volumes

by a suffix. To map this representation to the logical

Run structure, the pattern ‘boldN*’ is used to identify

all pairs in Run N at a specified location. Thus, the

mapper, when applied to the following eight files,

identifies two runs, one with three Volumes (Run 1) and

the other with one (Run 2).

bold1_001.img bold1_001.hdr

bold1_002.img bold1_002.hdr

bold1_003.img bold1_003.hdr

bold2_007.img bold2_007.hdr

5.2 Dynamic Node Expansion

A node containing a foreach statement must be

expanded prior to execution into a set of nodes: one per

component of the compound data object specified in the

foreach. This expansion is performed at runtime: when

a foreach node is scheduled for execution, the

appropriate mapper function is called on the specified

dataset to determine its members, and for each member

of the dataset identified (e.g., for each Volume in a Run)

a new job is created in a “sub-DAG.”

The new sub-DAG is submitted for execution, and

the main job waits for the sub-DAG to finish before

proceeding. A post-script for the main job takes care of

the transfer and registration of all output files, and the

collection of those files into the output dataset. This

workflow expansion process may itself recurse further

if the subcomponents themselves also include foreach

statements. DAGman provides workflow persistence

even in the face of system failures during recursion.

5.3 Optimizations and Graph Transformation

Since dataset mapping and node expansion are carried

out at run time, we can use graph transformations to

apply optimization strategies. For example, in the

AIRSN workflow, some processes, such as the reorient

of a single Volume, only take a few seconds to run. It is

inefficient to schedule a distinct process for each

Volume in a Run. Rather, we can combine multiple such

processes to run as a single job, thus reducing

scheduling and queuing overhead.

As a second example, the softmean procedure

computes the mean of all Volumes in a Run. For a

dataset with large number of Volumes, this stage is a

bottleneck as no parallelism is engaged. There is also a

practical issue: the executable takes all Volume

filenames as command line arguments, which can

exceed limits defined by the Condor and UNIX shell

tools used within our VDS implementation. Thus, we

transform this node into a tree in which leaf nodes

compute over subsets of the dataset. The process

repeats until we get a single output. The shape of this

tree can be tuned according to available computing

nodes and dataset sizes to achieve optimal parallelism

and avoid command-line length limitations.

6 Evaluation

We have used our prototype system to execute a range

of fMRI workflows with various input datasets on the

Dartmouth Green Grid, which comprises five 12-node

clusters. The dataset mapping mechanism allowed us to

switch input datasets (e.g., from a Run of 80 volumes to

another Run of 120 volumes) without changing either

the workflow definition or the execution system. All

workflows run correctly and achieve speedup.

The primary focus of our work is to increase

productivity [13]. As an approximate measure of this,

we compare in Table 1 the lines of code needed to

express five different fMRI workflows, coded in our

new VDL, with two other approaches, one based on ad-

hoc shell scripts (“Script,” able to execute only on a

single computer) and a second (“Generator”) that uses

Perl scripts to generate older, “pre-XDTM” VDL.

Table 1: Lines of code with different workflow encodings

Workflow Script Generator VDL

GENATLAS1 49 72 6

GENATLAS2 97 135 10

FILM1 63 134 17

FEAT 84 191 13

AIRSN 215 ~400 37

42 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

The new programs are smaller and more readable—

and also provide for type checking, provenance

tracking, parallelism, and distributed execution.

7 Conclusions

We have designed a typed workflow notation and

system that allows workflows to be expressed in terms

of declarative procedures that operate on XML data

types and then executed on diverse physical

representations and on distributed computers. We show

that this notation and system can be used to express

large amounts of distributed computation easily.

The productivity leverage of this approach is

apparent: a small group of developers can define VDL

interfaces to the utility packages used in a research

domain and then create a library of dataset-iteration

functions. This library encapsulates low-level details

concerning how data is grouped, transported,

catalogued, passed to applications, and collected as

results. Other scientists can then use this library to

construct workflows without needing to understand

details of physical representation, and furthermore are

protected by the XDTM type system from forming

workflows that are not type compliant. In addition, the

data management conventions of a research group can

be encoded in XDTM mapping functions, thus making

it easier to maintain order in dataset collections that

may include tens of millions of files.

We next plan to automate the parsing steps that

were performed manually in our prototype, and to

create a complete workflow development and execution

environment for our XDTM-based VDL. We will also

investigate support for services, automation of type

coercions between differing physical representations,

and recording of provenance for large data collections.

Acknowledgements.

This work was supported by the National Science

Foundation GriPhyN Project, grant ITR-800864, the

Mathematical, Information, and Computational

Sciences Division subprogram of the Office of

Advanced Scientific Computing Research, U.S.

Department of Energy, and by the National Institutes of

Health, grants NS37470 and NS44393. We are grateful

to Scott Grafton of the Dartmouth Brain Imaging

Center, and to Jens Voeckler, Doug Scheftner, Ewa

Deelman, Carl Kesselman, and the entire Virtual Data

System team for discussion, guidance, and assistance.

References

[1] Foster, I., Voeckler, J., Wilde, M., Zhao, Y. The Virtual

Data Grid: A New Model and Architecture for Data-

intensive Collaboration. Conference on Innovative Data

Systems Research, Asilomar, CA, January 2003.

[2] Woolf, A., Cramer, R., Gutierrez, M., van Dam, K.,

Kondapalli, S., Latham, S., Lawrence, B., Lowry, R.,

O'Neill, K., Semantic Integration of File-based Data for

Grid Services. Workshop on Semantic Infrastructure for

Grid Computing Applications, 2005.

[3] Moreau, L., Zhao, Y., Foster, I., Voeckler, J. Wilde, M.,

XDTM: XML Dataset Typing and Mapping for

Specifying Datasets. European Grid Conference, 2005.

[4] Van Horn, J.D., Dobson, J., Woodward, J., Wilde, M.,

Zhao, Y., Voeckler, J., Foster, I. Grid-Based Computing

and the Future of Neuroscience Computation, Methods in

Mind, Cambridge: MIT Press (In Press).

[5] Beckerle, M., Westhead, M. GGF DFDL Primer.

Technical report, Global Grid Forum, 2004.

[6] XML Process Definition Language (XPDL) (WFMCTC-

1025). Technical report, Workflow Management

Coalition, Lighthouse Point, Florida, USA, 2002.

[7] Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J.,

Neuendorffer, S., Sachs, S., Xiong, Y. Taming

Heterogeneity – the Ptolemy Approach. Proceedings of

the IEEE, 91(1):127-144, January 2003.

[8] Altintas, I., Berkley, C., Jaeger, E., Jones, M.,

Ludäscher, B. and Mock, S., Kepler: An Extensible

System for Design and Execution of Scientific

Workflows. 16th Intl. Conference on Scientific and

Statistical Database Management, 2004.

[9] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M.,

Greenwood, M., Carver, T., Glover, K., Pocock, M.,

Wipat, A., Li, P. Taverna: A Tool for the Composition

and Enactment of Bioinformatics Workflows.

Bioinformatics Journal, 20(17):3045-3054, 2004.

[10] Churches, D., Gombas, G., Harrison, A., Maassen, J.,

Robinson, C., Shields, M., Taylor, I. Wang, I.

Programming Scientific and Distributed Workflow with

Triana Services. Concurrency and Computation:

Practice and Experience, 2005 (in press).

[11] Foster, I., Voeckler, J., Wilde, M., Zhao, Y. Chimera: A

Virtual Data System for Representing, Querying and

Automating Data Derivation. 14th Conference on

Scientific and Statistical Database Management, 2002.

[12] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta,

G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A.,

Cavanaugh, R., Koranda, S. Mapping Abstract

Workflows onto Grid Environments. Journal of Grid

Computing, 1(1). 2003.

[13] Gray, J., Liu, D., Nieto-Santisteban, M., Szalay, A.

Scientific Data Management in the Coming Decade.

Microsoft Research, MSR-TR-2005-10. 2005.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 43

 1

A Taxonomy of Scientific Workflow Systems for Grid Computing

Jia Yu and Rajkumar Buyya
*

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

htpp://www.gridbus.org

ABSTRACT
With the advent of Grid and application technologies,

scientists and engineers are building more and more

complex applications to manage and process large data sets,

and execute scientific experiments on distributed resources.

Such application scenarios require means for composing

and executing complex workflows. Therefore, many efforts

have been made towards the development of workflow

management systems for Grid computing. In this paper, we

propose a taxonomy that characterizes and classifies

various approaches for building and executing workflows

on Grids. The taxonomy not only highlights the design and

engineering similarities and differences of state-of-the-art in

Grid workflow systems, but also identifies the areas that

need further research.

Keywords
Grid computing, Taxonomy, Scientific workflows.

1. INTRODUCTION
Grids [9] have emerged as a global cyber-infrastructure for

the next-generation of e-Science applications, by integrating

large-scale, distributed and heterogeneous resources.

Scientific communities, such as high-energy physics,

gravitational-wave physics, geophysics, astronomy, and

bioinformatics, are utilizing Grids to share, manage and

process large data sets. In order to support complex

scientific experiments, distributed resources such as

computational devices, data, applications, and scientific

instruments need to be orchestrated while managing

workflow operations within Grid environments [15].

Scientific workflow is concerned with the automation of

scientific processes in which tasks are structured based on

their control and data dependencies. The workflow

paradigm for scientific applications on Grids offers several

advantages, such as (a) ability to build dynamic

applications which orchestrate distributed resources, (b)

utilizing resources that are located in a particular domain to

increase throughput or reduce execution costs, (c) execution

spanning multiple administrative domains to obtain specific

processing capabilities, and (d) integration of multiple

teams involved in management of different parts of the

experiment workflow – thus promoting inter-organizational

collaborations.

In the recent past, several Grid workflow systems have

been proposed and developed for defining, managing and

executing scientific workflows. In order to enhance

understanding of the field, we propose a taxonomy that

primarily (a) captures architectural styles and (b) identifies

design and engineering similarities and differences between

them. The taxonomy provides an in-depth understanding of

building and executing workflows on Grids. It compares

different approaches and also helps users to decide on

minimum subset of features required for their systems.

The rest of the paper is organized as follows: Section 2

presents taxonomy that classifies approaches based on

major functions and architectural styles of Grid workflow

systems. In Section 3, we map the proposed taxonomy onto

selected Grid workflow systems and conclude in Section 4.

2. TAXONOMY
The taxonomy characterizes and classifies approaches of

scientific workflow systems in the context of Grid

computing. It consists of four elements of a Grid workflow

management system: (a) workflow design, (b) workflow

scheduling, (c) fault tolerance and (d) data movement (see

Figure 1). In this section, we look at each element and its

taxonomy briefly. A detailed taxonomy and in depth

discussion on its mapping can be found in [23].

2.1 Workflow Design

Workflow design determines how workflow components

can be defined and composed.

2.1.1 Workflow Structure

 A workflow is composed by connecting multiple scientific

tasks according to their dependencies. Workflow structure

indicates the temporal relationship between there tasks. In

general, a workflow can be represented as a Directed

Acyclic Graph (DAG) or a non-DAG.

In DAG-based workflow, workflow structure can be

categorized as sequence, parallelism, and choice.

Sequence is defined as an ordered series of tasks, with one

task starting after a previous task has completed.

Parallelism represents tasks which are performed

concurrently, rather than serially. In choice structured

workflows, a task is selected to execute at run-time when its

associated conditions are true. In addition to all structures

contained in a DAG-based, a non-DAG workflow also

includes iteration structure, in which sections of workflow

tasks in an iteration block are allowed to be repeated.

*Corresponding author, raj@cs.mu.oz.au

44 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

 2

2.1.2 Workflow Model/Specification

Workflow Model (also called workflow specification)

defines a workflow including its task definition and

structure definition. There are two types of workflow

models, namely abstract and concrete.

In the abstract model, a workflow is described in an

abstract form, in which the workflow is specified without

referring to specific Grid resources for task execution. In

contrast, the concrete model binds workflow tasks to

specific resources. Given the dynamic nature of the Grid

environment, it is more suitable for users to define

workflow applications in the abstract model. A full or

partial concrete model can be generated just before or

during workflow execution, according to the current status

of resources.

Figure 1. A taxonomy of scientific workflow systems for Grid computing.

2.1.3 Workflow Composition System

Workflow composition systems are designed for enabling

users to assemble components into workflows. They need

to provide a high level view for the construction of Grid

workflow applications and hide the complexity of

Workflow

Design

Workflow

Scheduling

Fault

Tolerance

Data

Movement

Grid

Workflow

 System

Workflow Structure

Workflow

Composition System

Workflow

Model/Specification

DAG

Non-DAG

Sequence

Choice

Iteration

Parallelism

Sequence

Choice

Parallelism

Concrete

Abstract

User-directed
Graph-based Modeling

Automatic

Language-based Modeling

Architecture

Scheduling Strategies

Decision Making

Planning Scheme

Decentralized

Hierarchical

Centralized

Global

Local

Static

Dynamic

User-directed

Simulation-based

 Prediction-based

Just in-time

Trust-driven

Market-driven

Performance-driven

Checkpoint /Restart

Replication

Alternate Task

Redundancy

Task-level

Workflow-level

Alternate Resource

Retry

User-directed

Automatic

Centralized

 Mediated

Peer-to-Peer

User-defined Exception Handling

Rescue workflow

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 45

 3

underlying Grid systems. The composition systems are

categorized as user-directed and automatic.

User-directed systems require users to edit workflows

directly. In general, users can use workflow languages such

as Extensible Markup Language (XML) [21] for language-

based modeling and the tools such as Kepler [2] for graph-

based modeling to compose workflows. Compared with

language-based modeling, Graphical representation is very

intuitive and can be handled easily even by a non-expert

user. However, workflow languages are more appropriate

for storing and transfer whereas the graphical representation

is required to be converted into other form for such

manipulation.

Automatic systems generate workflows for users

automatically according to their higher level requirements,

such as data products and initial input values. Compared

with user-directed systems, automatic systems are ideal for

large scale workflows which are very time consuming to

compose manually. However, the automatic composition of

application components is challenging because it is difficult

to capture the functionality of components and data types

used by the components.

2.2 Workflow Scheduling

Workflow scheduling focuses on mapping and managing

the execution of workflow tasks on shared resources that

are not directly under the control of workflow systems.

2.2.1 Scheduling Architecture

The architecture of the scheduling infrastructure is very

important for the scalability, autonomy, quality and

performance of the system [11]. Three major categories of

workflow scheduling architecture are centralized,

hierarchical and decentralized scheduling schemes.

In the centralized workflow enactment environment, one

central scheduler makes scheduling decisions for all tasks in

the workflow. For hierarchical scheduling, there is a central

manager and multiple lower-level sub-workflow schedulers.

This central manager is responsible for controlling the

workflow execution and assigning sub-workflows to the

lower-level schedulers. In contrast with the centralized and

hierarchical schemes, there are multiple schedulers without

any central controller in decentralized scheduling. Every

scheduler can communicate each other and schedule a sub-

workflow to another scheduler with lower load.

It is believed that the centralized scheme can produce

efficient schedules because it has all necessary information

about all tasks in workflows. However, it is not scalable

with respect to the number of tasks, the classes and number

of Grid resources that are generally autonomous. The major

advantage of using the hierarchical architecture is that

different scheduling policies can be deployed in the central

manager and lower-level schedulers [11]. However, the

failure of the central manager will result in entire system

failure. Decentralized scheduling is more scalable but faces

more challenges to generate optimal solutions for overall

workflow performance.

2.2.2 Decision Making

It is difficult to find a single best solution for mapping

workflows onto resources for all workflow applications,

since applications can have very different characteristics. It

depends to some degree on the application models to be

scheduled. In general, decisions about mapping tasks in a

workflow onto resources can be based on the information of

the current task or of the entire workflow. Scheduling

decisions made with reference to just the task or sub-

workflow at hand are called local decisions while

scheduling decision made with reference to the whole

workflow are called global decisions [5].

It is believed that global decision based scheduling can

provide better overall results, since local decision

scheduling only takes one task or sub-workflow into

account. However, it also takes much more time in

scheduling decision making. The overhead produced by

global decision based scheduling will reduce the overall

benefit and can even exceed the benefits it will produce.

Therefore, the decision making of workflow scheduling

should consider both overall execution time and scheduling

time.

2.2.3 Planning Scheme

Schemes for translating abstract models to concrete models

can be categorized into either static or dynamic. In a static

scheme, concrete models have to be generated before the

execution, according to current information about the

execution environment, and the dynamically changing state

of the resources is not taken into account. In contrast, a

dynamic scheme uses both dynamic and static information

about resources in order to make scheduling decisions at

run-time.

Static schemes can be classified as user-directed or

simulation-based. In user-directed scheduling, users

emulate the scheduling process and make resource mapping

decisions according to their knowledge, preference and/or

performance criteria. In simulation-based scheduling, a

‘best’ schedule is achieved by simulating task execution on

a given set of resources before a workflow starts execution.

The simulation can be processed based on static

information or the result of performance estimation.

Dynamic schemes include prediction-based and just in-

time scheduling. Prediction-based dynamic scheduling uses

dynamic information in conjunction with some results based

on prediction. It is similar to simulation-based static

scheduling, in which the scheduler is required to predict the

performance of task execution on resources and generate a

near optimal schedule for the task before it starts the

execution. However, it changes the initial schedule

dynamically during the execution. Rather than making a

46 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

 4

schedule prior to scheduling, just in-time scheduling only

makes a scheduling decision at the time of task execution.

 Planning ahead in Grid environments may produce a

poor schedule, since it is a dynamic environment where

utilization and the availability of resources varies over time

and a better resource can join at any time. Moreover, it is

not easy to accurately predict execution time of all

application components on Grid resources. However, as the

technology of advance reservation for various resources

improve, it is believed that the role of static and prediction-

based planning will increase [5] .

2.2.4 Scheduling Strategy

In general, scheduling workflow applications in a

distributed system is an NP-complete problem [8]. Many

heuristics have been developed to obtain near-optimal

solutions to match users’ QoS constraints such as deadline

and budget.

Performance-driven strategies try to find a mapping of

workflow tasks onto resources that achieves optimal

execution performance such as minimum overall execution

time. Market-driven strategies [10] employ market models

to manage resource allocation for processing workflow

tasks. Workflow schedulers with a market-driven strategy

act as consumers buying services from resource providers

and pay some form of electronic currency for executing

tasks in workflows. Unlike performance-driven strategies,

market-driven schedulers may choose a resource with later

deadline if its usage price is cheaper.

Recently trust-driven scheduling approaches [18] in

distributed systems are emerging. Trust-driven schedulers

select resources based on their trust properties such as

security policy, accumulated reputation, self-defense

capability, attack history, and site vulnerability. By using

trust-driven approaches, the overall reliability of workflow

systems can be increased by reducing the chance of

selecting malicious hosts and disreputable resources.

 2.3 Fault Tolerance

In Grid environments, workflow execution failures can

occur for various reasons such as network failure,

overloaded resource conditions, or non-availability of

required software components. Thus, Grid workflow

management systems should be able to identify and handle

failures and support reliable execution in the presence of

concurrency and failures. Workflow failure handling

techniques are classified as task-level and workflow-level

[12]. Task-level techniques mask the effects of the

execution failure of tasks in the workflow, while workflow-

level techniques manipulate the workflow structure such as

execution flow to deal with erroneous conditions.

Task-level techniques have been widely studied in

parallel and distributed systems. They can be classified as

retry, alternate resource, checkpoint/restart and

replication. The retry technique is the simplest failure

recovery technique, as it simply tries to execute the same

task on the same resource after failure. The alternate

resource technique submits failed task to another resource.

The checkpoint/restart technique moves failed tasks

transparently to other resources, so that the task can

continue its execution from the point of failure. The

replication technique runs the same task simultaneously on

different Grid resources to ensure task execution provided

that at least one of the replicas does not fail.

Workflow-level techniques are classified as alternate

task, redundancy, user-defined exception handling and

rescue workflow. The alternate task technique executes

another implementation of a certain task if the previous one

failed, while the redundancy technique executes multiple

alternative tasks simultaneously. User-defined exception

handling allows users to specify a special treatment for a

certain failure of a task in the workflow. The rescue

workflow technique generates a rescue workflow, which

records information about failed tasks, during the first

workflow execution. The rescue workflow is used for later

submission.

2.4 Intermediate Data Movement

For Grid workflow applications, the input files of tasks

need to be staged to a remote site before processing tasks.

Similarly, output files may be required by their children

tasks which are processed on other resources. Therefore,

intermediate data has to be staged out to corresponding

Grid sites. Some systems require users to manage

intermediate data transfer in the workflow specification

(user-directed approach), while some systems provide

automatic mechanisms to transfer intermediate data.

We classify approaches of automatic intermediate data

movement as centralized, mediated and peer-to-peer. A

centralized approach transfers intermediate data between

resources via a central point. In a mediated approach rather

than using a central point, the locations of the intermediate

data are managed by a distributed data management system.

A peer-to-peer approach transfers data between processing

resources.

 In general, centralized approaches are easily

implemented and suit workflow applications in which large-

scale data flow is not required. Mediated approaches are

more scalable and suitable for applications which need to

keep intermediate data for later use. Since data is

transmitted from a source resource to a destination resource

directly, without involving any third-party service, peer-to-

peer approaches save transmission time significantly and

reduce the bottleneck caused by the centralized and

mediated approaches. Thus, the peer-to-peer approach is

more suitable for large-scale intermediate data transfer.

However, there are more difficulties in deployment because

it requires a Grid site to be capable of providing both data

management and movement service.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 47

 5

3. GRID WORKFLOW SYSTEM SURVEY
A mapping of taxonomy to several existing Grid workflow

systems is shown in Table 1. The detailed discussion on

these systems along with identification of areas that need

further work can be found in [23].

* user-defined – the architecture of the system has been explicitly designed for user extension.

4. CONCLUSION
We have presented a taxonomy for Grid workflow systems.

The taxonomy focuses on workflow design, workflow

scheduling, fault management and data movement. We also

survey some workflow management systems for Grid

computing and classify them into different categories using

the taxonomy. This paper thus helps to understand key

Workflow Design Workflow Scheduling

Project
Structure Model

Composition

System
Architecture

Decision

Making

Planning

Scheme
Strategies

Fault-tolerance
Data

Movement

DAGMan

[19]
DAG Abstract User-directed

-Language-based
Centralized Local Dynamic

 -Just in-time

Performance-

driven

Task Level

-Migration

-Retrying

Workflow Level

-Rescue workflow

User-directed

Pegasus

[6]
DAG Abstract

User-directed
-Language-based

Automatic

Centralized
Local

Global

Static

-user-directed

Dynamic

-Just in-time

Performance-

driven
Based on DAGMan Mediated

Triana

[20]
Non-DAG Abstract

User-directed

-Graph-based
Decentralized Local

Dynamic

-Just in-time

Performance

-driven
Based on GAT manger Peer-to-Peer

ICENI

[16]
Non-DAG Abstract

User-directed

-Language-based

-Graph-based

Centralized Global
Dynamic
-Prediction-

based

Performance-

driven

Market-

driven

Based on ICENI

middleware
Mediated

Taverna

[17]
DAG

Abstract

Concrete

User-directed
-Language-based

-Graph-based
Centralized Local

Dynamic

-Just in-time

Performance-

driven

Task Level
-Retry

-Alternate Resource
Centralized

GrADS

[3]
DAG Abstract

User-directed

-Language-based
Centralized

Local

Global

Dynamic

-Prediction-

based

Performance-

driven

Task Level in

rescheduling work in

GrADS, but not in

workflows.

Peer-to-Peer

GridFlow

[4]
DAG Abstract

User-directed
-Graph-based

-Language-based
Hierarchical Local

Static
-Simulation-

based

Performance-

driven

Task Level

-Alternate resource
Peer-to-Peer

UNICORE

[1]
Non-DAG Concrete User-directed

-Graph-based
Centralized

User-

defined*
Static
-User-directed

User-

defined*
Based on UNICORE

middleware Mediated

Gridbus

workflow

[22]

DAG
Abstract

Concrete
User-directed
-Language-based

Hierarchical Local

Static
-User-directed

Dynamic
-Just in-time

Market-

driven

Task Level

-Alternate resource

Centralized

Peer-to-Peer

Askalon

[7]
Non-DAG Abstract

User-directed
-Graph-based

-Language-based
Decentralized Global

Dynamic
-Just in-time

-Prediction-

based

Performance-

driven

Market-

driven

Task Level
-Retry

-Alternate resource

Workflow level
-Rescue workflow

Centralized

User-directed

Karajan

[13]

Non-DAG Abstract
User-directed

-Graph-based

-Language-based
Centralized User-defined*

Task Level
-Retry

-Alternate resource

-checkpoint/restart
Workflow Level

-User-defined exception

handling

User-directed

Kepler

[14]
Non-DAG

Abstract

Concrete

User-directed

-Graph-based
Centralized User-defined*

Task Level

- Alternate resource

Workflow Level
- User-defined exception

handling

- Workflow rescue

Centralized

Mediated

Peer-to-Peer

Table 1. Taxonomy mapping to Grid workflow systems.

48 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

 6

workflow management approaches and identify possible

future enhancements.

5. ACKNOWLEDGMENTS
We would like to acknowledge all developers of the

workflow management systems described in the paper. We

thank Chee Shin Yeo, Hussein Gibbins, Anthony Sulistio,

Srikumar Venugopal, Tianchi Ma, Sushant Goel, and

Baden Hughes (Melbourne University, Australia), Rob

Gray (Monash University, Australia), Wolfram Schiffmann

(FernUniversitaet in Hagen, Germany), Ivona Brandic

(University of Vienna, Austria), Soonwook Hwang

(National Institute of Informatics, Japan), Ewa Deelman

(University of Southern California, USA), Chris Mattmann

(NASA Jet Propulsion Laboratory, USA), Henan Zhao

(University of Manchester, UK), Bertram Ludaescher

(University of California, Davis), Thomas Fahringer

(University of Innsbruck, Austria), Gregor von Laszewski

(Argonne National Laboratory, USA), Ken Kennedy,

Anirban Mandal, and Chuck Koelbel (Rice University,

USA) for their comments on this paper. We thank

anonymous reviewers for their constructive comments. This

work is partially supported through the Australian Research

Council (ARC) Discovery Project grant and Storage

Technology Corporation sponsorship of Grid Fellowship.

6. REFERENCES
[1] J. Almond and D. Snelling. UNICORE: Secure and

Uniform Access to Distributed Resources via the World

Wide Web. White Paper, October 1998,

[2] I. Altintas et al. A Framework for the Design and Reuse of

Grid Workflows, International Workshop on Scientific

Applications on Grid Computing (SAG'04), LNCS 3458,

Springer, 2005

[3] F. Berman et al. The GrADS Project: Software Support for

High-Level Grid Application Development. International

Journal of High Performance Computing

Applications(JHPCA), 15(4):327-344, SAGE Publications

Inc., London, UK, Winter 2001.

[4] J. Cao et al. GridFlow:Workflow Management for Grid

Computing. In 3rd International Symposium on Cluster

Computing and the Grid (CCGrid), Tokyo, Japan, IEEE

CS Press, Los Alamitos, CA, USA, May 12-15, 2003.

[5] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman.

Workflow Management in GriPhyN. The Grid Resource

Management, Kluwer, Netherlands, 2003.

[6] E. Deelman et al. Mapping Abstract Complex Workflows

onto Grid Environments. Journal of Grid Computing,

1:25-39, Kluwer Academic Publishers, Netherlands, 2003.

[7] T. Fahringer et al. Truong. ASKALON: a tool set for

cluster and Grid computing. Concurrency and

Computation: Practice and Experience, 17:143-169,

Wiley InterScience, 2005.

[8] D. Fernández-Baca. Allocating Modules to Processors in a

Distributed System. IEEE Transactions on Software

Engineering, 15(11): 1427-1436, November 1989.

[9] I. Foster and C. Kesselman (editors), The Grid: Blueprint

for a Future Computing Infrastructure, Morgan Kaufmann

Publishers, USA, 1999.

[10] A. Geppert, M. Kradolfer, and D. Tombros. Market-based

Workflow Management. International Journal of

Cooperative Information Systems, World Scientific

Publishing Co., NJ, USA, 1998.

[11] V. Hamscher et al. Evaluation of Job-Scheduling

Strategies for Grid Computing. In 1st IEEE/ACM

International Workshop on Grid Computing (Grid 2000),

Springer-Verlag, Heidelberg, Germany, 2000; 191-202.

[12] S. Hwang and C. Kesselman. Grid Workflow: A Flexible

Failure Handling Framework for the Grid. In 12th IEEE

International Symposium on High Performance

Distributed Computing (HPDC’03), Seattle, Washington,

USA, IEEE CS Press, Los Alamitos, CA, USA, June 22 -

24, 2003.

[13] G. von Laszewski. Java CoG Kit Workflow Concepts for

Scientific Experiments. Technical Report, Argonne

National Laboratory, Argonne, IL, USA, 2005.

[14] B. Ludäscher et al. Scientific Workflow Management and

the KEPLER System. Concurrency and Computation:

Practice & Experience, Special Issue on Scientific

Workflows, to appear, 2005

[15] A. Mayer et al. Workflow Expression: Comparison of

Spatial and Temporal Approaches. In Workflow in Grid

Systems Workshop, GGF-10, Berlin, March 9, 2004.

[16] S. McGough et al. Workflow Enactment in ICENI. In UK

e-Science All Hands Meeting, Nottingham, UK, IOP

Publishing Ltd, Bristol, UK, Sep. 2004; 894-900.

[17] T. Oinn et al. Taverna: a tool for the composition and

enactment of bioinformatics workflows. Bioinformatics,

20(17):3045-3054, Oxford University Press, London, UK,

2004.

[18] S. S. Song, Y. K. Kwok, and K. Hwang. Trusted Job

Scheduling in Open computational Grids: Security-Driven

heuristics and A Fast Genetic Algorithm. In 19th IEEE

International Parallel & Distributed Processing

Symposium (IPDPS-2005), Denver, CO, USA., IEEE CS

Press, Los Alamitos, CA, USA., April 4-8, 2005.

[19] T. Tannenbaum, D. Wright, K. Miller, and M. Livny.

Condor - A Distributed Job Scheduler. Beowulf Cluster

Computing with Linux, The MIT Press, MA, USA, 2002.

[20] I. Taylor, M. Shields, and I. Wang. Resource Management

of Triana P2P Services. Grid Resource Management,

Kluwer, Netherlands, June 2003.

[21] W3C. Extensible Markup Language (XML) 1.0

[22] J. Yu and R. Buyya. A Novel Architecture for Realizing

Grid Workflow using Tuple Spaces. In 5th IEEE/ACM

International Workshop on Grid Computing (GRID 2004),

Pittsburgh, USA, IEEE CS Press, Los Alamitos, CA,

USA, Nov. 8, 2004.

[23] J. Yu and R. Buyya. A Taxonomy of Workflow

Management Systems for Grid Computing. Technical

Report, GRIDS-TR-2005-1, Grid Computing and

Distributed Systems Laboratory, University of Melbourne,

Australia, March 10, 2005.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 49

XML Database Support for Distributed Execution of Data-intensive Scientific
Workflows∗

Shannon Hastings†, Matheus Ribeiro‡, Stephen Langella†, Scott Oster†, Umit Catalyurek†,
Tony Pan†, Kun Huang†, Renato Ferreira‡, Joel Saltz†, Tahsin Kurc†

† Dept. of Biomedical Informatics
The Ohio State University

Columbus, OH, 43210

‡ Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

Belo Horizonte, MG - Brazil

Abstract

In this paper we look at the application of XML data
management support in scientific data analysis workflows.
We describe a software infrastructure that aims to address
issues associated with metadata management, data storage
and management, and execution of data analysis workflows
on distributed storage and compute platforms. This sys-
tem couples a distributed, filter-stream based dataflow en-
gine with a distributed XML-based data and metadata man-
agement system. We present experimental results from a
biomedical image analysis use case that involves processing
of digitized microscopy images for feature segmentation.

1 Introduction

The main purpose of data collection is to better under-
stand the problem at hand and predict, explain, and extrap-
olate potential solutions and outcomes. On one hand, ad-
vances in computational and data acquisition technologies
improved the resolution and speed at which a researcher
can collect data. On the other hand, because of the increas-
ing complexity and size of scientific datasets, data analy-
sis is increasingly becoming a major challenge in research.
Scientific data analysis involves several tasks, including 1)
querying, retrieval, and integration of data of interest from
large and distributed datasets, 2) simple and complex oper-
ations on data, and 3) inspection and visualization of re-
sults. By composing individual tasks into data analysis
workflows, a researcher can create and execute several (po-
tentially new) analysis paths efficiently. This can lead to a

∗This research was supported in part by the National Science
Foundation under Grants #ACI-9619020 (UC Subcontract #10152408),
#EIA-0121177, #ACI-0203846, #ACI-0130437, #ANI-0330612, #ACI-
9982087, #CCF-0342615, #CNS-0406386, #CNS-0426241, Lawrence
Livermore National Laboratory under Grant #B517095 (UC Subcon-
tract #10184497), NIH NIBIB BISTI #P20EB000591, Ohio Board
of Regents BRTTC #BRTT02-0003. Contact Author: Tahsin
Kurc, kurc@bmi.osu.edu.

better insight to the problem, which may not be possible by
processing of data by a single task only. A complex sci-
entific workflow can consist of multiple stages of tasks or-
ganized into networks of operations and hierarchical struc-
tures (i.e., a task may itself be another workflow).

This work examines the effective application of dis-
tributed XML database support in scientific data analysis
workflows. XML has become a de facto standard for data
exchange in Web and Grid environments. A large number of
tools have been developed for creating, parsing, validating,
and querying XML documents. With an XML-aware ap-
proach, it becomes possible for both clients and application
developers to leverage these tools. This paper makes the
following contributions: 1) We identify a list of function-
ality that is desired for scientific workflows and can ben-
efit from XML database support. 2) We describe a soft-
ware framework that implements the desired functionality
by coupling a distributed filter-stream based data processing
middleware with a distributed XML data management mid-
dleware. The salient features of this system include support
for managing data types, which are input to and output from
a workflow component, as XML schemas, support for man-
agement of workflow descriptions, support for distributed
execution of workflows, and on-demand database creation
to store and retrieve output datasets and intermediate data
products. We present an experimental evaluation of the sys-
tem in an image analysis use case that involves processing
of large biomedical images for feature segmentation.

2 Related Work

A number of research projects have developed tools
and runtime infrastructure to support composition and ex-
ecution of scientific workflows. Because of space con-
straints, we briefly review some of the related work. A
good list and survey of workflow systems can be found at
http://www.extreme.indiana.edu/swf-survey/.

The Chimera [4] system implements support for estab-

50 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

lishing virtual catalogs that can be used to describe and
manage information on how a data product in an appli-
cation has been derived from other data. This informa-
tion can be queried, and data transformation operations can
be executed to regenerate the data product. The Pegasus
project develops systems to support mapping and execution
of complex workflows in a Grid environment [3]. The Pega-
sus framework uses the Chimera system for abstract work-
flow description and Condor DAGMan and schedulers [5]
for workflow execution. It allows construction of abstract
workflows and mappings from abstract workflows to con-
crete workflows that are executed in the Grid. The Kepler
project [10] develops a scientific workflow management
system based on the notion of actors. Application com-
ponents can be expressed as Actors that interact with each
other through channels. The actor-oriented approach allows
the application developer to reuse components and com-
pose workflows in a hierarchical model. Adapting Com-
putational Data Streams is a framework that addresses con-
struction and adaptation of computational data streams in
an application [8]. A computational object performs filter-
ing and data manipulation, and data streams characterize
data flow from data servers or from running simulations
to the clients of the application. Dv [1] is a framework
based on the notion of active frames. An active frame is
an application-level mobile object that contains application
data, called frame data, and a frame program that processes
the data. Active frames are executed by active frame servers
running on the machines at the client and at remote sites.

Our work differs from these projects in that we focus on
management of metadata associated with workflows (e.g.,
definition of a workflow), input/output datasets, and data
types exchanged between workflow components using a
generic, XML-based metadata and data management sys-
tem. The system presented in this paper allows storage and
retrieval of data and workflow definitions as XML docu-
ments conforming to well-defined schemas and enables use
of common protocols for storing and querying these docu-
ments. Our system could be used by other systems in order
to store workflow definitions and instance data. Similarly,
our system could use, for example, Condor [5] and Pega-
sus [3] for scheduling of computations in a Grid environ-
ment.

Moreau et. al. [11] propose the use of XML schemas
to describe the logical structure of a scientific dataset. The
mapping of the logical structure to the physical layout of the
dataset is done through mapping documents. The goal is to
provide a conceptual view of the dataset, with which appli-
cations and workflows can interact without worrying about
the physical data format. Their approach is similar to ours
in that they use XML schemas to define data types. How-
ever, our system, specifically the underlying Mobius frame-
work [7, 9], also provides support for coordinated manage-

ment and versioning of schemas, on-demand XML database
creation, database federation, and querying in a distributed
environment. Unlike the XDTM system in [11], which cre-
ates a mapping from an XML schema to physical format
by mapping documents, the current implementation of Mo-
bius manages XML documents in an XML database, called
MakoDB [7, 9], layered on a relational database system.
For a given XML schema, MakoDB automatically creates
database tables and a mapping of the schema to these ta-
bles for efficient storage and querying of XML documents
conforming to the schema.

3 Desired Functionality

In order to support complex scientific workflows, a
workflow system should address a wide range of require-
ments. These requirements include user interfaces and
languages for easy composition of workflows, workflow
scheduling and execution, monitoring of workflows, man-
agement of datasets, reliability and robustness, and unified
access to sources in the environment, to name a few. Most
data analysis applications can be expressed as a network of
data processing components that exchange data and control
information to execute in a coordinated way. In this paper,
we focus on data and metadata centric requirements associ-
ated with such workflows.

Strongly typed data. In a distributed and collaborative
environment, a data analysis workflow may be composed
of components developed by multiple, potentially indepen-
dent researchers. In such an environment, metadata and data
definitions play an important role. Metadata for workflows
and definitions of data structures (data objects) exchanged
among workflow components can provide a mechanism to
ensure a workflow is composed correctly. Moreover, hav-
ing metadata associated with workflows makes it easier to
store, manage, and search for instances of workflows. Web
and Grid services standards aim to address the related is-
sues of interoperability between services and components.
Nevertheless, support for management of data definitions
(i.e., the structure of data objects and datasets, which are
input to and output from workflow components) promotes
data to be a first class citizen. One advantage of this data
centric approach is that strongly typed data provides an ad-
ditional mechanism to check if two interacting components
in a workflow are compatible. Another advantage is, even
if the data objects produced and consumed by two compo-
nents are different, a user or application developer can in-
spect the structure of the data objects and implement trans-
formation components that will map or convert one data ob-
ject to the other.

On-demand creation and management of distributed
databases. A workflow can be executed by having all its
components run concurrently and exchange data on the fly
across wide- or local-area networks. Another approach

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 51

would be to use a storage system to act as a persistent
data channel between components at different stages of the
workflow. Here, we use the term persistent data channel in
the sense that a workflow component’s output data object
that is stored in the system can be used by multiple invoca-
tions of another component in the workflow or a component
in another workflow. Such an approach allows more flexible
scheduling of stages of a workflow onto available resources.
If strongly typed data objects are persisted in the environ-
ment, they can be shared, searched, and queried. This not
only enables persistent data channels, but also allows other
clients and programs to interact with those data objects. By
examining the intermediate datasets, a collaborator can bet-
ter understand how the researcher arrived at her results. Fur-
thermore, intermediate datasets could be utilized as input to
a new workflow that builds on the original workflow. This
could potentially provide a significant runtime performance
improvement as redundant workflow steps do not need to
be recomputed if they are shared between multiple work-
flows [12]. In order to support this type of functionality, the
system should be able to create a database of data objects
on demand and make it available for remote access. The
system should take advantage of storage clusters for large
storage space and high I/O performance.

Management of data analysis workflows. Researchers
should be able to compose, register, and version workflows.
The definitions and instances of workflows should be man-
aged in a standard and efficient way so that researchers can
share workflows and reference others’ workflows in theirs.
The system should also allow a researcher to version work-
flows (e.g., to add new analysis components or modify the
order of data processing steps) and manage the updated in-
stances of workflows.

Efficient execution of data analysis workflows. To
speed up complex operations on data and parameter studies,
the system should support execution of analysis workflows
and manage flow of data within the network of components
in a heterogeneous and distributed environment. It should
also allow check-pointing of intermediate results so that the
workflow can be restarted after a failure or the user can carry
out interactive inspection on the data at a later time.

4 System Architecture

We have developed a software infrastructure that imple-
ments the functionality presented in Section 3 by coupling
an XML-based distributed data and metadata management
system, Mobius [7], with a distributed dataflow middleware,
DataCutter [2].

4.1 Mobius and DataCutter

Mobius is a middleware framework designed for efficient
metadata and data management in dynamic, distributed en-
vironments. It provides a set of generic services and pro-

tocols to support 1) creation, management, and versioning
of XML schemas, 2) on-demand creation and federation of
databases conforming to the XML schemas managed by the
system, and 3) querying of these databases in a distributed
environment. Its services employ XML schemas to repre-
sent metadata definitions and XML documents to represent
and exchange metadata instances.

The Mobius Global Model Exchange (GME) service
provides a protocol for publishing, versioning, and discov-
ering XML schemas. It is implemented as an architecture
similar to Domain Name Server (DNS), in which there are
multiple GMEs each of which is an authority for a set of
namespaces. A schema is stored in GME under a name
and namespace specified by the application developer and
is given a version number. We refer to the tuple consist-
ing of the schema’s name, its namespace, and its version
number as the global name id (GNI) of the schema. The
GME provides support for a schema to reference entities al-
ready existing in other schemas and in the global schema
defined by a researcher. Other services such as storage ser-
vices can use the GME to match instance data with their
data type definitions. The Mobius Mako service exposes
data sources as XML data services through a set of well de-
fined interfaces and provides support for storing, updating,
retrieving, and querying data as XML documents. The run-
time support allows user-defined data types (represented as
XML schemas) to automatically manifest custom databases
at runtime, and data adhering to these data types to be stored
in these databases. Any data instance received by a Mako
server is validated against an XML schema as retrieved
from the GME server and its elements are indexed. A Mako
server can be configured to accept only a specific set of
XML schemas. Clients and other services may query XML
documents within a Mako by sending it an XPath statement.

DataCutter [2] implements a coarse-grained dataflow
system using a filter-stream model. A DataCutter applica-
tion consists of application-specific components, called fil-
ters, and one or more filter groups. Filters exchange data
through a stream abstraction, which denotes uni-directional
flow of data from one filter to another. The application fil-
ters read buffers from their input ports, perform application-
defined processing on the buffer, and then write it to their
output ports. The DataCutter runtime allows combined use
of task- and data-parallelism. Filters can be placed on dif-
ferent machines and multiple copies of a filter can be cre-
ated and executed across heterogeneous collections of stor-
age and compute nodes.

4.2 Implementation

In our system, the input and output data types of a com-
ponent in a workflow can be described by data schemas.
A data schema is an application specific entity and can
describe any user-defined structure and attributes that can

52 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

be encoded as an XML schema. For workflows, we have
adapted the process modeling schema (PMS) developed for
the Distributed Process Management System (DPM) [6]. It
defines a hierarchical model starting with a workflow en-
tity which contains several jobs. Each job represents an ap-
plication which is composed of a set of components. The
name attribute of a component allows the component to be
named such that it can be uniquely identified. Each compo-
nent entity also contains input and output list attribute. An
optional placement attribute specifies how many copies of
a component should be run in the environment and which
nodes to run the copies of the component. The PMS and
data schemas are registered in and managed by the Mobius
GME service.

Our system uses the Mako service of Mobius as the back-
bone for storage and management of data instances. We uti-
lize a collection of Makos distributed across storage nodes
to provide a distributed data management service. Work-
flow instance descriptions, metadata describing the datasets,
and data instances are stored in Makos. An instance of the
application workflow is modeled by a directed acyclic task
graph of components represented by an XML document
conforming to the PMS. The instance specifies the function
names and locations of individual components, the number
of copies and placement of copies for a component, persis-
tent check-pointing locations in the workflow (which tells
the execution environment that output from check-pointed
components should be stored as intermediate datasets in
the system), input and output datasets (conforming to some
registered schema), and an optional data selection crite-
ria (which specifies the subset of data elements from input
datasets to be processed). Using Mako client APIs, clients
can search for a particular workflow and execute it using the
distributed execution service.

The distributed execution service builds on DataCutter
and is responsible for instantiation of components on dis-
tributed platforms, management of data flow between com-
ponents, and data retrieval from and storage to distributed
collections of Makos. We have implemented two filters,
MakoReader and MakoWriter, that provide interface be-
tween Mako servers and other filters in the workflow. The
MakoReader filter retrieves data from Mako servers and
passes them to the first stage filters in the workflow. The
MakoWriter filter can be placed between two application
filters, which are connected to each other in the work-
flow graph, if the output of a filter needs to be check-
pointed. The last stage filters in the workflow also con-
nect to MakoWriter filters to store output in Mako servers.
To maximize I/O parallelism when data is accessed, the
system utilizes data distribution techniques for storing data
through the MakoWriter filter. Currently, round-robin and
demand-driven (based on the data ingestion rate of indi-
vidual Makos) strategies are implemented for data distri-

bution. The execution of a workflow and check-pointing
can be done stage-by-stage (i.e., all the data is processed
by one stage and stored on Mako servers before the next
stage is executed) or in pipelined fashion (i.e., all stages ex-
ecute concurrently; the MakoWriter filters interspersed be-
tween stages both send data to Mako servers and pass it to
the next filter in the workflow). In addition to MakoWriter
and MakoReader filters, any workflow component can uti-
lize Mako client APIs to store XML documents and can re-
trieve data using XPath expressions.

5 Experimental Evaluation

We performed an evaluation of our framework using PC
clusters and an image analysis use case. The first set of ex-
periments examines the performance of the system as the
number of Mako servers that can store data is varied. A
cluster with 7 nodes was used for this experiment. Each
node of the cluster consists of two AMD Opteron proces-
sors with 8 GB of memory, 1.5 TB of disk storage in RAID
5 SATA disk arrays. The nodes are inter-connected via a
Gigabit switch. The workflow consists of a simple chain
of MakoReader->Inverter->MakoWriter filter group with
7500 images as input – each image was a 256x256-pixel
gray scale image. The Inverter filter inverts the color of
each pixel in an image. In the experiments, the number
of Inverter filter copies was fixed at 7 and each copy was
executed on one of the nodes. The input images were
distributed evenly across an increasing number of Mako
servers as the number of MakoReader filters increased. The
results of these experiments are shown in Figure 1. The
numbers in the graphs are the total execution time for pro-
cessing 7500 images. The bars labeled as “Reader” and
“Writer” show the execution times when the number of
MakoReader and MakoWriter filters is varied, respectively.
We observe that the execution time decreases as the number
of Mako servers is increased. As more Makos are added,
better I/O parallelism is achieved.

In the next set of experiments, we use a biomedical im-
age analysis application implemented as a chain of data pro-
cessing operations, as shown in Figure 2. This application
performs segmentation of the labyrinth layer in a digitized
microscopy image of a mouse placenta1. The implementa-
tion consists of two main stages. The RedFinder, Counter,
and Histogram Aggregation filters form the first process-
ing stage of the application and process data in filter-stream
fashion. The second stage consists of a single filter referred
to here as the PCA filter. Data exchange between the two
stages is done through the XML database support. The out-
put of the Counter filter is stored in Mobius and retrieved by
the PCA filter. We now briefly describe these stages.

1The segmented region can be used to carry out quantitative examina-
tion of phenotypes and measurements of tissue structure within the pla-
centa in cancer research.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 53

Execution Time vs Database I/O Scalability

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1
 2
 3
 4
 5
 6
 7

Number of I/O Nodes

E
xe

cu
ti

o
n

 T
im

e
(s

)

Reader

Writer

Figure 1. Data I/O Scalability Experiments.
“Reader” and “Writer” bars denote the exper-
iments, in which the number of MakoReader
and MakoWriter filters is varied, respectively.

Mako Mako Mako Mako

GME

RedFinder Counter Histogram Aggregation

Counter

...

RedFinder

Histogram
Aggregation

PCA

... . . .

Mobius

Data Storage and Management System

PCA

Application Filters implemented using DataCutter filter−stream model

Mobius Data and Metadata Management

Figure 2. Top: The network of filters which form the pro-
cessing skeleton of the application. Bottom: An instance of
the application with multiple copies of RedFinder, Counter,
and PCA filters.

RedFinder, Counter, Histogram Aggregation: These
filters find red pixels in regions with high red blood cell
(RBC) density. The RedFinder filter reads image chunks,
each of which represents a rectangular subregion of the im-
age – in the experiments, input images are stored in files
in the system – and determines if a pixel is red or not.
The coordinates of red pixels are sent to the Counter filter,
which counts the number of neighbors of each red pixel.
A histogram of red pixel density is generated by the His-
togram Aggregation filter. Using the histogram, the regions
with high RBC density (specified by a user-defined thresh-
old value) are determined. The Counter filter finds the red
pixels whose coordinates fall into the high density regions,
groups them into chunks, creates an XML document for
each chunk, and sends using the Mobius client API the

XML documents along with the chunk to Makos for stor-
age. The schema for the XML document consists of at-
tributes that specify the encoding type of the image (JPEG,
TIFF, raw RGB, etc.), the name (or id) of the image, the id
and bounding box of the chunk, and the size of the chunk.
The chunk is submitted as an attachment to the XML docu-
ment.

PCA: This filter retrieves the chunks stored by the
Counter filter in the system and processes them to: 1) Com-
pute the principal direction of the high RBC density regions.
We apply principal component analysis (PCA) to the high
RBC density regions to determine the orientation of these
regions. 2) Determine the bounding box for the labyrinth
layer by projecting pixels along the principle direction and
filtering out those pixels whose projected coordinates fall
outside a user-defined range. Multiple copies of the PCA
filter can be instantiated to process an image in parallel.
During execution, every filter copy first submits an XPath
query, which specifies the id of the image, to Mobius and
retrieves the list of chunks that satisfy the query. This list is
partitioned evenly among filter copies in round-robin fash-
ion. Each filter copy then retrieves the chunks assigned to
itself from Mobius for processing using XPath queries. The
output from the second stage conforms to the same schema
that defines the output of the Counter filter and is stored in
Mobius.

We carried out an experimental evaluation of the appli-
cation implementation on a PC cluster, referred to here as
OSUMED. Each node has a Pentium III 900MHz CPU,
512MB main memory, and three local disks (300GB local
storage space). The nodes in the cluster are inter-connected
through a 100Mbit/sec Ethernet Switch. We used digitized
microscopy images, each of which was 40GB in size. The
results represent the execution time for a single image av-
eraged over 3 images. The amount of data stored in Mo-
bius by the Counter and PCA filters was equal to 1.4GB
and 800MB per image, respectively.

In Figure 3, the execution time of the Counter filter
is broken down into the operations performed by that fil-
ter; doing neighborhood computations and writing data to
Mobius. In these experiments, we executed four Mako
instances. The round-robin distribution strategy was em-
ployed when inserting data to backend Mako instances. As
is seen from the figure, the overhead of storing data in Mo-
bius is very small compared to the neighborhood compu-
tations. The overhead of neighborhood computations de-
creases as the number of filter copies is increased as ex-
pected. The cost of storage in Mobius remains almost con-
stant as the number of backend Makos was fixed at 4 in
these experiments. Our results show that interaction with
the XML-based storage services do not become a bottleneck
in this configuration as the number of filters writing data is
increased. The last set of experiments shows the execution

54 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Counter Filter Execution Time

0

1000

2000

3000

4000

5000

6000

6 8 10 12 14

Number of Filter Copies

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

Neighbor Computation
Mobius Write

Figure 3. The breakdown of execution of the
Counter filter.

PCA Execution

0

50

100

150

200

250

300

8 10 12

Number of PCA Filters

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

Computation
Mobius Read
Mobius Write

Figure 4. The execution time of the PCA filter
as the number of filter copies is varied. The
figure also shows the time spent reading data
from Mobius and writing data to Mobius.

time of the second stage of the image analysis application
(the PCA computations). In our implementation, the second
stage is executed after the first stage is completed, i.e., after
the redFinder-Counter-Histogram Aggregation filter group
has finished its execution. As is seen from Figure 4, the
PCA execution time decreases as more filters are executed.
The I/O overhead (Mobius Read/Write) is less than the PCA
execution time for this experimental setup as well. How-
ever, since the number of Mobius Mako servers is fixed, the
cost of I/O remains almost constant.

6 Conclusions

This paper examined how XML database support can be
applied in the context of scientific workflows. We argue that
XML is a viable technology for management and execution
of workflows. To demonstrate our ideas, we presented and
evaluated a system that uses a distributed XML-based meta-
data/data management system in tandem with a component-
based distributed execution engine.

References

[1] M. Aeschlimann, P. Dinda, J. Lopez, B. Lowekamp, L. Kalli-
vokas, and D. O’Hallaron. Preliminary report on the design
of a framework for distributed visualization. In Proceedings
of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99), pages
1833–1839, Las Vegas, NV, June 1999.

[2] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Suss-
man, and J. Saltz. Distributed processing of very large
datasets with DataCutter. Parallel Computing, 27(11):1457–
1478, Oct. 2001.

[3] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, K. Blackburn, A. Lazzarini, A. Arbree, R. Ca-
vanaugh, and S. Koranda. Mapping abstract complex work-
flows onto grid environments. Journal of Grid Computing,
1(1), 2003.

[4] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A
virtual data system for representing, querying, and automat-
ing data derivation. In Proceedings of the 14th Conference
on Scientific and Statistical Database Management, 2002.

[5] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A computation management agent for multi-
institutional grids. In Proceedings of the Tenth IEEE
Symposium on High Performance Distributed Computing
(HPDC10). IEEE Press, Aug 2001.

[6] S. Hastings. Distributed architectures: A java-based process
management system. Master’s thesis, Computer Science De-
partment, Rensselear Polytechnic Institute, 2002.

[7] S. Hastings, S. Langella, S. Oster, and J. Saltz. Distributed
data management and integration: The mobius project. In
GGF Semantic Grid Workshop 2004, pages 20–38. GGF,
June 2004.

[8] C. Isert and K. Schwan. ACDS: Adapting computational data
streams for high performance. In 14th International Parallel
& Distributed Processing Symposium (IPDPS 2000), pages
641–646, Cancun, Mexico, May 2000.

[9] S. Langella, S. Hastings, S. Oster, T. Kurc, U. Catalyurek,
and J. Saltz. A distributed data management middleware
for data-driven application systems. In Proceedings of
2004 IEEE International Conference on Cluster Computing,
September 2004.

[10] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-
Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao. Scientific
workflow management and the Kepler system. Concurrency
and Computation: Practice & Experience, Special Issue on
Scientific Workflows, to appear, 2005.

[11] L. Moreau, Y. Zhao, I. Foster, J. Voeckler, and M. Wilde.
XDTM: the XML Dataset Typing and Mapping for Speci-
fying Datasets. In Proceedings of the 2005 European Grid
Conference (EGC’05), Amsterdam, Netherlands, Feb. 2005.

[12] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
and M. Livny. Pipeline and batch sharing in grid workloads.
In Proceedings of High-Performance Distributed Comput-
ing (HPDC-12), pages 152–161, Seattle, Washington, June
2003.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 55

Scheduling of Scientific Workflows in the ASKALON Grid
Environment∗

Marek Wieczorek, Radu Prodan and Thomas Fahringer
Institute of Computer Science, University of Innsbruck

Technikerstraße 21a, A-6020 Innsbruck, Austria

marek@dps.uibk.ac.at

ABSTRACT
Scheduling is a key concern for the execution of performance-
driven Grid applications. In this paper we comparatively ex-
amine different existing approaches for scheduling of scien-
tific workflow applications in a Grid environment. We eval-
uate three algorithms namely genetic, HEFT, and simple
”myopic” and compare incremental workflow partitioning
against the full-graph scheduling strategy. We demonstrate
experiments using real-world scientific applications covering
both balanced (symmetric) and unbalanced (asymmetric)
workflows. Our results demonstrate that full-graph schedul-
ing with the HEFT algorithm performs best compared to
the other strategies examined in this paper.

1. INTRODUCTION
Scheduling of scientific workflow applications on the Grid
is a challenging problem, which is an ongoing research ef-
fort followed by many groups. Deelman [9] distinguishes
several workflow processing strategies covering trade-offs be-
tween dynamicity and look-ahead range in workflow process-
ing. In [3] Deelman proposed a scheduling strategy based
on initial partitioning of the workflow into sequential sub-
workflows, that are scheduled sequentially one after another.
Prodan [10] applied genetic algorithms [7] to schedule the
whole workflow at once, and rescheduling it many times
during the execution. These approaches were not compared
against each other.

In this paper we examine three scheduling algorithms to
evaluate their performance for scheduling scientific work-
flows in Grid environments. The scheduling algorithms com-
prise a genetic algorithm similar to the one presented in [10],

∗This research is partially supported by the Austrian Sci-
ence Fund as part of the Aurora project under contract
SFBF1104 and the Austrian Federal Ministry for Education,
Science and Culture as part of the Austrian Grid project un-
der contract GZ 4003/2-VI/4c/2004.

the well-known HEFT algorithm [15], and a ”myopic” algo-
rithm. The HEFT algorithm is an extension for hetero-
geneous environments of the classical list scheduling algo-
rithm [8]. HEFT is a simple and computationally inexpen-
sive algorithm, which schedules workflows by creating an
ordered list of tasks out of the workflow, and mapping the
tasks to the resources in the most appropriate way. Execu-
tion order is based on the list created in the first two phases
of the algorithm. The last algorithm we applied is a simple
”myopic” algorithm, similar to the Condor DAGMan [12]
resource broker, which schedules the next task onto the best
machine available without any long-term optimization strat-
egy. The Grid model applied by us in the experiments as-
sumes high availability rate and good control over the re-
sources by the scheduler. This is not always assumed by
many other Grid research groups, but it is usually the case
for scientific workflows executed in research institutions.

Additionally, we compared different scheduling strategies
including full graph scheduling and incremental workflow
partitioning strategy [3]. The Myopic algorithm can be con-
sidered as a just-in-time scheduling strategy, as the schedul-
ing decisions made by the algorithm are optimized for the
current time instance.

In the remainder of this paper, we evaluate the scheduling
approaches through a series of experiments. We show, that
the HEFT algorithm is more effective and less time con-
suming than the genetic algorithms applied in [10]. HEFT
also performs substantially better than a simple Myopic al-
gorithm. We also show that the workflow partitioning ap-
proach described in [3] does not appear to imply any ad-
vantage over full-graph scheduling. For the class of strongly
unbalanced (asymmetric) workflows we highlight poor per-
formance of the incremental workflow partitioning and sim-
ple scheduling algorithms. Full-ahead scheduling with the
HEFT algorithm appears to perform best for unbalanced
workflows.

2. ASKALON ENVIRONMENT
ASKALON [5] is a Grid environment for composition and
execution of scientific workflow applications. The work-
flow model adopted in ASKALON is described in Section
3. The scheduler optimizes for performance using the exe-
cution time as the most important goal function. The sched-
uler interacts with the enactment engine (see Fig. 1) which
is a service that supervises the reliable and fault tolerant
execution of the tasks and transfer of the files. The resource

56 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

broker and the performance predictor are auxiliary services
which provide information about the resources available on
the Grid, and predictions about expected execution times
and data transfer times. The performance monitoring ser-
vice provides up-to-date status information of the applica-
tion execution and of the Grid environment. This informa-
tion can be used by the scheduler to make a decision about
rescheduling.

The scheduler itself consists of several components. The
workflow evaluator transforms the dynamic and compact
representation of the workflows in a static structure as de-
scribed in Sec. 3. The scheduling engine performs the ac-
tual scheduling, applying one of the alternative scheduling
algorithms. The event generator is meant for generation
of rescheduling events to cope with the dynamic nature of
workflows and the Grid and is currently being implemented.

Figure 1: ASKALON environment architecture

3. WORKFLOW MODEL
Scientific workflows executed in the ASKALON environment
are based on the model described in the AGWL specifica-
tion language [13]. AGWL documents can express simple
DAGs as well as more sophisticated workflow graphs con-
taining loops and conditional branches which impose con-
trol flow decisions that can only be decided at runtime. The
condition of a conditional branch (either if-then or switch)
may be evaluated in various ways for different executions, or
a while-loop may have different number of iterations. Fur-
thermore, parallel-for loops are introduced to specify a large
number of parallel activities (hundreds) in a compact form,
for scalability reasons. Such parallel-for constructs may be
evaluated differently at run-time, depending on the parame-
ters of the current execution. The actual number of parallel
activities specified by a parallel-for construct may not be
known at the beginning of the workflow execution. In order
to apply a full-graph scheduling algorithm, all such uncer-
tainties have to be resolved. To this end, we make assump-
tions about the actual evaluation of the control structures.
If an assumption fails, the scheduler transforms the work-
flow once again in the proper way and reschedules it. This
approach may bring considerable benefit if the structure of
the workflow is predicted correctly (especially, when a strong
unbalance in the workflow is detected). If the conditions
are predicted incorrectly, the workflow execution time is the
same as in the case of a just-in-time strategy which sched-
ules only those parts of the workflow that are resolved at
the moment of scheduling. Fig. 5-8 show two such workflow
transformations applied to real Grid workflow applications
(see Section 6).

4. SCHEDULING ALGORITHMS
The scheduling algorithms under consideration map tasks
as part of workflows onto Grid sites (clusters). Each Grid
site consists of a set of CPUs, each of which is considered
as a single computational resource. If a task is executed on
a CPU, no other tasks can use the same CPU at the same
time. Execution times of tasks and data transfers generated
by the performance predictor are given as input data to the
scheduler.

4.1 HEFT algorithm
The HEFT algorithm that we applied consists of 3 phases:

1. Weighting assigns the weights to the nodes and edges
in the workflow;

2. Ranking creates a sorted list of tasks, organized in the
order how they should be executed;

3. Mapping assigns the tasks to the resources.

The weights assigned to the nodes are calculated based on
the predicted execution times of the tasks. The weights as-
signed to the edges are calculated based on predicted times
of the data transferred between the resources. In homoge-
neous environments the weights are equal to the predicted
times. In heterogeneous environments, the weights must be
approximated considering different predictions for execution
times on different resources, and for different data transfer
times on different data links. Several approximation meth-
ods were proposed and compared [11]. Each of them pro-
vides different accuracy for different cases. We chose the
arithmetic average.

The ranking phase is performed traversing the workflow
graph upwards, and assigning a rank value to each of the
tasks. Rank value is equal to the weight of the node plus
the execution time of the successors. The successor execu-
tion time is estimated, for every edge being immediate suc-
cessors of the node, adding its weight to the rank value of
the successive node, and choosing the maximum of the sum-
mations. A list of resources is arranged, according to the
decreasing rank values. An example workflow graph with
the calculated weights and ranks is shown in Fig. 2. The
example considers 3 heterogeneous resources R1, R2 and
R3. Data transfer is assumed to be equal in both directions
between any two of those resources.

In the mapping phase, consecutive tasks from the rank-
ing list are mapped to the resources. For each task, the
resource which provides the earliest expected time to finish
execution is chosen. The pseudocode of the HEFT algorithm
is depicted in Alg. 1.

4.2 Genetic Algorithms
Genetic Algorithms are a part of evolutionary computing,
inspired by Darwin’s theory of evolution. They represent
powerful optimization heuristics, used to search global min-
ima in multi-dimensional search spaces. The basis of the al-
gorithm is to encode possible solutions of the problem into
a population of chromosomes, and subsequently to trans-
form the population using standard operations of selection,
crossover and mutation, producing successive generations.
The selection is driven by an established fitness function,
which evaluates the chromosomes in terms of accuracy of
the represented solutions. Crossover and mutation respond

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 57

B C

A

D

weight=4
rank=15

weight=11
rank=26

weight=7
rank=38

rank=9
weight=9

weight=3

weight=2

weight=5

weight=6
different resources
execution times on

D
C
B
A

R1 R2 R3 avg

13
5
9
3
7

8

4
10

11
8

5
10

7
11
4
9

data transfer time between different resources

avg
A−>B
A−>C
B−>D
C−>D

R1−>R2 R1−>R3 R2−>R3
5
3
6
2

6
4
7
1

4
2
4
1

5
3
7
4

Figure 2: Weights and ranks calculated with HEFT
algorithm

algorithm 1 HEFT algorithm

T - set of all tasks in the workflow,

E - set of all dependencies in the workflow,

R - set of all available resources,

(t1, t2) - dependence between tasks t1 and t2

time(t, r) - execution time of task t on resource r,

time(e, r1, r2) - data transfer time of data between

resources r1 and r2 (dependence e in the workflow),

Weighting phase##

for each t ∈ T do

~ w(t) =
P

r∈R time(t,r)

#R

for each e ∈ E do

~ w(e) =
P

r1,r2∈R,r1 6=r2
time(e,r1 ,r2)

#R·(#R−1)
##Ranking phase##

Succ = {(t1, t2) : t1, t2 ∈ T ∧ (t1, t2) ∈ E}
Nsucc = Succ

NT = T

while NT 6= {} do

~ Last = {t : t ∈ NT ∧ ¬∃t1 : (t, t1) ∈ NSucc}
~ for each t ∈ Last do

~ LS(t) = {t1 : (t, t1) ∈ Succ}
~ rank(t) = w(t) + max({0} ∪ {r : r =
w(t1) + w((t, t1)) ∧ t1 ∈ LS(t)})
~ NSucc = NSucc \ {(t1, t) : (t1, t) ∈ NSucc}
~ end

~ NT = NT \ Last

end

ranking list = sort(T, rank)
##Mapping phase##

for i = #ranking list downto 1 do

t = ranking list[i]
~ Find resource r ∈ R : finish time(t, r) is min;

~ Schedule t to r;

~ Mark r as reserved until finish time(t, r);
end

to standard biological operations of mutual exchange of a
part of body within a pair of chromosomes, and of change
of some elements (so-called genes) in the chromosomes ran-
domly selected from the population. The end condition of a
genetic algorithm is usually the convergence criterion which
checks how much the best individual found changes between
subsequent generations. A maximum number of generations

can also be established. The pseudocode of a genetic algo-
rithm is presented in Alg. 2.

algorithm 2 Genetic algorithm

Create the initial population of chromosomes;

while convergence criteria is false do

~ Perform crossover and mutation;

~ Calculate fitness values for the population;

~ Create a new population, based on actual fitness

values;

end

Genetic Algorithms are a good general purpose heuristic,
which is able to find the optimal solution even for compli-
cated multi-dimensional problems. By transforming a broad
population of chromosomes in a semi-random manner, the
entire search space is traversed and the search does not end
up in a local minimum. However, Genetic Algorithms are
not equally appropriate for every possible optimization prob-
lem. Solutions of the problem must be properly encoded
into the chromosomes, which is not always feasible. Prodan
in [10] encoded the actual mapping of tasks to the resources
without specifying the order of execution of independent
tasks (not linked through control and data flow dependen-
cies) that are scheduled on the same CPU. Therefore this
execution order cannot be a subject to optimization. More-
over, Genetic Algorithms tend to be computationally exten-
sive.

4.3 Myopic algorithm
To compare the scheduling algorithms described so far, we
developed a simple and inexpensive scheduling algorithm,
which makes the planning based on locally optimal deci-
sions. The algorithm represents a class of schedulers cover-
ing for instance the Condor DAGMan resource broker which
employs the matchmaking mechanism [12]. The pseudocode
of the algorithm is described in Alg. 3.

algorithm 3 Myopic algorithm

T - set of all tasks in the workflow,

NT = T

while NT 6= {} do

~ Find task t ∈ NT : earliest starting time(t) is

min;

~ Find resource r ∈ R : finish time(t, r) is min;

~ Schedule t to r;

~ Mark r as reserved until finish time(t, r);
~ NT = NT \ {t}
end

The Myopic algorithm can produce reasonably accurate
results for rather simple workflows given accurate perfor-
mance predictions. But it does not provide any full-graph
analysis and does not consider the order of task execution.

5. SCHEDULING STRATEGIES
Different scheduling strategies [9] can be applied, consider-
ing the trade-off between dynamicity and look-ahead range
in workflow processing. Just-in-time strategy, in [9] referred
to as in-time local scheduling, consists of mapping the tasks
to the resources, always choosing the most appropriate solu-
tion for the current step. This approach benefits from using

58 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

the most up-to-date performance data, which is important
for the Grid, but on the other hand it neglects the graph
structure, and the whole workflow may not be scheduled
optimally. At the other extreme, we have full-ahead plan-

ning where the full-graph scheduling is performed at the
beginning of execution. In this case, a sophisticated graph
scheduling algorithm can be applied, but the dynamism of
the Grid is not considered. Intermediate solutions try to
reconcile workflow planning with Grid dynamism, and to
find an approach which considers both the workflow struc-
ture and the Grid behavior. One of the possible solutions is
the workflow partitioning applied in the Pegasus system [3].
It consists of an initial partitioning of the workflow into a
sequence of subworkflows, which are subsequently scheduled
and executed (see Fig. 3).

Original Abstract
Workflow

A Particular Partitioning New Abstract Workflow

PW B

PW A

PW C

Figure 3: Workflow partitioning in Pegasus [3]

Each partitioning can be characterized by the width of a
slice. The width of a slice is expressed as maximal number
of node layers within each slice. For instance, the workflow
depicted on Fig. 3 was partitioned with one layer per slice
(1-layer partitioning). Any element of the sequence can be
scheduled and executed only if the immediate predecessor
has already finished its execution. This approach has an
advantage over the simple just-in-time scheduling, as the
planner considers more than one task at the time, and has
a better overview of the whole graph.

Full-graph scheduling, however, can also be applied in a
dynamic way. If we do not consider the initial scheduling
as the ultimate decision but only a hint, and if we admit
subsequent reschedulings if they are necessary, we can ap-
ply a full-graph scheduling algorithm many times during the
execution of a workflow. One of the workflows we applied in
our experiments belongs to a specific class of strongly un-
balanced workflows, which seems to require full-graph anal-
ysis for proper scheduling. The workflow contains a paral-
lel section and some of the branches take longer to execute
than the others (see Fig. 8). The tasks that belong to the
longer branch should, therefore, execute with higher priority
than the ones that belong to the shorter branches. One im-
portant goal of our experiments was to investigate how the
scheduling results depend on the workflow strategy applied
for strongly unbalanced workflows.

As our experiments concern scientific workflows executed
in research institutions, we assume high availability rate and
good control over the resources, what is not always the case
for best-effort Grid schedulers. In particular, we assume
that the scheduler can have precise information about the
resources available in the Grid, and the submissions made
by the scheduler are executed as they were requested. We
also assume that no failures occur during the execution, so
that the execution of the workflow is performed in the same
way as it was planned by the scheduler.

6. EXPERIMENTAL RESULTS
In our experiments we compare the HEFT algorithm with
a genetic algorithm similar to the one proposed in [10], and
with the Myopic algorithm described in Section 4.3. We
also compare the full-graph scheduling with the workflow
partitioning strategy. As results, we show execution times
of the scheduled workflow applications (execution times),
and the times spent in preparing the schedules (scheduling

times). The execution times were measured for two scenar-
ios of workflow execution. In the first scenario, we do not
provide to the scheduler any performance predictions, so
the scheduler has to assume that all the execution times are
equal for all tasks on all the resources (scheduling without

performance guidance). In the second scenario, the sched-
uler is provided with experience-based performance predic-
tions derived from historical executions (scheduling with per-

formance guidance). The predictions were provided to the
scheduler in a two-dimensional array, containing the execu-
tion time of each task on each computer architecture avail-
able in our Grid. The assumption was that each task takes
the same execution time on every machine that belongs to
the same type (i.e, has the same CPU model, CPU speed
and total RAM size).

Experiments were performed incorporating seven Grid sites
(clusters) of the Austrian Grid [2] infrustructure with 116
CPUs in total (not all Grid sites were used in all the ex-
periments). In Fig. 4 we present the performance of the
individual clusters, where each cluster shows the average
execution time of all the workflow tasks executed on a sin-
gle CPU. As we can see, the fastest cluster is more than
three times faster than the slowest one.

Figure 4: Performance of Grid clusters used in the
experiments.

Similarly to execution time predictions, the execution times
of the tasks on the sites were measured on the Austrian Grid
during a test phase. Time consumed by data transfers be-
tween two tasks connected with a data link was considered
as constant. We also fixed the middleware overhead intro-
duced by the Globus GSI security [6] and the PBS queuing
system [14] to 30 seconds.

We used two real-world workflow applications in our ex-
periments. WIEN2k [1] is a quantum chemistry application
developed at Vienna University of Technology. WIEN2k
workflow (Fig. 5) is a fully-balanced workflow which con-
tains two parallel sections with possibly many parallel tasks,
and an external loop. For our tests we considered the work-

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 59

flow with one iteration of the loop, and 250 parallel tasks
in each section (Fig. 6). Invmod [4] is a hydrological ap-
plication developed at the University of Innsbruck, designed
for calibration of parameters for the WaSiM tool developed
at the Swiss Federal Institute of Technology Zurich. The
Invmod workflow (Fig. 7) consists of an outermost parallel
loop with many iterations (executed as separate threads),
which contains a nested optimization loop. We used this
workflow to simulate the common case of strongly unbal-
anced workflow. If the loops in individual workflow threads
have different numbers of iterations (and the iteration num-
bers are predicted correctly), then the threads may differ
significantly with regard to their expected execution times.
The workflow used for these experiments (Fig. 8) contains
100 parallel iterations one of which contains 20 iterations of
the optimization loop. The remaining 99 iterations contain
10 optimization iterations each. It means, that one of the
threads takes approximately twice as much execution time
as all others.

Figure 5: WIEN2k, original workflow.

Figure 6: WIEN2k, transformed workflow.

The genetic algorithm that we applied is based on the pop-
ulation of 100 chromosomes transformed in 20 generations,
which is not a large number but it allowed us to achieve a
good convergence rate with relatively small scheduling time.
Probability of crossover was fixed by us to 0.25, and muta-
tion rate to 0.01. We performed workflow partitioning by di-
viding the workflow into slices with well-defined width (see

Figure 7: Invmod, original workflow.

100

Figure 8: Invmod, transformed workflow.

Section 5). For the WIEN2k workflow (consisting of five
layers) we applied a three-layer partioning, and for Invmod
workflow (which consists of 44 layers) we applied three dif-
ferent partitionings, with 10, 20 and 30 layers.

Figure 9: WIEN2k executed in heterogeneous envi-
ronment, execution time.

The first conclusion we draw from the results (Fig. 9-12)
is that performance prediction is very important in hetero-
geneous Grid environments. For both workflows, the results
achieved with performance guidance are in the best case
nearly two times better that the results achieved without
performance guidance. Performance estimates are clearly
important even if they are not highly accurate.

60 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Figure 10: WIEN2k executed in heterogeneous en-
vironment, scheduling time.

Figure 11: Invmod executed in heterogeneous envi-
ronment, execution time.

Figure 12: Invmod executed in heterogeneous envi-
ronment, scheduling time.

Comparing the results measured for the WIEN2k work-
flow we can notice that HEFT produces much better results
than the other algorithms. Execution time of the workflow
is 17% shorter than for the genetic algorithm, and even 21%
than for the Myopic. The simple solution applied in Myopic
appears to be insufficient for large and complicated work-
flows, and the algorithm produces the worst results. Also
the genetic algorithm appears to be not a good method to
deal with our problem. It was able to approximate the global

maximum, but it did not find the actual best value which
lies probably in a ”long and narrow corner” of the search
space. For the scheduling without performance guidance,
where the search space has more regular borders, the ge-
netic algorithm behaves equally good (or even better) than
all the other algorithms. Comparing the scheduling times of
individual algorithms we can see that the genetic algorithm
executes two to three orders of magnitude longer than the
others. It means, that even to generate a single population
takes much longer than the HEFT algorithm.

Figure 13: Invmod executed in homogeneous envi-
ronment, execution time.

The results measured for the Invmod workflow present
how individual algorithms deal with strongly unbalanced
workflows. As expected, the Myopic algorithm provides the
worst results of all, approximately 32% worse than HEFT.
The genetic algorithm produces quite good results. It was
able to locate the area where the global minimum is located,
but it was not able to find the best possible solution, since
the order of execution (of independent tasks scheduled to
the same CPU) was not considered for optimization. In the
workflows scheduled without an established task order, the
tasks are executed in an arbitrary order chosen by the run-
time system. For a strongly unbalanced workflow, however,
the tasks that execute in iterations of the parallel loop with
longer execution time should be executed more often than
the others, which cannot be done by the runtime system
which does not consider global graph structure. Scheduling
strategies based on the workflow partitioning were also not
able to find the optimal solution, although their results are
still better than the one found by the Myopic algorithm.
Only the full-graph analysis could find a well performing
scheduling solution for imbalanced workflows. Since all of
the algorithms (except for the genetic algorithm) execute
really fast (less than 20 seconds for large and complicated
workflows), there is no reason to apply the partitioning strat-
egy in place of the full-graph analysis.

Fig. 13 presents the execution results of the Invmod work-
flow on a homogeneous environment (three nearly identical
Grid sites). As expected, there is now almost no difference
between the scheduling with and without performance guid-
ance, as the execution on each cluster takes the same time.
Again, HEFT produces the best results, 24% better than
Myopic.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 61

7. CONCLUSIONS AND FUTURE WORK
Scheduling applications on the Grid is of paramount impor-
tance to optimize non-functional parameters such as execu-
tion time. In this paper we compared three different algo-
rithms examining aspects such as incremental versus full-
graph scheduling for balanced versus unbalanced workflows.

Based on two real world Grid workflows we observed that
the HEFT algorithm appears to be a good and computation-
ally inexpensive scheduling algorithm that performs better
than the other 2 candidates discussed in this paper.

We also investigated a specific class of strongly unbalanced
workflows. We demonstrated that any just-in-time schedul-
ing strategy is likely to produce poor results for workflows
of this class. Also the workflow partitioning strategy used
in Pegasus system [3] appears to have no advantage over the
full-graph scheduling, and may produce less efficient results
for unbalanced workflows.

We implemented the HEFT algorithm in the ASKALON
environment for scheduling scientific workflow applications
on the Grid. Future work on the presented scheduling strat-
egy will consist of making it more efficient for heterogeneous
environments. We will also examine how typical network
scenarios may disrupt the simple scheduling model based on
fixed values provided as performance predictions.

8. REFERENCES
[1] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and

J. Luitz. WIEN2k: An Augmented Plane Wave plus

Local Orbitals Program for Calculating Crystal

Properties. Institute of Physical and Theoretical
Chemistry, Vienna University of Technology, 2001.

[2] The Austrian Grid Consortium.
http://www.austriangrid.at.

[3] Ewa Deelman, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Sonal Patil, Mei-Hui Su,
Karan Vahi, and Miron Livny. Pegasus: Mapping
scientific workflows onto the grid. In European Across

Grids Conference, pages 11–20, 2004.

[4] Peter Rutschmann Dieter Theiner. An inverse
modelling approach for the estimation of hydrological
model parameters. In Journal of Hydroinformatics,
2005.

[5] Rubing Duan, Thomas Fahringer, Radu Prodan, Jun
Qin, Alex Villazon, and Marek Wieczorek. Real World
Workflow Applications in the Askalon Grid
Environment. In European Grid Conference (EGC

2005), Lecture Notes in Computer Science. Springer
Verlag, February 2005.

[6] GT 4.0 Security website.
http://www.globus.org/toolkit/docs/4.0/security/.

[7] David E. Goldberg. Genetic Algorithms in Search,

Optimization 6 Machine Learning. Reading.
Addison-Wesley, Massachusetts, 1989.

[8] R. L. Graham. Bounds for certain multiprocessing
anomalies. In Bell System Technical Journal 45, pages
1563–1581, 1969.

[9] Jarek Nabrzyski, Jennifer M. Schopf, and Jan
Weglarz. Grid Resource Management, State of the Art

and Future Trends. Kluwer, 2003.

[10] Radu Prodan and Thomas Fahringer. Dynamic
Scheduling of Scientific Workflow Applications on the
Grid using a Modular Optimisation Tool: A Case
Study. In 20th Symposion of Applied Computing (SAC

2005), Santa Fe, New Mexico, USA, March 2005.
ACM Press.

[11] Rizos Sakellariou and Henan Zhao. A hybrid heuristic
for dag scheduling on heterogeneous systems. In
IPDPS, 2004.

[12] The Condor Team. Dagman (directed acyclic graph
manager). http://www.cs.wisc.edu/condor/dagman/.

[13] Jun Qin Thomas Fahringer and Stefan Hainzer.
Specification of Grid Workflow Applications with
AGWL: An Abstract Grid Workflow Language. In
Proceedings of IEEE International Symposium on

Cluster Computing and the Grid 2005 (CCGrid 2005),
Cardiff, UK, May 9-12 2005. IEEE Computer Society
Press.

[14] Veridian Systems. PBS: The Portable Batch System.
http://www.openpbs.org.

[15] Henan Zhao and Rizos Sakellariou. An experimental
investigation into the rank function of the
heterogeneous earliest finish time scheduling
algorithm. In Euro-Par, pages 189–194, 2003.

62 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Efficient calendar based temporal association rule

Keshri Verma , O. P. Vyas
School of Studies in Computer Science

Pt. Ravishankar Shukla University Raipur Chhattisgarh
{keshriverma,opvyas}@rediffmail.com

Abstract

Associationship is an important component of
data mining. In real world data the knowledge
used for mining rule is almost time varying. The
item have the dynamic characteristic in terms of
transaction , which have seasonal selling rate and
it hold time-based associationship with another
item. It is also important that in database, some
items which are infrequent in whole dataset but
those may be frequent in a particular time period.
If these items are ignored then associationship
WVW200R3100221-398 result will no longer be
accurate. To restrict the time based
associationship calendar based pattern can be
used [YPXS03]. A calendar unit such as months
and days, clock units, such as hours and seconds
& specialized units , such as business days and
academic years, play a major role in a wide range
of information system applications[BX00].

 Most of the popular associationship rule
mining methods are having performance
bottleneck for database with different
characteristics. Some of the methods are efficient
for sparse dataset where as some are good for a
dense dataset. Our focus is to find effective time
sensitive algorithm using H-struct called temporal
H-mine, which takes the advantage of this data
structure and dynamically adjusts links in the
mining process [PHNTY01]. It is faster in
traversing & advantage of precisely predictable
spaces overhead. It can be scaled up to large
database by database partitioning, end when
dataset becomes dense, conditionally temporal
FP-tree. can be constructed dynamically as part
of mining.

1. Introduction –

 The Associationship is an important
component of data mining. It indicates the co-
relationship of one item with another. For
example Egg ==> coffee (support 3%, confidence
80%) means that 3% of all transaction contain
both egg & coffee, and 80% of transaction that
have egg also have coffee in them. In real dataset
time is one of the important factors. For example
egg and coffee may be ordered together primarily
between 7 to 11 AM in this interval the support &

confidence is 40% but at another interval, support
is as low .005% in other transaction [YPXS03].
This discussion suggests that different association
rules may be discovered while considering
different time intervals associated to it. Many
items are introduced or removed form the
database, that is items lifespan[ZMTW02] which
means that item is valid on specific time interval.
To discover such temporal intervals (with
calendar information) together with the
association rules that hold during the time interval
may lead to useful knowledge. If calendar schema
is applied in association it is called calendar based
temporal association rule.

A hierarchy of calendar concepts
determines a calendar schema. A calendar unit
such as months and days, clock units, such as
hours and seconds & specialized units, such as
business days and academic years, play a major
role in a wide range of information system
applications [BX00]. A calendar schema defines a
set of simple calendar – based patterns. Each
calendar pattern defines a set of time intervals.

Recent researches in the field of
temporal association rule mining are using Apriori
based approach. Nevertheless, these proposed
approaches may still encounters some difficulties
for different datasets such as Sparse or dense
dataset. The limitations in these approaches are
two fold.

First, huge space is required to perform
the mining in Apriori based temporal association
rule [JG00]. It generates a huge number of
candidates in case of a dataset, which is large
and/or sparse. Our first part of the algorithm
which if the database is huge and sparse, the
temporal approach of FP –tree outperform over
Apriori and the space requirement for recursion is
a challenge. Thus necessitates improvement in the
existing approach. Second part of the algorithm
generates Fp-tree when the data have the dense
characteristic, no algorithm can bits the
performance of FP-tree.

Second, the mining approach should

ideally have more scalability. Many existing
methods are effective when the dataset are not
large. The existing Apriori based temporal

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 63

association rule , may easily cause thrashing
when dataset become large and sparse.

The approach of frequent pattern mining

is to find the complete set of frequent patterns in a
given transaction database with respect to a given
support threshold. Our data-mining problem is to
discover all temporal association rules w.r.t.
Calendar schema from a set of time stamped
transactions. This paper ,improves an existing
frequent pattern tree approach to discover
temporal association rule to increase the memory
performance over existing one[PHNTY01] , it
uses the data structure H-struct, and incorporating
temporal aspects with the following progress:

First, a memory based efficient pattern
growth algorithm, Temporal H-mine is proposed
for mining time based frequent patterns for dataset
that can fit in memory. H-struct is used for fast
mining on time-based dataset. It has polynomial
space complexity and is thus more space efficient
than pattern growth method like FP-growth and
Tree-Projection when mining sparse dataset, and
more efficient than Apriori based frequent pattern
mining[JG00].

Second based on H-mine data structure
we propose Temporal based H-mine association
rule mining algorithm.

Third for dense datasets. H-mine is
integrated with Temporal FP-growth dynamically
by detecting the swapping condition and
constructing FP-tree for effective mining.

 The Temporal base H-mine algorithm is

scalable in both large and medium size dataset
and in both the cases dense and sparse dataset.

The rest of the paper is organized in five
section In Section 2, we discuss some related
works. In section 3 we define temporal
association rule in term of calendar schema. In
Section 4 elaborate the extended algorithm of
frequent pattern approach ,section 5 shows
conclusion & future works and section 6 provides
application of above investigation.

2. Related work –
The concept of association rule was introduced as
Apriori algorithm [AS94]. Its performance was
improved by deploying frequent-pattern growth
approach [PH02]. In paper [ORS98] the omission
of the time dimension in association rule was very
clearly mentioned. Fp-growth algorithm is best if
data is dense, & Apriori algorithm performs better
if data is sparse, H-mine [PHNTY01] algorithm
which is used to mine the dataset from both the
cases sparse & dense. A temporal aspect of
association rule was given by Juan [JG00].
According to this transaction in the database are

time stamped and time interval is specified by the
user to divide the data into disjoint segments, like
month , days & years. Further The cyclic
association rule was introduced by Ozden
[ORS98] with minimum support & high
confidence. Using the definition of cyclic
association rule, It may not have high support &
confidence for the entire transactional database. A
nice bibliography of temporal data mining can be
found in the Roddick literature[RHS00].Rainsford
& Roddick presented extension to association
rules to accommodate temporal semantics.
According to [RR99] logic the technique first
search the associationship than it is used to
incorporate temporal semantics. It can be used in
point based & interval based model of time
simultaneously[RR99]. A Frequent pattern
approach for mining the time sensitive data was
introduced in[CJJX03] Here the pattern
frequency history under a tilted-time window
framework in order to answer time-sensitive
queries. A collection of item patterns along with
their frequency histories are compressed and
stored using a tree structure similar to FP-tree and
updated incrementally with incoming transactions
[CJJX03].

3. Problem definition :
3.1 Association Rule:
The concept of association rule, which was
motivated by market basket analysis and
originally presented by Agrawal. [AS94]. Given a
set of T of transaction, an association rule of the
form X==> Y is a relationship between the two
disjoint itemsets X & Y. An association rule
satisfies some user-given requirements. The
support of an itemset by the set of transaction is
the fraction of transaction that contain the itemset.
An itemset is said to be large if its support
exceeds a user-given threshold minimum support.
The confidence X ==> Y over T is a transaction
containing X and also containing Y. Due to
complex candidate generation in the data set
Jiewai Han invented a new technique of FP-
growth method for mining frequent pattern
without candidate generation [PH02]. Efficiency
of this mining technique is better than all most all
algorithm like Apriori, AprioriTid, Apriori Hybrid
when data is dense because (1). a large dataset is
compressed into a condensed smaller data
structure which avoids costly & repeated data
scan (2). FP-tree-based mining adopts a pattern-
fragment growth method too avoid the costly
generation of a large number of candidate
generation sets and,(3). A partitioning-based
divide- and-conquer method is used to decompose
the mining task into a set of similar tasks for

64 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

conditional database which dramatically reduce
the search space.
 In our opinion this mining
associationship will be become more useful if we
include the time factor in to it.

3.2 Temporal association rule
Definition 1 : The frequency of and itemset over
a time period T is the number of transactions in
which it occurs divided by total number, of
transaction over a time period. In the same way ,
confidence of a item with another item is the
transaction of both items over the period divided
by first item of that period.

Ts indicates the valid start time & Te indicate
valid time according to temporal data.

3.3 Simple calendar based Pattern :
When temporal information is applied in terms of
date, month , year & week form the term calendar
schema. It is introduced in temporal data mining.
A calendar schema is a relational schema (in the
sense of relational databases) R = (fn : Dn, Fn-1 :
Dn-1,… … … F1 :d1) together with a valid
constraint. A calendar schema (year :
{1995,1996,1997… ..} , month :
{1,2,3,4,… … 12}, day : {1,2,3… ..31} with the
constraint is valid if that evaluates (yy, mm, dd) to
True only if the combination gives a valid date.
For example <1955,1,3> is a valid date while
,<1996,2,31> is not.
In calendar pattern , the branch e cover e’ in the
same calendar schema if the time interval e’ is the
subset of e and they all follow the same pattern. If
a calendar pattern <dn, dn-1, dn-2… … ..d1> covers
another pattern <d’n, d’n-1;, d’n-2 … … ..d1> if and
only if for each I, 1<=i<=n or di = d’i.
 Now Our task is to mine frequent pattern over
arbitrary time interval in terms of calendar pattern
schema.

4 Proposed work-

4.1 Temporal H-Mine (Mem) : Memory -Based
Hyper Structure Mining using time
dimension.

The problem of Temporal Frequent mining is to
find the complete set of item which frequently
occurred in valid time interval, for a given support
threshold.

This section elaborates how Temporal H-mine
process is applied for temporal association rule.

Example 1 Let the first three column of the table
be our running transaction id, transaction item and
date in which the transaction happened.

Trans
Id

Items Date Frequent
items
Projection

100 c,d,e,f,g,i <*,01,04> {c,d,e}
200 a,c,d,e,m,b <*,01,04> {a,c,d,e,b}
500 a,c,d,e,b <*,01,04> {a,c,d,e,b}
400 a,c,d,h <*,06,04> {a,d,h}
600 a,b,d,h,i <*,06,04> {a,b,d,h}
300 a,b,d,e,g,k <*,06,04> {a,b,d,h}

Table 1: Transaction Database

Figure 1: Divide and Conquer method on the basis

of time Database
Only the frequent items play roles in frequent
pattern mining. A item with lifespan is frequent
for some period of time may be infrequent in
whole dataset. Due to the pattern change the
probability of finding relationship will also be
vary in real dataset. By scanning TDB once, the
complete set of frequent items on <*,01,04> are
{a:2,c:3,d:2,e:3,f:1,g:1,b:2,i:1} and <*,06,01>
are{ a:3,b:2,d:3,h:2,e:1,g:1,e:1,k:1 }
 A header table H is created separately for
each interval, where each frequent item entry has
three field : an item-id, a support count and a
hyper-link. When the first item projections are
loaded into memory, those with the same first
item (from DB list) hyper-links as a queue, and
entries in header table H act as the head of the

Support(A) = Frequency of occurrences of A in
specified time interval / Total no of Tuples in
specified time interval

Confidence(A => B[Ts,Te]) = Support_count(A
U B) over Interval / occurrence of A in interval

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 65

queues. To mine a-projected database ,an a-
header table Ha is created. In Ha , every frequent
item except for a itself has entry with three field
item id, support count and hyper-links & time also
[PHNTY01].

Header Table H a c d e b
 2 3 2 3 2

a c d e b

a c d e b

c d e

Figure 2 (a). H-struct , the hyper structure for
storing frequent -item projection in specific first
interval <*,01,04>

Header Table H a b d h
 3 2 3 2

a b d h

a b d h

a d h

Figure 2 (b): H-struct , the hyper structure for
storing frequent -item projection in specific
second interval <*,06,04>

Algorithm
Temporal H-mine : The algorithm for
memory-based hyper-structure mining.

Input : transaction database TDB with time
interval , Support threshold min_sup.

Output : Set of frequent itemset on different time
interval.

Method :
1. Scan transaction database TDB once to find

L, the complete set of frequent items.
2. Partition TDB into k parts , TDB1,

TDB2............. TDBk such that, each TDB i (i <i
<= k) the frequent item projection held in
main memory..

3. Check the itemset valid time interval e cover
e0

4. for i = 1 to k, use H-mine (mem) to mine
frequent patterns in TDBi with respect to
min_sup .

5. Let F= U k
 i = 1 Fi . Scan TDB one more time,

Collect support for frequents in F. Output
those patterns which pass the min. supp. on
specific time interval.

Although H-mine perform better than Fp-tree in
specific cases but Fp-growth method have several
advantages over Mining on H-struct since FP-tree
shares common prefix path among different
transaction., which leads to saving the spaces &
time as well. Temporal aspect of data is more
important because if a part of data is dense on
specific interval may be sparse if we consider the
whole dataset. H-mine algorithm is extended
when data is dense it call Fp-tree approach for
frequent pattern growth method.

4.2 Handling Dense data sets : Dynamic
integration of H-struct and Fp-tree-based
mining

Finding time based frequent pattern in dense
database is a challenging task. The FP-growth
[PH02] works well known when data is dense. In
comparison with FP-growth, Temporal H-mine
does not generate physical projected database and
conditional Fp-trees and thus save space as well
as time in may cases. Temporal Fp-tree based
mining has its advantages over mining on H-
struct since Temporal Fp-tree shares common
prefix paths among different transaction., which
may lead to space and time.

The support of dataset in the data warehouse can
be maintained by dividing it in different intervals.
The support of a item in interval t1 can not be the
same in interval t2. A infrequent or less support
item in interval t1 can be frequent item in interval
t2.

 The calendar schema is implemented by
applying Apriori algorithm [YPXS03]. It follows
the candidate generation approach in order to
mine the frequent item. We assist here that
instead of candidate generation H-mine and
divide & conquer approach is more efficient than
Apriori approach. It construct queues for
maintains the list of items a tree & each branch
indicate the association ship of item. It reduces the
size of dataset and increases the performance &
efficiency of algorithm. It can solve following
queries (1) What are the frequent set over the
interval t1 and t2 ? (2) what are the period when
(a,b) item are frequent ?

66 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

(3) Item which are dramatically change from t4 to
t1.

 Figure 3 : Frequent pattern in different interval

Lemma 1 :- During transaction in database
the association of a item over the support ? can
be obtained by projection of the branch of FP-
tree.
Rationale : Based on the TFP-tree construction
process its frequent item can be projected into a
single branch.
For a path a1, a2 a3… … … ..ak from the root to a
node in a FP-tree. Suppose aak be the count at the
node labeled ak and c’ak be the sum of the count of
the branch of the node.

Table 2. Transaction database in running
example

Definition (Temporal FP-Tree) – A Temporal
frequent pattern (FP) is tree structure defined
below.

It consists of root labeled as “null”.
It consist of a set of item-prefix sub trees as the

children of the root, and a frequent item header
table.

Each node in the item prefix sub tree consists of four
fields :
 (a) Item name - Item name represents the

name of item which is registers on that node
(b) count - count registers the number of
transactions represented by the portion of the
path reaching this node (c) node link - node-
link links to the next node of temporal FP-
tree (d) calendar pattern time calendar
pattern represent the time in which the item
transaction appeared.

 Each entry in the Frequent –item header table
consists of two fields (1) Item name (2) Head of
node link

Algorithm : (FP- Tree construction)

Input : A transaction database DB and a minimum
support threshold

Output : FP Tree, Fp Tree, Frequent item

Method : The FP tree is constructed ad follows
:

1. Scan the database DB once. Collect f, the
set of frequent item and support of each
item. Sort F from support in descending
order as Flist, the list of frequent items

2. Create the root of Temporal FP tree and
label it as “Null”. For each transaction in
DB and do the following

Select the frequent items in Trans and sort them
in descending order of Flist. Let the sorted
frequent –item list in the Trans be p[P] where p
is first element and P is the remaining list. Cal
insert_tree(p[P],T).

Procedure insert_tree(p[P],T).
{
Step(1) If T has a child N such that
Step(2) if (N.time = P.time) then
// For checking interval phase I
Step(3) if (N.itemname = P. itemname) then

Step(a) N.count = N.count +1
// Increment the count by 1
Step(4) else create a new node // Node created
// on the same branch
Step(5) Link to its parent P.count = 1 // Initialize
the counter by 1.
Step(6) else create a new Branch link from the
root.

Call insert_tree(P,N) recursively

} // End of Function

Temporal Frequent pattern Tree : Design &
Construction
Let I = {a1, a2, a3.. am} be a set of items , and a
transaction database DB {T1, T2, T3… … ..Tn } where
Ti {i ? [1..n] } is a transaction which contains a
set of items in I.

4.1 TEMPORAL FREQUENT- PATTERN TREE
 To design the Temporal FP-tree for frequent

pattern mining , let’s first examine example from
table1.
1. Since time is the most important feature of real

world data set, so arrange the item in
according to time and define the calendar
pattern or interval in calendar unit form.

2. In calendar pattern <*> is used to define that
any day or month for example if it used
<dd,mm,yy> calendar pattern <*,01,04>

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 67

represents any day of Month January & year
2004.

2. Since only the frequent item will play a role
in the frequent pattern mining. So first scan is
used to identify the set of frequent items

3. If the set of frequent items of each transaction
can be stored in some compact data structure
, it may be possible to avoid repeatedly
scanning the original transaction database.

4. If multiple transaction share a set of frequent
items, it may be possible to merge the shared
sets with the number of occurrences
registered as count. It is easy to check
whether two sets are identical if the frequent
items in all of the transaction are listed
according to a fixed order.

5. If two transaction share a common prefix ,
according to some sorted order of frequent
items, the shared part can be merged into one
prefix structure as long as the count is
registered properly.

 With the above observation , a Temporal
frequent pattern tree can be constructed as follows
:
First , a scan of DB drives a frequent list of items
in schema <*,01,04> are {(f:3),(C:2),(b:2),
(a:2),(m:2} same for calendar pattern <*,06,04>
frequent items are
{(f:3),(c:2),(a:2),(e:2),(m:2)(l:2)} and remaining
items are infrequent so skip those item .

Second, the root of the tree is created and labeled
with “null”. The FP- tree is constructed as follows
by scanning the transaction database DB in
second time.
1. The scan of the first transaction leads to

construction of the first branch of the tree
{(f:1),(c:1),(a:1),(m:1),(p:1)}& it follow the
calendar pattern <*,01,04>.
2. For the second transaction its temporal

period is same so it follow the same
branch & the frequent item list
{f,c,a,b,m,o} shares a common prefix
<f,c,a> the count of each node along the
prefix is incremented by 1. and a new
node (b:1) is created and linked to child
of (a:2), another new one (m:1) is
created and linked to as the child of (b:1)
and another new one (o:1) is created and
linked to as the child of (m:1),

3. For the third transaction its time period is
same as previous the transactio is
<f,c,b,o> shares common prefix <f,c> so
f & c’s count is incremented by 1, and a
new node b is created although b is
already existing but it not go that branch
it is not common prefix of the node.

Node b is linked as a child of (c:2) and a
new node o is created with intialize the
count because o is first time introduce
on Temporal FP-tree and linked as a
child of node <b:1>

4. The scan of forth transaction leader to
construct another branch because its
time period <*,06,04>does not match
with existing branch’s node time period.
New nodes are created with
<(f:1),(c:1),(a:1),(e:1),(m:1),(l:1)>

5. The scan of fifth transaction which
follow the time interval of forth
transaction so if follow the same branch
if the item prefix match, It can share the
common prefix <f,c,a,e> with existing
path <f,c,a,e,m,l> the count of each node
incremented by 1.

6. For the last transaction ,<f,m,l> its time
time interval match with second branch
so it follow the second branch of FP-tree
here it share common prefix f , its count
is incremented by 1 , a new node is
created for item m , & it is linked to node
f by initializing the counter value to1. for
next item l again a new node will be
created by initializing its counter value

4.3 Mining the frequent item from FP-tree –

Figure 4 FP tree with different time interval

& it is linked as a child of node m.
In Step(2) if (N.time = P.time) in phase I , its
meaning that when a new node p appears in the
FP-tree we check the time of transaction , is inside
the time of transaction of N item, defined as
below table, then it follows the same branch

68 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

otherwise a new branch will be created in FP-
tree.

Table 3. Shows the path depend on the time
of transaction in itemset.

Property [PH02] Node Link property . For any
frequent item ai , all the possible patterns
contining only frequent items and ai can be
obtained by following ai’ s node link’s , starting
from ai ‘s head in the FP-tree header.

Mining process from the constructed
Temporal FP-tree shown in figure1. We examine
the mining process by starting from the bottom of
node-link header table.
For calendar pattern <*,01,04> for node m ,its
intermediate frequent pattern is (m:3), and its
path are <f:2,c:2,a:1,m:1,p:1> , <f:1,c:1,b:1,m:1>
and <f:1, m:1>. Thus to study which appears
together with m at time period <*,01,04> only m
prefix {(fca:1) ,(fcb:1),(f:1) }, m’s sub -pattern
base , which is called m’s pattern conditional
pattern base.(which is called m’s conditional Fp
tree) leads to two different branch (fc:3) & (f:2).
For node a , its immediate frequent pattern is
(a:4)and it is in two different path one
for<*,01,04> & second for <*,06,04>. Calendar
pattern <*,01,04> consist of <f:3,c:3 a:2> and
<*,06,04> consists of <f:2,c:2>

Table 3 Mining Temporal frequent patterns by
creating conditional (sub) pattern base

From the Temporal FP-tree the conditional
frequent pattern tree can be generated by calling
the section 3.3

procedure of Frequent pattern–growth method
conditionally for every valid interval[PH02].

5. Conclusion & Future work-

In this paper, we have proposed
algorithm gives an efficient time sensitive
approach for mining frequent item in the dataset.
Discovered rule is easier to understand. Temporal
H-mine , which takes advantage of H-struct data
structure and dynamically adjust link in the
mining process.

Temporal Fp-tree, uses divide & conquer
technique for construction & traversing of tree
which is used to decompose the mining task into a
set of smaller task for mining confined pattern in
conditional database which dramatically reduce
the search space on specific time interval when
the data is sparse. H-mine algorithm not need to
physically construct memory structures of
projected database. In fact Data mining concepts
are applied where there are huge set of data
available in data warehouse. It requires more
scanning & processing time. Hence after applying
our logic of the scanning this valid time &
processing time can be decreases for mining the
frequent set of items. It is very useful for retailer
to create its own market strategy as per the
requirement of time.

The work can be further extended for
designing good classifier and performance can be
increases.

Applications:

? ? Business Application : This technique is
most useful in Business mining. Most of
the real world data have the time varying
features. The retailer can change their
business policy with time to time for
maximize the output Example some
model of vehicle are not available from
1980s , suppose is currently appears in
the market. Its history indicate no
associationship but the fact is that
product is not available on that period ,
so its associationship is started from the
interval where it was valid.

? ? Web Mining : The concept can be

applicable in web mining , In WWW the
site which is no longer available so its
associationship also be no longer.

? ? Clustering Problem : This approach can

be useful to solve the clustering problem,
the cluster can be designed on the basis
of period of data., that will reduce the
size of data & processing time also.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 69

References –

[AS94] R. Agrawal & R. Srikant , R :” Fast
algorithm for mining association rule.In VLDB’94
Chile , Sept 1994,pp –487-499.

[BX00] Claudio Bettini, X. Sean Wang R: “ Time
Granularies in databases , Data Mining , and
Temporal reasoning 2000. pp 230, ISBN 3-540-
66997-3, Springer-Verlag, July 2000. 230 pages.
Monograph.

[CJJX03] Chris Giannella_, Jiawei Hany, Jian
Peiz, Xifeng Yany, Philip S. Yu R: Mining
Frequent Patterns in Data Streams at Multiple
TimeGranularities, pg 191 – 210, H. Kargupta, A.
Joshi, K. Sivakumar, and Y. Yesha (eds.), Next
Generation Data Mining, 2003.

[JG00] Juan M .Ale , Gustavo H. Rossi R: “ An
approach to discovering temporal association
rules”, ACM SIGDD March 1..21,2002

[JM01] Jiawei Han, Micheline Kamber , Book :
“Data Mining Concept & Technique”,2001

[ORS98] Banu Ozden , Sridhar Ramaswamy , Avi
Silberschatz R : “Cyclic Association Rule” ,In
Proc. Of forteenth International conference on
Data Engineering 1998, pp 412-425

[PH02] Jian Pei, Jiawei Han, Yiwen Yin and
Running Mao R : Mining Frequent Pattern
without Candidate Generation”, Kluwer online
Academy 2004.

[RHS00] John F. Roddick, Kathleen Hornsby,
Myra Spiliopoulou: An Updated Bibliography of
Temporal, Spatial, and Spatio-temporal Data
Mining Research. TSDM 2000: pp147-164.

[RMS98] S. Ramaswamy, S. Mahajan, and A.
Silberschatz. On the discovery of interesting
patterns in association rules. In Proc. of the 1998
Int’l Conf. on Very Large Data Bases, pp 368–
379, 1998.

[RR99] Chris P. Rainsford, John F. Roddick R: “
Adding Temporal semantics to association rule”,
3rd International conference KSS Springer 1999,
pp 504-509

[YPXS03]Yingjiu Li, Peng Ning, X. Sean Wang ,
Sushil Jajodia R :“Discovering calendar- based
temporal association rules”, Data & Knowledge
Engineering volume 4,Elesvier publisher, Volume
44 pp– 193-214 ,2003

[PHNTY01] J. Pei, J. Han, H. Lu, S. Nishio,
S. Tang, and D. Yang, "H-mine : Hyper structure
Mining of Freuqent patterns in Large database”,
In proc. of International conference on Data
Mining , San Jose, California, Novermber 29-
December 2, 2001.

70 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Artemis Message Exchange Framework: Semantic
Interoperability of Exchanged Messages in the Healthcare

Domain ∗

Veli Bicer, Gokce B. Laleci, Asuman Dogac, Yildiray Kabak
Software Research and Development Center

Middle East Technical University (METU)
06531 Ankara Türkiye

email: asuman@srdc.metu.edu.tr

ABSTRACT
One of the most challenging problems in the healthcare domain
is providing interoperability among healthcare information sys-
tems. In order to address this problem, we propose the semantic
mediation of exchanged messages. Given that most of the mes-
sages exchanged in the healthcare domain are in EDI (Electronic
Data Interchange) or XML format, we describe how to transform
these messages into OWL (Web Ontology Language) ontology in-
stances. The OWL message instances are then mediated through
an ontology mapping tool that we developed, namely, OWLmt.
OWLmt uses OWL-QL engine which enables the mapping tool
to reason over the source ontology instances while generating the
target ontology instances according to the mapping patterns de-
fined through a GUI.

Through a prototype implementation, we demonstrate how to
mediate between HL7 Version 2 and HL7 Version 3 messages.
However, the framework proposed is generic enough to mediate
between any incompatible healthcare standards that are currently
in use.

1. INTRODUCTION
Most of the health information systems today are propri-

etary and often only serve one specific department within
a healthcare institute. A number of standardization efforts
are progressing to address this interoperability problem such
as EHRcom [3], openEHR [15] and HL7 Version 3 [6]. Yet, it
is not realistic to expect all the healthcare institutes to con-
form to a single standard. Furthermore, different versions
of the same standard (such as HL7 Version 2 and Version
3) and even the different implementations of the same stan-
dard, for example, some HL7 Version 2 implementations,
do not interoperate. Therefore there is a need to address
the interoperability problem at the semantic level. Seman-
tic interoperability is the ability for information shared by
systems to be understood at the level of formally defined
domain concepts so that the information is computer pro-
cessable by the receiving system [10].

In this paper, we describe an engineering approach de-
veloped within the scope of the Artemis project [1] to pro-
vide the exchange of meaningful clinical information among
healthcare institutes through semantic mediation. The pro-
posed framework, called AMEF (Artemis Message Exchange
Framework) involves first providing the mapping of a source
ontology into a target ontology with the help of a mapping

∗This work is supported by the European Commission
through IST-1-002103-STP Artemis project and in part by
the Scientific and Technical Research Council of Turkey

(TÜBÍTAK), Project No: EEEAG 104E013

tool which produces a mapping definition. This mapping
definition is then used to automatically transform the source
ontology message instances into target message instances.

Through a prototype implementation, we demonstrate
how to mediate between HL7 Version 2 and HL7 Version
3 messages. However, the framework proposed is generic
enough to mediate between any incompatible healthcare
standards that are currently in use.

C
−

N
or

m
al

iz
at

io
n

E
ng

in
e

C
−

N
or

m
al

iz
at

io
n

E
ng

in
e

HL7 v2.3

O
W

L
W

ra
pp

er

HL7 v2.3
Ontology

HL7 v3
Ontology

Ontology Mapper

O
W

L
W

ra
pp

er

Healthcare
Institute A

Healthcare
Institute B

HL7 v3

Message
Schema Schema

Message

OWLXSD OWL

Normalization
Map

Normalization
Map

Mapping Definition

XSD

Figure 1: Message Schema Mapping Process

HL7 v2.3

Healthcare
Institute A

Message
HL7 v2.3 HL7 v3

O
W

L
 W

ra
pp

er

Healthcare
Institute B

HL7 v3

Schema
Message

OWL

Normalization
Map

Mapping Definition

E
ng

in
e

D
−

N
or

m
al

iz
at

io
n

Normalization
Map

EDI

E
D

I2
X

M
L

C
on

ve
rt

er XML

O
W

L
 W

ra
pp

er

OWL

Mapping Engine

E
ng

in
e

D
−

N
or

m
al

iz
at

io
n

InstanceInstance

XML

Figure 2: Automatic Message Instance Transforma-
tion Process

The semantic mediation between HL7 Version 2 and HL7
Version 3 messages is realized in two phases:

• Message Ontology Mapping Process: In the first phase,
the message ontologies of two healthcare institutes are
mapped one another (Figure 1). Assume that health-
care institute A uses HL7 v2 and healthcare institute
B uses HL7 v3 to provide system interconnection. The
message ontologies of these institutes are mapped one
into other by using an ontology mapping tool. For this

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 71

purpose we have developed an OWL (Web Ontology
Language) ontology mapping tool, namely, OWLmt
[16]. With the help of a GUI, OWLmt allows to define
semantic mappings between structurally different but
semantically overlapping OWL ontologies, and pro-
duces a “Mapping Definition”.

Since message ontologies for HL7 messages do not
exist yet, we use the HL7 Version 2 and Version 3
XML Schemas (XSDs) [19] to generate OWL ontolo-
gies. This process, called “Conceptual Normalization”
[5] produces a “Normalization map” describing how a
specific message XSD is transformed into the corre-
sponding OWL schema.

The “Mapping Definitions” and the “Normalization
map” produced in the first phase are used during the
second phase to automatically transform the message
instances one into another.

• Message Instance Mapping: In the second phase (Fig-
ure 2), first the XML message instances of healthcare
institute A are transformed into OWL instances by us-
ing the “Data Normalization” engine [5]. Note that if
the message is in EDI (Electronic Data Interchange)
format, it is first converted to XML. Then by using the
Mapping definitions, OWL source (healthcare institute
A) messages instances are transformed into the OWL
target (healthcare institute B) message instances. Fi-
nally the OWL messages are converted to XML again
through the “Data Normalization” engine.

MSH Message Header
QRD Query Definition
[QRF] Query Filter

{
PRD
[{ CTD }] Contact Data

Provider Data

}

PID Patient Identification
[{ NK1 }] Next of Kin/Associated Parties
[{ GT1 }]
[{ NTE }]

Guarantor
Notes and Comments

RQC Request Clinical Information

MSH Message Header
MSA
[QRF] Query Filter
{

PRD
[{ CTD }] Contact Data

Provider Data

}

PID Patient Identification
[{ DG1 }] Diagnosis
[{ DRG }]
[{ AL1 }]

Diagnosis Related Group
Allergy Information

[
{

OBR
[{ NTE }]

Observation Request
Notes and Comments

[
{

OBX Observation Result
[{ NTE }] Notes and Comments

}
]

}
]
[{ NTE }] Notes and Comments

RCI Return Clinical Information

Message Acknowledgment

Figure 3: The Structures of the RQC/RCI EDI mes-
sages for the HL7 Version 2 event I05

The paper is organized as follows: In Section 2, we briefly
summarize the HL7 standard. Section 3 describes the se-
mantic mediation of HL7 v2 and v3 messages. The details
of OWL mapping tool used in the mediation is presented in
Section 4. Transforming HL7 v2 EDI messages to XML is
briefly introduced in Section 5. Finally Section 6 describes
the “Normalization” tool used and the improvements re-
alised on this tool.

2. HEALTH LEVEL 7 (HL7) STANDARD

Main Panel

Value
Transformation
Wizard

Object Property
Definition Panel

Property
Transformations
Panel

Javascript
Engine

Query
Engine

Mapping
Engine

OWL−QL
Engine

Javascript
Interpreter

Mapping Engine

Target
Instance

Source
Instance

Mapping
Definition

Mapping
Schema

Source
Ontology

Target
Ontology

Mapping GUI

Handler
HandlerOntology
Ontology

Figure 4: Architecture of OWLmt

The primary goal of HL7 is to provide standards for the
exchange of data among healthcare computer applications.
The standard is developed with the assumption that an
event in the healthcare world, called the trigger event, causes
exchange of messages between a pair of applications. When
an event occurs in an HL7 compliant system, an HL7 mes-
sage is prepared by collecting the necessary data from the
underlying systems and it is passed to the requestor, usu-
ally as an EDI message. For example, as a result of a trigger
event, say “I05”, the clinical patient information for a given
patient identifier is passed to the requestor as shown in Fig-
ure 3. Clinical information refers to the data contained in
a patient record such as problem lists, lab results, current
medications, family history, etc. [7].

HL7 version 2 is the most widely implemented healthcare
informatics standard in the world today. Yet being HL7 Ver-
sion 2 compliant does not imply direct interoperability be-
tween healthcare systems. Version 2 messages, contain many
optional data fields. For example every attribute presented
in square brackets in Figure 3, denotes optional information
that may be omitted. This optionality provides great flexi-
bility, but necessitates detailed bilateral agreements among
the healthcare systems to achieve interoperability.

To remedy this problem, HL7 has developed Version 3
[6] which is based on an object-oriented data model, called
Reference Information Model (RIM) [8]. The main objective
of the HL7 Version 3 is to eliminate the optionality. RIM
is used as the source of the content of messages and this
results in a more efficient message development process. The
result of the Version 3 process is the Hierarchical Message
Definition (HMD), which defines the schema of the messages
based on the RIM classes. Note that HL7 Version 3 messages
do not interoperate with HL7 Version 2 messages.

3. SEMANTIC MEDIATION OF HL7 V2
AND V3 MESSAGES

In Artemis Message Exchange Framework (AMEF), the
semantic mediation of HL7 v2 and v3 messages is realized
in two phases:

• Message Schema Mapping Process: In the first phase,
the message schemas of two healthcare institutes are
mapped one another through semantic mediation as
shown in Figure 1. At the heart of this process is
the OWL Mapping tool, OWLmt, transforming OWL
ontologies one into other.

The OWL ontologies corresponding to the message
schemas involved are generated through a set of avail-
able tools. First, for healthcare institute A (Figure
1), the HL7 Version 2 XML Schemas (XSDs) [19] are

72 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

converted to RDFS (Resource Description Framework
Schema) by using the Conceptual Normalization (C-
Normalization) engine of the Harmonise project [5].
This process uses a set of heuristics as described in
Section 6 and produces a “Normalization map” de-
scribing how a specific HL7 Version 2 message XSD is
transformed into the corresponding RDFS schema and
vice-versa. Then, by using the OWL Wrapper, which
we developed using Jena API [11], RDFS Schemas are
transformed to OWL.

On the other hand, for healthcare institute B (Figure
1), in order to generate the XSDs of HL7 v3 messages,
RoseTree tool of HL7 is used [18]. RoseTree allows the
user to graphically build a HMD (Hierarchical Message
Definition) from the Reference Information Model of
HL7 v3. This generated HMD file describes the struc-
ture of the v3 XML messages, but it is not in XSD
format. In order to translate the HMD file to XSD,
“HL7 v3 Schema Generator” [9] is used.

The next step is to map the source ontology into the
target ontology by using OWLmt. This process is de-
scribed in detail in Section 4.

Haematology
Test

Haematology
Test Item

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

hasQuantity

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

hasValue

SimilarTo

SimilarTo

Source Ontology Target Ontology

Complete Blood
Count

SimilarTo

Observation Act

Observation

Haemoglobin
Result

Quantity

Haemoglobin
Observation

CBC

Value

Figure 5: Mapping between HL7 v2 and HL7 v3
message structures

• Message Instance Mapping: In the second phase (Fig-
ure 2), first the HL7 version 2 EDI messages are con-
verted to XML. The open-source programming library
from HL7, namely, HL7 application programming in-
terface (HAPI) [4] is used for transforming the EDI
messages into their XML representations.

In the next step, as shown in Figure 2, the XML
message instances of healthcare institute A are trans-
formed to OWL instances by the “Data Normalization
(D-Normalization) engine [5] using the “Normalization
map” produced during the first phase.

Then by using the Mapping definitions, OWLmt trans-
forms OWL source (healthcare institute A) messages
instances into the OWL target (healthcare institute
B) message instances. Finally the OWL messages are
converted to the XML format that the healthcare in-
stitute B understands, again through the “Data Nor-
malization” engine as shown in Figure 2.

In the following sections, we describe how these tools re-
alize the described functionality.

Place

name

PatientRole

name

hasAddress

player

scoper

SimilarTo

classCode

XAD PD1

XON

Organization_Name

SimilarTo

PID.5.Name

PID.11 additionalInformation

PD1.3.PrimaryFacility

Target OntologySource Ontology

SimilarTo

PatientEntity

HealthInstituteEntity

PID

Figure 6: Mapping Object properties

Class Property

owl:Thing

SimilarTo ObjectProperty
Transform

Entity

Datatype
Property
Transform

UnionOfIntersectionOf

EquivalentTo

PropertyLevelClassLevel

Pattern

PatternPattern

Figure 7: OWL Mapping Schema

4. OWL MAPPING TOOL: OWLMT
We have developed an OWL mapping tool, called

OWLmt, to handle ontology mediation by mapping the
OWL ontologies in different structures and with an overlap-
ping content one into other. The architecture of the system,
as shown in Figure 4, allows mapping patterns to be speci-
fied through a GUI tool based on a Mapping Schema. The
Mapping Schema, as shown in Figure 7, is also defined in
OWL.

Mapping patterns basically involve the following:

• Matching the source ontology classes to target ontology
classes: In order to represent the matching between
the classes of source and target ontologies, we have de-
fined four mapping patterns: EquivalentTo, SimilarTo,
IntersectionOf and UnionOf. Two identical classes are
mapped through EquivalentTo pattern. SimilarTo im-
plies that the involved classes have overlapping con-
tent. How the similar classes are further related is
detailed through their data type properties and ob-
ject properties by using “property mapping patterns”.
As an example, in Figure 5, the “HaemeglobinResult”
class in HL7 v2 ontology is defined to be similar to
“HaemoglobinObservation” class in HL7 v3 ontology.
The mappings of the “hasQuantity” and “hasValue”
object properties of these classes are handled by defin-
ing an “ObjectPropertyTransform” pattern between
these properties.

The IntersectionOf pattern creates the corresponding
instances of the target class as the intersection of the
declared class instances. Similarly, the UnionOf pat-

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 73

tern implies the union of the source classes’ instances
to create the corresponding instances of the target
class. Furthermore, a class in a source ontology can
be a more general (super class) of a class in the target
ontology. In this case, which instances of the source
ontology makes up the instances of the target ontology
is defined through KIF (Knowledge Interchange For-
mat) [13] conditions to be executed by the OWLmt
mapping engine. When a source ontology class is a
more specific (sub class) of a target ontology class, all
the instances of the source ontology qualify as the in-
stances of the target ontology.

• Matching the source ontology Object Properties to tar-
get ontology Object Properties: In addition to match-
ing a single object property in the source ontology
with a single object property in the target ontology,
in some cases, more than one object properties in the
source ontology can be matched with one or more ob-
ject properties in the target ontology. Consider the
example given in Figure 6. According to the HL7 v3
specifications, two entities, “Patient” and “HealthIn-
stitueEntity” are connected by a “Role” class which
is “PatientRole” in this case. On the other hand, in
the target ontology, the “XON” class in HL7 v2.x rep-
resents the healthcare facility that a patient is regis-
tered. “PD1” (Patient Demographics 1) gives the pa-
tient information. “XON” is connected to the “PD1”
by the “PD1.3.PrimaryFacility” object property. As
it is clear from this example, relating a single object
property in source ontology with a single object prop-
erty in the target ontology does not suffice: There may
be paths consisting of object property relations in the
source and target ontologies that need to be mapped.

OWLmt allows defining “ObjectPropertyTransform”
pattern which represents the path of classes connected
through object properties such that whenever a path
defined in the source ontology (inputPath) is encoun-
tered in the source ontology instance, the path defined
for target ontology (outputPath) is created in the tar-
get ontology instance. Paths are defined as triples in
KIF [13] format and executed through the OWL-QL
[17] engine. For example, assuming the path defined
in the source ontology (Figure 6):

(rdf:type ?x PatientEntity) (player ?x ?y)

(rdf:type ?y PatientRole) (scoper ?y ?z)

(rdf:type ?z HealthInstituteEntity).

and assuming that it corresponds to the following path
in the target ontology:

(rdf:type ?x PID) (additionalInformation ?x ?y)
(rdf:type ?y PD1) (PD1.3.PrimaryFacility ?y ?z)
(rdf:type ?z XON)

OWLmt constructs the specified paths among the in-
stances of the target ontology in the execution step
based on the paths defined among the instances of the
source ontology.

• Matching source ontology Data Properties to target
ontology Data Properties: Specifying the “Datatype-
PropertyTransform” helps to transform data type
properties of an instance in the source ontology to
the corresponding data type properties of instance in

the target ontology. Since the data type properties
may be structurally different in source and target on-
tologies, more complex transformation operations may
be necessary than copying the data in source instance
to the target instance. XPath specification [20] de-
fines a set of basic operators and functions which are
used by the OWLmt such as “concat”, “split”, “sub-
string”, “abs”, and “floor”. In some cases, there is
a further need for a programmatic approach to spec-
ify complex functions. For example, the use of condi-
tional branches (e.g. if-then-else, switch-case) or itera-
tions (e.g while, for-next) may be necessary in specify-
ing the transformation functions. Therefore, we have
added JavaScript support to OWLmt. By specifying
the JavaScript to be used in the “DatatypeProperty-
Transform” pattern, the complex functions can also be
applied to the data as well as the basic functions and
the operators provided by XPath.

4.1 OWLmt Mapping Schema
The mapping patterns used in the OWLmt are defined

through an OWL ontology called “Mapping Schema”. Each
mapping pattern is an owl:class in the “Mapping Schema” as
shown in Figure 7. The additional information needed in the
execution of the patterns are provided as KIF [13] expres-
sions such as inputPaths and outputPaths. The inputPath
and outputPath are data type properties of “ObjectProp-
erty Transform Pattern” class and hold the query strings in
the KIF format which are used in the execution to query
the source ontology instances in order to build the target
instances.

Each mapping relation specified through OWLmt GUI
represents as an instance of these pattern classes, and the
final the mapping definition is stored as an instance of the
“Mapping Scheme” as a collection of pattern class instances.

In Figure 8, a part of the mapping definition of the exam-
ple in Figure 6 is presented. First the SimilarTo relation-
ship between the “Patient” and “PatientEntity” classes are
represented with an instance of SimilarTo pattern. Then
through an “ObjectPropertyTransform” pattern instance,
the relationships between object properties linking the “Pa-
tientEntity” to “HealtInstituteEntity” classes and the ob-
ject property linking the “PID” to “XON” classes are rep-
resented. Further details of the mapping tool are presented
in [2].

This mapping definition is given as an input to the
OWLmt Mapping Engine, which translates source ontology
instances to target ontology instances.

4.2 OWLmt GUI
OWLmt GUI [16] consists of five components: Ontol-

ogy Handler, Main Panel, Property Transformations Panel,
Value Transformation Wizard and Object Property Defini-
tion Panel. The Ontology Handler is used in parsing and
serializing the ontology documents. The class mapping pat-
terns are defined in the main panel. The property map-
ping patterns are defined in the property transformation
panel. This panel lets the user to create new property map-
ping patterns such as the “ObjectPropertyTransform” and
“DatatypePropertyTransform”. The value transformation
wizard is used to configure a “DatatypePropertyTransform”
pattern. By using this wizard, the functions used in the
value transformation of the data type properties can be spec-

74 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

<SimilarTo rdf:ID="SimilarTo_1">
<similarToInput>

<relatedTo rdf:resource=#PatientEntity/>
</similarToInput>
<similarToOutput>

<relatedTo rdf:resource=#PID/>
</similarToOutput>
<operationName>PatientEntity_SimilarTo_PID</operationName>

</SimilarTo>

<ObjectPropertyTransform rdf:ID="ObjectPropertyTransform_1">
<operationName>ObjectPropertyTransform_1</operationName>
<includedIn rdf:resource=#SimilarTo_1/>
<inputPath>(rdf:type ?x PatientEntity) (player ?x ?y)

(rdf:type ?y PatientRole) (scoper ?y ?z)
(rdf:type ?z HealthInstituteEntity)

</ inputPath>
<outputPath>(rdf:type ?x PID) (additionalInformation ?x ?y)

(rdf:type ?y PD1) (PD1.3.PrimaryFacility ?y ?z)
(rdf:type ?z XON)

</ outputPath>
</ObjectPropertyTransform>

Figure 8: An Example Mapping Definition

ified.

4.3 OWLmt Engine
The mapping engine is responsible for creating the target

ontology instances using the mapping patterns given in the
Mapping Definition and the instances of the source ontol-
ogy. It uses OWL Query Language (OWL-QL) to retrieve
required data from the source ontology instances. OWL-QL
is a query language for OWL developed at the Stanford Uni-
versity [17]. While executing the class and property map-
ping patterns, the query strings defined through the map-
ping GUI are send to the OWL-QL engine with the URL of
the source ontology instances. The query engine executes
the query strings and returns the query results.

The OWL-QL engine uses the JTP (Java Theorem
Prover) reasoning engine [12], an object-oriented modular
reasoning system. The modularity of the system enables
it to be extended by adding new reasoners or customizing
existing ones.

The use of the OWL-QL enables OWLmt to have rea-
soning capabilities. When querying the source ontology in-
stances or while executing the KIF [13] patterns, OWL-
QL reasons over the explicitly stated facts to infer new
information. As an example, consider two instances, I1
and I2, which are the members of the classes C1 and C2
respectively. If these two instances are related with the
“owl:sameAs” construct, one of them should be in the ex-
tension of the intersection class, say C3, of the classes C1
and C2. Hence, the IntersectionOf pattern transforms the
instance I1 and I2 to the instance I3 which is a member
of C3 in the target ontology. However, assume that there
is no direct “owl:sameAs” construct but there is a func-
tional property which implies that these two instances are
the same. The reasoning engine can infer from the definition
of the “owl:FunctionalProperty” by using the rule:

(rdf:type ?prop owl:FunctionalProperty)

(?prop ?instance ?I1)

(?prop ?instance ?I2)

->

(owl:sameAs ?I1 ?I2)

that the instances I1 and I2 are the same instance result-

ing in the instance I3 to be in the target ontology.
After executing the class mapping patterns, the mapping

engine executes the property mapping patterns. Similar to
the class mapping patterns, OWL-QL queries are used to
locate the data. In order to perform value transformations,
the mapping engine uses the JavaScripts in the “Datatype-
PropertyTransform” pattern. To execute the JavaScripts,
an interpreter is used. The engine prepares the JavaScript
by providing the values for the input parameters and sends it
to the interpreter. The interpreter returns the result, which
is then inserted as the value of the data type property in the
target ontology instance.

5. EDI TO XML CONVERSION IN HL7
There are several commercial and open-source program-

ming libraries that implement the HL7 standards. In our
implementation, HAPI [4] (HL7 Application Programming
Interface) Assembler/Disassembler Tool is used to transform
the HL7 v2 EDI messages into their XML representations.
HAPI provides open source libraries for parsing and manip-
ulating both EDI and XML messages that are HL7 confor-
mant. Furthermore the library enables message validation,
that is, enforcement of HL7 data type rules for the values in
the messages.

6. NORMALIZATION TOOL
As previously mentioned, currently the healthcare appli-

cation messages are usually in XML or EDI format (which
can be converted to XML). Hence there is a need for au-
tomatic bidirectional transformation of XML message in-
stances to OWL message instances as well as automatic
generation of OWL Schemas from XML Schema Definitions
(XSDs). Such a transformation, called Normalization, has
been realized within the scope of the Harmonise project [5].

The first step in the “Normalization” process is generating
RDFS schemas from local XSD schemas. This step is called
Conceptual Normalization (C-Normalization) phase where
the C-Normalization engine parses the XML Schema, and
using a set of predefined “Normalization Heuristics”, creates
the corresponding RDFS schema components for each XML
Schema component automatically. Normalization Heuristics
define how specific XML Schema construct can be projected
onto a RDFS construct (entity or set of related entities) [5].
With this process, the complex type, element and attribute
definitions of the XSD are represented as classes, and prop-
erties in the RDFS ontology. One of the “Normalization
Heuristics” called “ComplexType2Class” projects each com-
plex type definition in XSD onto a class definition in RDFS.
Furthermore, the attribute definitions and the element def-
initions in XSD are converted to the “rdf:Property” by the
“Attribute2Property” and “Element2Property” heuristics,
respectively. After representing the complex types as classes
and elements as properties, the domain and range of the
properties are set. The “ElementParent2PropertyDomain”
heuristic sets the domain of the property to the class which
corresponds to the parent of the element in the XSD. Fur-
thermore, the “ElementType2PropertyRange” heuristic sets
the range of the property to the class which corresponds to
the type of the element in the XSD as illustrated in Figure
9. The C-Normalization process produces a “Normaliza-
tion Map” which defines the associations between the XML
Schema and the re-engineered RDFS model. Further details

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 75

of this work are available in [5].

Message

Element2Property

ControlAct

controlAct

xs:Element

rdfs:ClassComplexType2Class
Message

rdfs:Literal

rdfs:Class
ControlAct

rdfs:Domain

rdfs:Range

ElementParent2PropertyDomain

ComplexType2Class

ElementType2PropertyRange
type

rdf:Property

RDFSXML Schema

HL7 v3

Figure 9: C-Normalization Phase

XMLSchema

R
D
F
S

Datatypes and
enumerations

OWL
Wrapper

Jena

O
W
L
S

Normalization Map

OWL
Instance

OWL
Mapper

OWL
Instance

RDF
Instance

OWL
Wrapper

Harmonise
D−Normalization

Engine

XML
Instance

Harmonise
C−Normalization Engine

Normalization
Heuristics

Figure 10: Normalization process for the bidirec-
tional transformation of XML instances to OWL in-
stances

The second step in “Normalization” is the Data Normal-
ization Process (D-Normalization) which is used for trans-
forming the data instances from XML to OWL or OWL to
XML.

In Artemis architecture, we have used the Harmonise Nor-
malization Engine. However since we need OWL Schemas
instead of RDFS schemas, we developed an OWL wrapper
using Jena API to create OWL schemas from the RDFS
files after the C-Normalization step. Additionally in the
D-Normalization step, through the same wrapper, the gen-
erated RDF instances are further translated in to OWL in-
stances or vice versa as depicted in Figure 10.

Note that in Harmonise C-Normalization step, the enu-
meration of property values or basic data types defined
in XML Schemas cannot be preserved. To handle this,
the OWL Wrapper developed carries the enumeration of
property values and basic data types to the OWL Schema.
The enumerated classes are represented using <owl:oneOf
rdf:parseType=“Collection”> construct in case of enumer-
ated classes, and using <owl:oneOf> and <rdf:List> con-
structs in case of enumerated data types. The data types are
represented by referring to XML Schema data types using
RDF data typing scheme.

7. CONCLUSIONS
One of the most challenging problems in the healthcare

domain today is providing interoperability among health-
care information systems. In order to tackle this problem,

we propose an engineering approach to semantic interoper-
ability within the scope of the Artemis project. For this
purpose, the existing applications are wrapped as Web ser-
vices and the messages they exchange are annotated with
OWL ontologies which are then mediated through an ontol-
ogy mapping tool developed, namely, OWLmt. One of the
major contributions of the OWLmt is the use of OWL-QL
engine which enables the mapping tool to reason over the
source ontology instances while generating the target ontol-
ogy instances according to the graphically defined mapping
patterns.

8. REFERENCES
[1] Artemis A Semantic Web Servicebased P2P

Infrastructure for the Interoperability of Medical
Information Systems, http://www.srdc.metu.edu.tr/-
webpage/projects/artemis/.

[2] Bicer, V., “OWLmt: OWL Mapping Tool”, M.Sc.
Thesis, Dept. of Computer Eng., METU, in preparation.

[3] ENV 13606:2000 “Electronic Healthcare Record
Communication”, http://www.centc251.org/TCMeet/-
doclist/TCdoc00/N00048.pdf.

[4] HL7 Application Programming Interface (HAPI),
http://hl7api.sourceforge.net

[5] Harmonise, IST200029329, Tourism Harmonisation
Network, Deliverable 3.2 Semantic mapping and
Reconciliation Engine subsystems.

[6] Health Level 7, http://www.hl7.org.

[7] HL7, Chapter 11 Patient Referral,
http://www.hl7.org/library/General/v231.zip

[8] HL7 Reference Information Model (RIM),
http://www.hl7.org/library/data-model/RIM/-
modelpage mem.htm.

[9] HL7 v3 Schema Generator, http://www.hl7.org/-
library/data-model/V3Tooling/toolsIndex.htm

[10] ISO/TS Health Informatics - Requirements for an
electronic health record architecture, Technical
Specification, International Organization for
Standardization (ISO), Geneva, Switzerland, 2004.

[11] Jena Framework, http://jena.sourceforge.net/ .

[12] Java Theorem Prover (JTP),
http://www.ksl.stanford.edu/software/JTP/ .

[13] Knowledge Interchange Format (KIF),
http://logic.stanford.edu/kif/kif.html .

[14] A. Maedche, D. Motik, N. Silva, R. Volz, “MAFRA-A
MApping FRAmework for Distributed Ontologies”, In
Proc. of the 13th European Conf. on Knowledge
Engineering and Knowledge Management EKAW-2002,
Madrid, Spain, 2002.

[15] OpenEHR Foundation, http://www.openehr.org/ .

[16] OWL Mapping Tool (OWLmt),
http://www.srdc.metu.edu.tr/artemis/owlmt/

[17] OWL Query Language,
http://ksl.stanford.edu/projects/owlql/

[18] Rose Tree, http://www.hl7.org/library/data-model/-
V3Tooling/toolsIndex.htm

[19] XML encoding rules of HL7 v2 messages - v2.xml,
http://www.hl7.org/Special/Committees/xml/drafts/-
v2xml.html

[20] XML Path Language, http://www.w3.org/TR/xpath .

76 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Database Research at Bilkent University
 Özgür Ulusoy

Bilkent University
 Computer Engineering Department

Bilkent, Ankara, TURKEY
oulusoy@cs.bilkent.edu.tr

1. Introduction

This report provides a brief description of the research activities
of the Database Research Group of Bilkent University. The
current research of the group is mainly focused on the topics of
Multimedia Databases (in particular video database management
and content-based retrieval of document images), Web Databases
(in particular the modeling and querying of Web resources and
focused crawling), and Mobile Computing (in particular moving
object processing and mobile data management).

An overview of each research topic investigated is provided
together with the list of researchers, any external funding
information, and a selection of associated publications. Interested
readers should contact Özgür Ulusoy at oulusoy@cs.bilkent.edu.tr
for further information. Most of the publications listed in this
report are available at:
http://www.cs.bilkent.edu.tr/~oulusoy/~pubs.html.

2. Multimedia Databases

Researchers: Ö. Ulusoy, U. Güdükbay, E. Çetin, E. Şaykol, C.
Alper, I. S. Altıngövde, T. Sevilmiş.
Past Researchers: M. E. Dönderler, U. Arslan, G. Ünel, A. K.
Sinop.

Funding Sources: Scientific and Technical Research Council of
Turkey (TÜBİTAK) under grant number EEEAG-199E025,
Turkish State Planning Organization (DPT) under grant number
2004K120720, and European Commission 6th Framework
Program, MUSCLE NoE Project, under grant number FP6-
507752.

2.1 BilVideo: A Video Database Management
System

We have developed a prototype video database management
system, called BilVideo [1, 2, 3]. The architecture of BilVideo is
original in that it provides full support for spatio-temporal queries
that contain any combination of directional, topological, 3D-
relation, object-appearance, trajectory-projection, and similarity-
based object-trajectory conditions by a rule-based system built on
a knowledge-base, while utilizing an object-relational database to
respond to semantic (keyword, event/activity, and category-
based), color, shape, and texture queries. The knowledge-base of
BilVideo consists of a fact-base and a comprehensive set of rules
implemented in Prolog. The rules in the knowledge-base
significantly reduce the number of facts that need to be stored for
spatio-temporal querying of video data [4].

To respond to user queries containing both spatio-temporal and
semantic conditions, the query processor interacts with both the
knowledge-base and a feature database, where the system stores
fact-based and semantic metadata, respectively. Intermediate
query results returned from these two system components are
integrated seamlessly by the query processor, and final results are
sent to Web clients. Raw video data and its features are stored in a
separate database. The feature database contains video semantic
properties to support keyword, event/activity, and category-based
queries. The video-annotator tool, which we developed as a Java
application, generates and maintains the features. The fact-base,
which is a part of the knowledge-base, is populated by the fact-
extractor tool, which is also a Java application [3].

BilVideo provides support for retrieving any segment of a video
clip, where the given query conditions are satisfied, regardless of
how video data is semantically partitioned. Object trajectories,
object-appearance relations, and spatio-temporal relations
between video objects are represented as Prolog facts in a
knowledge-base, and they are not explicitly related to the
semantic units of videos. Thus, precise answers can be returned
for user queries, when requested, in terms of frame intervals.

BilVideo has a simple, yet very powerful SQL-like query
language, which currently supports a broad range of spatio-
temporal queries on video data [5]. We are currently working on
integrating support for semantic and low-level (color, shape, and
texture) video queries as well. We completed our work on
semantic video modeling, which was reported in [6]. As for the
low-level queries, our Fact-Extractor tool also extracts color,
shape, and texture histograms of the salient objects in video
keyframes. We have also developed a Web-based visual query
interface for specifying video queries visually over the Internet.
Furthermore, we have completed our work on the optimization of
spatio-temporal video queries [7].

The BilVideo query language is designed to be used for any
application that needs video query processing facilities. Hence,
the language provides query support through external predicates
for application-dependent data.

The Web-based Query Interface of BilVideo and its user manual
are available at http://pcvideo.cs.bilkent.edu.tr/. A demo of the
Web-based Query Interface can be seen at:
http://www.cs.bilkent.edu.tr/~bilmdg/bilvideo/webclient.avi.

2.2 Ottoman Archive Content-Based
Retrieval System

The Ottoman Archive Content-Based Retrieval system is a Web-
based program that provides electronic access to digitally stored

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 77

Ottoman document images. The Ottoman script is a connected
script based on the Arabic alphabet. A typical word consists of
compounded letters as in handwritten text. We have developed a
framework for content-based retrieval of historical documents in
the Ottoman Empire archives [8]. The documents are stored as
textual images, which are compressed by constructing a library of
symbols that occur in a document. The symbols in the original
image are then replaced by the pointers into the codebook library.
For symbol extraction, we use the features in wavelet and spatial
domain based on angular and distance span shapes. Symbols are
extracted from document images by a scale-invariant process.
User can specify a query as a rectangular region in an input
image, and content-based retrieval is achieved by applying the
same symbol extraction process to the query region. The query is
processed on the codebook of documents, and the resulting
documents are ranked in the decreasing order of their similarity to
the query image, which is determined by the total number of
symbols matched with the query region. The resulting documents
are presented by identifying the matched region of each document
in a rectangle. The querying process does not require
decompression of images.

 The techniques we use in our work are not specific to documents
with Ottoman script. They can easily be tailored to other domains
of archives containing printed or handwritten documents.

The web site of the Ottoman Archive Content-Based Retrieval
system is:
http://www.cs.bilkent.edu.tr/bilmdg/ottoman/webclient.html.

A step-by-step user manual describing how to access the Web
query interface and specify queries is available at:
http://www.cs.bilkent.edu.tr/~bilmdg/ottoman/manual/manual.ht
m.

References

[1] M.E. Dönderler, E. Saykol, Ö. Ulusoy, U. Güdükbay.

BilVideo: A Video Database Management System. IEEE
Multimedia, 10, 5 (January/March 2003), 66-70.

[2] Ö. Ulusoy, U. Güdükbay, M.E. Dönderler, E. Saykol, C.
Alper. BilVideo Video Database Management System
(demo paper). In Proceedings of the International
Conference on Very Large Databases (VLDB'04). (Toronto,
Canada, August-September 2004), 1373-1376.

[3] M.E. Dönderler, E. Saykol, U. Arslan, Ö. Ulusoy, U.
Güdükbay. BilVideo: Design and Implementation of a Video
Database Management System. To appear in Multimedia
Tools and Applications, 2005.

[4] M.E. Dönderler, Ö. Ulusoy, U. Güdükbay. A Rule-based
Video Database System Architecture. Information Sciences,
143, 1-4 (June 2002), 13-45.

[5] M.E. Dönderler, Ö. Ulusoy, U. Güdükbay. Rule-based
Spatio-temporal Query Processing for Video Databases.
VLDB Journal, 13, 1 (January 2004), 86-103.

[6] U. Arslan, M.E. Dönderler, E. Şaykol, Ö Ulusoy, U.
Güdükbay. A Semi-Automatic Semantic Annotation Tool for
Video Databases. In Proceedings of the Workshop on

Multimedia Semantics (SOFSEM'02). (Milovy, Czech
Republic, November 2002), 1-10.

[7] G, Ünel, M.E. Dönderler, Ö. Ulusoy, U. Güdükbay. An
Efficient Query Optimization Strategy for Spatio-Temporal
Queries in Video Databases. Journal of Systems and
Software, 73, 1 (September 2004), 113-131.

[8] E. Şaykol, A. K. Sinop, U. Güdükbay, Ö. Ulusoy, E. Çetin.
Content-Based Retrieval of Historical Ottoman Documents
Stored as Textual Images. IEEE Transactions on Image
Processing, 13, 3 (March 2004), 314-325.

3. Web Databases

Researchers: Ö. Ulusoy, İ. S. Altıngövde, Ö. N. Subakan.
Past Researchers: S. A. Özel, M. Kutlutürk.
Collaborators: G. Özsoyoğlu, Z. M. Özsoyoğlu, A. Al-Hamdani
(Case Western Reserve University).

Funding Sources: A joint grant of Scientific and Technical
Research Council of Turkey (TÜBİTAK) under grant number
100U024 and National Science Foundation of the USA under
grant number INT-9912229.

3.1 Metadata-Based Modeling of the Web

A recent approach to increase the quality of Web search is
associating metadata to the resources on the Web. To this end,
there are various standardization efforts and initiatives, such as
the Dublin Core Framework, RDF, Semantic Web and Topic
Maps. In [9, 10], we address the problem of modeling Web
information resources using expert knowledge and personalized
user information for improved Web searching capabilities. We
propose a “Web information space” model, which is composed of
Web-based information resources (HTML/XML documents on
the Web), expert advice repositories (domain-expert-specified
metadata for information resources), and personalized information
about users (captured as user profiles that indicate users’
preferences about experts as well as users’ knowledge about
topics).

Expert advice, the heart of the Web information space model, is
specified using topics and relationships among topics (called
metalinks), along the lines of the recently proposed topic maps.
Topics and metalinks constitute metadata that describe the
contents of the underlying HTML/XML Web resources. The
metadata specification process is semi-automated. It exploits
XML DTDs to allow domain-expert guided mapping of DTD
elements to topics and metalinks. In particular, the domain expert
specifies a mapping between the entities of our metadata model
(topics and metalinks) and the XML DTDs in the corresponding
domain(s). An agent then traverses the Web, extracts topics and
metalinks for those XML files conformant with the input DTD,
and stores them into a local object-relational database
management system, which will then serve as an expert advice
(metadata) repository for these visited Web resources.

To demonstrate the practicality and usability of the proposed Web
information space model, we have created a prototype expert

78 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

advice repository of more than one million topics and metalinks
for DBLP (Database and Logic Programming) Bibliography data
set.

3.2 Querying Web Metadata: Native Score
Management and Text Support in Databases

In this work, we discuss the issues involved in adding a native
score management system to object-relational databases, to be
used in querying web metadata (that describes the semantic
content of web resources) [11, 12]. As described in the preceding
section, the web metadata model is based on topics (representing
entities), relationships among topics (metalinks), and importance
scores (sideway values) of topics and metalinks. We extend
database relations with scoring functions and importance scores.
We add to SQL score-management clauses with well-defined
semantics, and propose the sideway-value algebra (SVA), to
evaluate the extended SQL queries.

SQL extensions include clauses for propagating input tuple
importance scores to output tuples during query processing,
clauses that specify query stopping conditions, threshold
predicates—a type of approximate similarity predicates for text
comparisons, and user-defined-function-based predicates. The
propagated importance scores are then used to rank and return a
small number of output tuples. The query stopping conditions are
propagated to SVA operators during query processing. We show
that our SQL extensions are well-defined, meaning that, given a
database and a query Q, the output tuples of Q and their
importance scores stay the same under any query processing
scheme.

3.3 Focused Web Crawling

A preliminary step for extracting and querying metadata for Web
resources is gathering all and only the relevant Web resources for
a particular application domain or topic of interest. To this end, in
[13] we propose a rule-based focused crawling strategy to crawl
the Web and construct a repository of relevant Web pages. A
focused crawler is an agent that concentrates on a particular target
topic, and tries to visit and gather only relevant pages from the
Web. In the literature, one of the approaches for focused crawling
is using a canonical topic taxonomy and a text classifier to train
the crawler so that those URLs that most probably point to on-
topic pages will be identified and prioritized. Our research
explores using simple rules derived from the linkage statistics
among the topics of a taxonomy while deciding on the crawler’s
next move, i.e., to select the URL to be visited next. The rule
based approach improves the harvest rate and coverage of the
taxonomy-based focused crawler and also enhances it to support
tunneling. More specifically, the rule based crawler can follow a
path of off-topic pages that may at last lead to high quality on-
topic pages. More information on our projects in Web Databases
can be found through http://www.cs.bilkent.edu.tr/~bilweb.

References

[9] I. S. Altingovde, S. A. Özel, Ö. Ulusoy, G. Özsoyoğlu, Z. M.

Özsoyoğlu. Topic-Centric Querying of Web Information
Resources. In Proceedings of the Database and Expert

Systems Applications (DEXA'01), Lecture Notes in Computer
Science (Springer Verlag), vol.2113, (Munich, Germany,
September 2001) 699-711.

[10] S. A. Özel, I. S. Altingovde, Ö. Ulusoy, G. Özsoyoğlu, Z. M.
Ösoyoglu. Metadata-Based Modeling of Information
Resources on the Web. Journal of the American Society for
Information Science and Technology (JASIST), 55, 2
(January 2004), 97-110.

[11] G. Özsoyoğlu, Abdullah Al-Hamdani, I. S. Altingovde, S. A.
Özel, Ö. Ulusoy, Z. M. Özsoyoğlu. Sideway Value Algebra
for Object-Relational Databases. In Proceedings of the
International Conference on Very Large Databases
(VLDB'02). (Hong Kong, August 2002), 59-70.

[12] G. Özsoyoğlu, I. S. Altingovde, A. Al-Hamdani, S. A. Özel,
Ö. Ulusoy, Z. M. Özsoyoğlu. Querying Web Metadata:
Native Score Management and Text Support in Databases.
ACM Transactions on Database Systems, 29, 4 (December
2004), 581-634.

[13] I. S. Altingovde, Ö. Ulusoy. Exploiting Interclass Rules for
Focused Crawling. IEEE Intelligent Systems, 19, 6
(November-December 2004), 66-73.

4. Mobile Computing

Researchers: Ö. Ulusoy, M. Karakaya, İ. Körpeoğlu, S. Çıracı.
Past Researchers: , Y. Saygın, E. Kayan, J. Tayeb, G. Gök, I.
Yoncacı, G. Yavaş.
Collaborators: O. Wolfson (University of Illinois at Chicago), K.
Y. Lam (City University of Hong Kong), D. Katsaros, Y.
Manolopoulos (Aristotle University), A. K. Elmagarmid (Purdue
University).

Funding Sources: Scientific and Technical Research Council of
Turkey (TÜBİTAK) under grant number EEEAG-246, NATO
Collaborative Research Program under grant number CRG
960648, and the bilateral program of scientific cooperation
between Turkey and Greece (TÜBİTAK grant number 102E021
and Γ.Γ.E.T.).

4.1 Moving Object Processing

Our earlier work on moving object processing includes indexing
locations of moving objects. In [14], we propose an indexing
technique for moving objects based on a variant of the quadtree
data structure in which the indexing directory is in primary
memory and the indexed data resides in secondary storage. The
method is useful in any application that involves dynamic
attributes whose values vary continuously according to a given
function of time. Our approach is based on the key idea of using a
linear function of time for each dynamic attribute that allows us to
predict its value in the future. We contribute an algorithm for
regenerating the quadtree-based index periodically to minimize
CPU and disk access cost.

Another important issue in moving object database management
is to provide support for processing location-dependent queries,
where the answer to a query depends on the current location of

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 79

the user who issued the query. A location-dependent query can
become more difficult to process when it is submitted as a
continuous query for which the answer changes as the user
moves. In [15], we present an efficient method to monitor the
locations of moving objects so that timely and accurate results can
be returned to location dependent continuous queries, while
minimizing the location update cost. Location-dependent queries
from mobile clients may also be associated with timing
constraints on their response times. In [16], we propose a method
to monitor the locations of moving users/objects based on the
real-time criticality of location dependent continuous queries, so
that higher levels of accuracy can be achieved for the results
returned to the queries categorized with higher criticality.
Another related issue in processing location dependent continuous
queries is the transmission of query results to the users. In [17],
various methods that can be used to determine the transmission
time of query results are investigated with the goal of minimizing
data transmission costs.

In [18], we present a data mining algorithm for the prediction of
user movements in a mobile computing system. The algorithm
proposed is based on mining the mobility patterns of users,
forming mobility rules from these patterns, and finally predicting
a mobile user’s future movements by using these rules.

4.2 Mobile Data Management

Dissemination of data by broadcasting may induce high access
latency in case the number of broadcast data items is large. In
[19], we propose two methods to reduce client access latency for
broadcast data. Our methods are based on analyzing the broadcast
history (i.e., the chronological sequence of items that have been
requested by clients) using data mining techniques. The proposed
methods are implemented on a Web log, and it is shown that the
proposed rule-based methods are effective in improving the
system performance in terms of average latency as well as cache
hit ratio of mobile clients. Our other work on broadcast
scheduling considers a pull-based data delivery environment [20].
We propose a variant of the Longest Wait First heuristic in
scheduling data broadcast, which provides a practical
implementation of the heuristic by avoiding the decision
overhead.

One of the features that a mobile computer should provide is
disconnected operation, which is performed by hoarding. The
process of hoarding can be described as loading the data items
needed in the future to the client cache prior to disconnection.
Automated hoarding is the process of predicting the hoard set
without any user intervention. In [21], we describe a generic,
application-independent technique for determining what should be
hoarded prior to disconnection. Our method utilizes association
rules that are extracted by data mining techniques for determining
the set of items that should be hoarded to a mobile computer prior
to disconnection.

While there has been much research interest in mobile computing
issues, an issue that has not received much attention is the

management of the database of a mobile system under timing
constraints. In [22], we present a mobile database system model
that takes into account the timing requirements of applications
supported by mobile computing systems. We provide a
transaction execution model with alternative execution strategies
for mobile transactions and evaluate the performance of the
system under various mobile system characteristics, such as the
number of mobile hosts in the system, the handoff process,
disconnection, coordinator site relocation, and wireless link
failure.

References

[14] J. Tayeb, Ö. Ulusoy, O. Wolfson, A Quadtree Based

Dynamic Attribute Indexing Method. The Computer Journal,
41, 3 (1998) 185-200.

[15] K. Y. Lam, Ö. Ulusoy, et al., An Efficient Method for
Generating Location Updates for Processing of Location-
Dependent Continuous Queries. In Proceedings of the
International Conference on Database Systems for Advanced
Applications (DASFAA'01). (Hong Kong, April 2001) 218-
225.

[16] Ö. Ulusoy, I. Yoncacı, K. Y. Lam. Evaluation of a
Criticality-Based Method for Generating Location Updates.
In Proceedings of Workshop on Database Mechanisms for
Mobile Applications, Lecture Notes in Informatics, vol.43,
(Karlsruhe, Germany, April 2003) 94-105.

[17] G. Gök, Ö. Ulusoy. Transmission of Continuous Query
Results in Mobile Computing Systems. Information
Sciences, 125, 1-4 (2000) 37-63.

[18] G. Yavaş, D. Katsaros, Ö. Ulusoy, Y. Manolopoulos. A Data
Mining Approach for Location Prediction in Mobile
Environment. Data and Knowledge Engineering, 54, 2
(2005) 121-146.

[19] Y. Saygın, Ö. Ulusoy. Exploiting Data Mining Techniques
for Broadcasting Data in Mobile Computing Environments.
IEEE Transactions on Knowledge and Data Engineering, 14,
6 (November/December 2002) 1387-1399.

[20] M. Karakaya, Ö. Ulusoy. Evaluation of a Broadcast
Scheduling Algorithm. In Proceedings of Advances in
Databases and Information Systems (ADBIS'01), Lecture
Notes in Computer Science (Springer Verlag), vol.2151,
(Vilnius, Lithuania, September 2001) 182-195.

[21] Y. Saygın, Ö. Ulusoy, A. K. Elmagarmid. Association Rules
for Supporting Hoarding in Mobile Computing
Environments. In Proceedings of IEEE International
Workshop on Research Issues on Data Engineering
(RIDE'00), (San Diego, CA, USA, February 2000) 71-78.

[22] E. Kayan, Ö. Ulusoy. An Evaluation of Real-Time
Transaction Management Issues in Mobile Database
Systems. The Computer Journal, 42, 6 (November 1999)
501-510.

80 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Data Management Research at the
Middle East Technical University

Nihan K. Cicekli, Ahmet Cosar, Asuman Dogac, Faruk Polat, Pinar Senkul,
I. Hakki Toroslu and Adnan Yazici

Department of Computer Engineering Database Group
Middle East Technical University (METU)

06531 Ankara Turkey

1. INTRODUCTION
The Middle East Technical University (METU) (http://-

www.metu.edu.tr) is the leading technical university in
Turkey. The department of Computer Engineering (http://-
www.ceng.metu.edu.tr) has twenty seven faculty members
with PhDs, 550 undergraduate students and 165 gradu-
ate students. The major research funding sources include
the Scientific and Technical Research Council of Turkey
(TÜBÍTAK), the European Commission, and the internal
research funds of METU. Data management research con-
ducted in the department is summarized in this article.

2. WEB SERVICES AND SEMANTIC WEB
TECHNOLOGIES

The research in the semantic Web services area has
concentrated upon the application of this technology in
two important sectors: healthcare through the Artemis
project (http://www.srdc.metu.edu.tr/webpage/projects/-
artemis/) and tourism through the Satine project (http://-
www.srdc.metu.edu.tr/webpage/projects/satine/).

2.1 The Artemis Project
The Artemis project provides the interoperability of medi-

cal information systems through semantically enriched Web
services. An essential element in defining the semantic of
Web services is domain knowledge. Medical informatics is
one of the few domains to have considerable domain knowl-
edge exposed through standards as mentioned above. These
standards offer significant value in terms of expressing the
semantic of Web services in the healthcare domain. In the
Artemis project, prominent healthcare standards are used
to semantically annotate Web services as follows:

• HL7 has categorized the events in the healthcare do-
main by considering service functionality that reflects
the business logic in this domain. We use this clas-
sification as a basis for defining the service action se-
mantics through a “Service Functionality Ontology”.
In this way, semantic discovery of Web services is fa-
cilitated.

• Given the complexity of clinical domain, the Web ser-
vice messages exchanged have innumerous segments

of different types and optionality. To make any use
of these messages at the receiving end, their semantics
must be clearly defined. We annotate the Web services
through the reference information models of Electronic
Healthcare Record (EHR) standards.

The details of this work is presented in the following pub-
lication:

• Dogac, A., Laleci, G., Kirbas, S., Kabak, Y., Sinir,
S., Yildiz, A., Gurcan, Y., “Artemis: Deploying Se-
mantically Enriched Web Services in the Healthcare
Domain”, Information Systems Journal, Elsevier, to
appear.

Using archetypes is a promising approach for providing se-
mantic interoperability among healthcare systems. To re-
alize archetype based interoperability, healthcare systems
need to discover the existing archetypes based on their se-
mantics, annotate their archetypes with ontologies, com-
pose templates from archetypes and retrieve corresponding
data from the underlying medical information systems. In
the Artemis project, we use ebXML Registry semantic con-
structs for annotating, storing, discovering and retrieving
archetypes.

The details of this work is presented in the following pub-
lication:

• Dogac, A., Laleci, G. B., Kabak, Y., Unal, S., Beale,
T., Heard, S., Elkin, P., Najmi, F., Mattocks, C., Web-
ber, D., “Exploiting ebXML Registry Semantic Con-
structs for Handling Archetype Metadata in Health-
care Informatics”, Intl. Journal of Metadata, Seman-
tics and Ontologies, to appear.

In the Artemis project, AMEF (Artemis Message Ex-
change Framework) is developed to provide the exchange of
meaningful clinical information among healthcare institutes
through semantic mediation. The framework involves first
providing the mapping of source ontology into target mes-
sage ontology with the help of a mapping tool that produces
a mapping definition. This mapping definition is then used
to automatically transform the source ontology message in-
stances into target message instances. Through a prototype
implementation, we demonstrate how to mediate between
HL7 Version 2 and HL7 Version 3 messages. However, the
framework proposed is generic enough to mediate between
any incompatible healthcare standards that are currently in

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 81

use. The details of this work is presented in the following
publication:

• Bicer, V., Laleci, G., Dogac, A., Kabak, Y., “Artemis
Message Exchange Framework: Semantic Interoper-
ability of Exchanged Messages in the Healthcare Do-
main”, ACM Sigmod Record, Vol. 34, No. 3, Septem-
ber 2005.

2.2 The SATINE Project
The SATINE project addresses the interoperability in the

travel domain. The tourism industry today is the second
largest economic sector, after manufacturing in the world.
Tourism embarked on eBusiness earlier than other sectors.
Currently, travel information services are dominantly pro-
vided by Global Distribution Systems (GDSs). All the air-
lines, many hotel chains and car rental companies list their
inventory with major GDSs. A GDS gives its subscribers
pricing and availability information for multiple travel prod-
ucts such as flights. Travel agents, corporate travel depart-
ments, and even Internet travel services, subscribe to one
or more GDSs. However, small and medium-sized enter-
prises, for example “bed and breakfast” type accommoda-
tion or companies hiring bicycles, restaurants and a host of
others cannot participate to GDS-based eBusiness activities
because selling their products through GDSs is too expen-
sive for them.

Furthermore, GDSs are legacy systems and suffer from a
number of problems: they mostly rely on private networks,
are mainly for human use, have difficult to use cryptic in-
terfaces, have limited speed and search capabilities, and are
difficult to interoperate with other systems and data sources.
The implication is that the tour operators, travel agencies,
etc. cannot benefit fully from the advantages of electronic
business-to-business trading.

In order to facilitate eBusiness, the travel industry has
formed a consortium called the Open Travel Alliance (OTA).
OTA produces XML schemas of message specifications to
be exchanged between the trading partners, including avail-
ability checking, booking, rental, reservation, query services,
and insurance. However, not every travel company’s ap-
plications can be expected to produce and consume OTA
compliant messages.

In the SATINE project, we describe how to deploy se-
mantically enriched travel Web services and how to exploit
semantics through Web service registries to addres the prob-
lems mentioned. We also address the need to use the seman-
tics in discovering both Web services and Web service reg-
istries through peer-to-peer technologies. The mechanisms
are described in detail in the following publication:

• Dogac, A., Kabak, Y., Laleci, G., Sinir, S., Yildiz,
A., Kirbas, S., Gurcan, Y., “Semantically Enriched
Web Services for the Travel Industry”, ACM Sigmod
Record, Vol. 33, No. 3, September 2004.

Web services, similar to their real life counterparts, have sev-
eral properties and, thus, truly useful semantic information
can only be defined through standard ontology languages.
In the SATINE project, mechanisms to enrich ebXML reg-
istries through OWL-S ontologies for describing the Web
service semantics are developed. Particularly, how the vari-
ous constructs of OWL can be mapped to ebXML classifica-
tion hierarchies and how the services are discovered through

standardized queries by using the ebXML query facility are
described.

Detailed information on these mechanisms is available in
the following publication:

• Dogac, A., Kabak, Y., Laleci, G. B., Mattocks, C.,
Najmi, F., Pollock, J., “Enhancing ebXML Registries
to Make them OWL Aware”, Distributed and Parallel
Databases Journal, Springer Verlag, Vol. 18, No. 1,
July 2005, pp. 9-36.

Finally, how privacy issues can be handled semantically in
Web services is addressed in the following publication:

• Tumer, A., Dogac, A., Toroslu, I. H., “A Seman-
tic based Privacy Framework for Web Services”,
WWW’03 workshop on E-Services and the Semantic
Web (ESSW 03), Budapest, Hungary, May 2003.

3. VIDEO DATABASES, SPATIO-
TEMPORAL DATABASES

Content-based querying of multimedia data is a relatively
new subject, which has arisen fast with the improvements
in data processing and communication systems technolo-
gies. We present a spatio-temporal video data model that
allows efficient and effective representation and querying of
spatio-temporal objects in videos. The data model is fo-
cused on the semantic content of video streams. Objects,
events and activities performed by objects, and temporal
and spatial properties of objects are the main interests of
the model. Spatial and temporal relationships between ob-
jects and events are dynamically calculated with the query
processing methods introduced in this paper. The model is
flexible enough to define new relationship types between ob-
jects without changing the data model and supports fuzzy
querying of spatio-temporal objects in videos. Index struc-
tures are used for effective storage and retrieval of the men-
tioned properties. A prototype of the proposed model has
been implemented. The prototype allows various spatio-
temporal queries along with some fuzzy ones, and it is capa-
ble of implementing many other queries without any major
changes in the data model.

• Koprulu, M., Cicekli, N. K., Yazici, A., “Spatio-
temporal Querying in Video Databases”, Information
Sciences, Vol. 160, 2004, pp. 131-152.

• Koprulu, M., Cicekli, N. K., and Yazici, A., “Spatio-
Temporal Querying in Video Databases”, Proc. of the
Sixth International Conf. on Flexible Query Answer-
ing Systems (FQAS’2002), Denmark, Oct 2002.

• Yazici, A., Yavuz, O., and George, R., “An MPEG-
7 Based Video Database management System, Flex-
ible Querying and Reasoning in Spatio-Temporal
Databases: Theory and Applications”, In Springer’s
Geo-sciences/Geoinformation series by Springer Ver-
lag, 2004, pp. 181-210.

Depending on the proposed content-based spatio-temporal
video data model, a natural language interface is imple-
mented to query the video data. The queries, which are
given as English sentences, are parsed using Link Parser,
and the semantic representations of given queries are ex-
tracted from their syntactic structures using information ex-
traction techniques. At the last step, the extracted semantic

82 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

representations are used to invoke the related parts of the
underlying spatio-temporal video data model to retrieve the
results of the queries.

• Erozel, G., Cicekli, N. K., Cicekli, I., “Natural Lan-
guage Interface on a Video Data Model”, Proceedings
of IASTED DBA 2005, Austria.

4. INTELLIGENT DATABASE SYSTEMS,
FUZZY LOGIC AND DATABASE MOD-
ELING

Next generation information system applications require
powerful and intelligent information management that ne-
cessitates an efficient interaction between database and
knowledge base technologies. It is also important for these
applications to incorporate uncertainty in data objects, in-
tegrity constraints, and applications.

Fuzzy relational database models generalize the classical
relational database model by allowing uncertain and impre-
cise information to be represented and manipulated. We in-
troduce fuzzy extensions to the relational database model.
Within this framework of fuzzy data representation, similar-
ity, conformance of tuples, the concept of fuzzy functional
dependencies, and partial fuzzy functional dependencies are
utilized to define the fuzzy key notion, transitive closures,
and fuzzy normal forms. The fuzzy object-oriented data
model is a fuzzy logic-based extension to the object-oriented
database model, which permits uncertain data to be explic-
itly represented. The details are presented in the following
publications:

• Koyuncu, M., and Yazici, A., “A Fuzzy Knowledge-
Based System for Intelligent Retrieval”, IEEE Trans-
actions on Fuzzy Systems, to appear.

• Sozer, A., and Yazici, A., “Design and Implementation
of Index structures for Fuzzy Spatial Databases”, In-
ternational Journal of Intelligent Systems, to appear.

• Bahar, O., and Yazici, A., “Normalization And Loss-
less Join Decomposition of Similarity-Based Fuzzy Re-
lational Databases”, International Journal of Intelli-
gent Systems, Vol. 19, No. 10, October 2004, pp.
885-918.

• Aygun, R. S., and Yazici, A., “Modeling and Manage-
ment of Fuzzy Information in Multimedia Database
Applications”, Multimedia Tools and Applications,
Vol. 24, No.1, September 2004, pp. 29-56.

• Koyuncu, M., and Yazici, A., “IFOOD: An Intelligent
Fuzzy Object-Oriented Database Architecture”, IEEE
Trans. on Knowledge and Data Engineering, Septem-
ber 2003, pp. 1137-1154.

• Sozat, M. I., Yazici, A., “A Complete Axiomatization
for Fuzzy Functional and Multivalued Dependencies in
Fuzzy Database Relations”, Fuzzy Sets and Systems,
Vol. 117/2, 2001, pp. 161-181

• Yazici, A., Zhu, Q., Sun, N., “Semantic Data Mod-
eling of Spatiotemporal Database Applications”, Int.
Journal of Intell. Systems, Vol. 16, No. 7, July 2001,
pp. 881-904

5. WORKFLOWS
The research on workflow management systems has con-

centrated on modeling and scheduling under resource al-
location systems. In addition to the temporal constraints
corresponding to the order of tasks, constraints related to
resource allocation are also equally important. Workflow
scheduling should include the decisions about which re-
sources are allocated to which tasks, parallel to the task
ordering decision. To solve this, two approaches have been
studied. In the first one, we proposed an architecture to
specify and schedule workflows under resource allocation
constraints as well as temporal and causality constraints:

• Senkul, P., and Toroslu, I. H., “An architecture for
workflow scheduling under resource allocation con-
straints”, Information Systems, Vol. 30, Issue 5, July
2005, pp. 399-422.

In the second approach, we developed a new logical for-
malism, called Concurrent Constraint Transaction Logic
(CCTR), which integrates Constraint Logic Programming
(CLP) and Concurrent Transaction Logic, and a logic-based
workflow scheduler that is based on this new formalism. The
semantics of the CCTR modeling of a workflow represent a
schedule that contains both an execution ordering that the
specified workflow can execute, and a set of resource as-
signments to the tasks of the workflow satisfying the given
constraints. The details of this work is presented in the
following publication:

• Senkul, P., Kifer, M., Toroslu, I. H., “A Logical Frame-
work for Scheduling Workflows under Resource Allo-
cation Constraints”, VLDB 2002, pp. 694-705.

As another research direction, we have proposed a logic-
based framework for the specification and execution of work-
flows. The proposed approach is based on the Kowalski and
Sergot’s Event Calculus:

• Cicekli, N. K., and Cicekli, I., “Formalizing the Spec-
ification and Execution of Workflows using the Event
Calculus”, Information Sciences, to appear.

6. DATA MINING
Most research on data mining has focused on processing

single relations. Recently, however, multi-relational data
mining has started to attract interest. One of the earliest
works on multi-relational data mining is the query flocks
technique, which extends the concept of traditional asso-
ciation rule mining with a “generate-and-test” model for
different kinds of patterns. One possible extension of the
query flocks technique is the addition of view definitions in-
cluding recursive views. Although in our system the query
flock technique can be applied to a database schema includ-
ing both the Intensional Database (IDB) or rules, and the
Extensible Database (EDB) or tabled relations, we have de-
signed an architecture to compile query flocks from datalog
into SQL in order to be able to use commercially available
Database Management Systems (DBMS) as an underlying
engine of our system. Currently, we are extending our work
on multi-relational data mining using inductive logic pro-
gramming for discovering rules. This work is presented in
the following publication:

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 83

• Toroslu, I. H., Yetisgen-Yildiz, M., “Data Mining in
Deductive Databases Using Query Flocks”, Expert
Systems with Applications, Vol. 28, Issue 3, April
2005, pp. 395-407.

One of the most well-known data mining problems is the se-
quential pattern mining. The main drawback of sequential
pattern mining is the large number of sequential patterns
discovered, which makes it harder for the decision maker to
interpret them. Thus, a new parameter is added to the def-
inition of the sequential pattern mining problem that repre-
sents the repetitions of the sequences. In the following pub-
lication, this problem is introduced together with its pos-
sible applications and advantages over ordinary sequential
pattern mining:

• Toroslu, I. H., “Repetition Support and Mining Cyclic
Patterns”, Expert Systems with Applications, Vol. 25,
issue 3, october 2003, pp. 303-311.

7. QUERY PROCESSING
The “Multiple Query Optimization” (MQO) problem, a

well-known query-processing problem in databases, has been
studied in the database literature since the 1980s. MQO
tries to reduce the execution cost of a group of queries by
performing common tasks only once. In our work, we as-
sume that, at the beginning of the optimization, all promis-
ing alternative plans have been generated and shared tasks
are identified. Our algorithm finds an optimal solution to
the MQO problem. This form of MQO problem has been
formulated as an NP-complete optimization problem where
several heuristic functions are used to guide an A* search.
In the following work, we propose the first dynamic pro-
gramming approach to this problem:

• Toroslu, I. H., and Cosar, A., “Dynamic Programming
Solution for Multiple Query Optimization Problem”,
Information Processing Letters, Vol. 92, Issue 3, 15
November 2004, pp. 149-155.

There has been several other previous works done by the
members of the database group at METU focused on other
aspects of multiple query optimization and semantic query
optimization. Our most recent work on semantic query op-
timization is as follows:

• Polat, F., Cosar, A., Alhajj, R., “The Semantic
Information-based Alternative Plan Generation for
Multiple Query Optimization”, Information Sciences,
Elsevier, Vol. 137/1-4, 2001, pp. 103-133.

8. OBJECT-ORIENTED DATABASES
Research on object-oriented databases is primarily based

on extensibility and dynamic schema evolution. We have
benefited from having an object algebra maintaining closure
that makes it possible to have output from a query persis-
tent in the hierarchy. We automate the process of properly
placing new classes in the class hierarchy. We are able to
map a view, which can easily be defined in our model, that is
intended to be persistent into a class. The object algebra is
utilized to handle basic schema evolution functions without
requiring any special set of built-in functions.

• Alhajj, R., Polat, F., and Yilmaz, C., “Views as First-
Class Citizens in Object-Oriented Databases”, The
VLDB Journal, Vol. 14, No. 2, April 2005, pp. 155-
169.

• Alhajj, R., and Polat, F., “Rule-Based Schema Evolu-
tion in Object-Oriented Databases”, Knowledge-Based
Systems, Vol. 16, No. 1, Jan. 2003, pp. 47-57.

• Alhajj, R., and Polat, F., “Reengineering of Rela-
tional Databases into Object-Oriented: Constructing
the Class Hierarchy and Migrating the Data”, Proceed-
ings of the IEEE Working Conference on Data Reverse
Engineering WCRE 2001, IEEE Press, Stuttgart, Ger-
many, Oct. 2001, pp. 335-344.

• Alhajj, R., and Polat, F., “Transferring Database Con-
tents from a Conventional Information System to a
Corresponding Existing Object Oriented Information
System”, Proceedings of the ACM Annual Symposium
on Applied Computing, ACM Press, Las Vegas, USA,
Mar. 2001, pp. 220-224.

9. BIOINFORMATICS
We worked on the problem of identifying Differentially Ex-

pressed Genes (DEG) and improved the power of PaGE by
estimating prior probability used in the confidence computa-
tion. We developed two methods based on the q-values and
maximum likehood approaches to find DEG on a dataset of
microarray experiments for pattern generation. We formu-
late the control problem for dynamic discrete regulatory net-
works and defined various control-monitor strategies. The
Multiobjective control problem is further studied and a case
study is done for proof of correctness.

• Abul, O., Alhajj, R., Polat, F., and Barker, K., “Find-
ing Differentially Expressed Genes: Pattern Genera-
tion”, Bioinformatics, Vol. 21, No. 4, Feb 2005, pp.
445-450.

• Abul, O., Alhajj, R., and Polat, F., “Importance of
Monitoring in Developing Optimal Control Policies
for Probabilistic Boolean Genetic Networks”, Infor-
mation Processing and Management of Uncertainty
in Knowledge-Based Systems (IPMU2004), Perugia,
Italy, July 2004, pp. 1145-1152.

• Abul, O., Alhajj, R., and Polat, F., “Markov Decision
Processes Based Optimal Control Policies for Proba-
bilistic Boolean Network”, Proc. of IEEE Symposium
on Bioinformatics and Bioengineering (BIBE2004),
Taichung, Taiwan, May 19-21, 2004, pp. 337-344.

• Abul, O., Alhajj, R., Polat, F., and Barker, K., “Find-
ing Differentially Expressed Genes: Pattern Genera-
tion using q-values”, Proceedings of the ACM Annual
Symposium on Applied Computing (SAC), Cyprus,
Mar. 2004, pp. 138-142.

• Abul, O., Lo, A., Alhajj, R., Polat, F., and Barker, K.,
“Cluster Validity Analysis Using Subsampling”, Pro-
ceedings of the IEEE International Conference on Sys-
tems, Man, and Cybernetics, Vol. 2, Washington DC,
Oct. 2003, pp. 1434-1440.

84 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Report on the Workshop on Wrapper Techniques for
Legacy Data Systems

Ph. Thiran1,2, T. Risch3, C. Costilla4, J. Henrard1, Th. Kabisch5, J. Petrini3, W-J. van den Heuvel6, J-L. Hainaut1
1University of Namur, Belgium 4TU Madrid, Spain

2Eindhoven University of Technology, The Netherlands 5TU Berlin, Germany

3Uppsala University, Sweden 6Tilburg University, The Netherlands

This report summarizes the presentations and discussions of
the first workshop on Wrapper Techniques for Legacy Data
Systems which was held in Delft on November 12 2004.
This workshop was co-located with the 2004 WCRE
conference. This workshop entails to our best knowledge
the first in its kind, concentrating on challenging research
issues regarding the development of wrappers for legacy
data systems.

1. INTRODUCTION
Research and development in legacy data wrapping are of
paramount importance given the fact that the combination
of distributed Internet technology and wrappers opens up
new opportunities to unlock the business value that is stored
in legacy systems. In fact, legacy systems hold services that
remain useful beyond the means of the technology in which
they were originally implemented. Wrappers are used to
facilitate the reuse of key portions of the legacy systems for
their integration into novel business systems, like web
applications.
Grossly speaking, a wrapper can be perceived as a model
converter, i.e., a software component that translates data and
queries from the interface (model and languages) of a
legacy data system to another, abstract interface intended to
client applications and users. A critical issue for the
development of wrappers is that legacy data systems vary
widely in their support for data manipulation and
description. Moreover, the data schema of the underlying
data source can be unavailable or incomplete. This is
typically the case for web sources. In these cases, the data
schema should preferably be automatically derived from the
actual data that is captured in the (web) resource.
After a short introduction, the day started with a technical
session of papers, followed by a plenary discussion about
some issues in data wrapping. In the following, a summary
of the main points of each of these is presented.

2. TECHNICAL PRESENTATIONS
After a blind review process, four papers were selected for
presentation and publication. These workshop proceedings
are published on-line by the university press of the
Eindhoven University of Technology and are accessible
from the workshop website, which will remain open at
http://wwwis.win.tue.nl/wrapper04/.

Göldner et al. [1] deal with the maintenance of Web
wrappers. They introduce an approach which uses caching
of sample data and structures in combination with content
recognition to enhance robustness of wrappers and to
automate the wrapper maintenance process. Petrini and
Risch [2] describe a query translating wrapper of relational
databases from RDF-based semantic web queries into SQL
to enable access to relational databases from semantic web
tools. The particular problem is here efficient dynamic
optimization of queries to the wrapper. In their paper, Vila
and Costilla [3] present a mediator-wrapper architecture
based on an extractor data model placed between each Web
data source and its wrapper linked to a specific ontology.
Finally, Jean Henrard and al. [4] address the difficult
problem of migrating application programs from a legacy
data manager, such as a COBOL file system, to a modern
DBMS, such as a relational database management system.
The approach relies on the concept of inverse wrappers;
that is, wrappers that simulate the legacy API on top of the
new database.

3. DISCUSSION
The workshop was concluded by a plenary discussion in
order to provide a definition of wrappers as well as to
summarize the state of the art in this research field. In this
section, we will briefly sketch the main highlights of the
discussions, focusing on wrapper definition and on the
evolution of modeling languages.

3.1 Wrapper Definition
The purpose of a wrapper is to make one or several data
sources queryable in terms of an agreed-upon query
language.
Individual wrappers can be defined for each source, e.g., for
an existing on-line legacy system, an existing data
production system, etc. To improve code reuse, generic
wrappers can be defined for a class of data sources, e.g., for
all relational databases providing JDBC drivers and SQL
queries, or for HTML interfaces. Generic wrappers permit
easy inclusion of new sources into a mediator system. By
object-orientation one can further refine this code sharing
by providing a hierarchy of generic wrappers, e.g., DB2
wrappers are specializations of general relational database
wrappers, etc.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 85

http://wwwis.win.tue.nl/wrapper04/

Wrapper can provide several types of query languages for
data sources, ranging from sophisticated query languages to
low-level data access interfaces. For example, XML or
HTML documents on the web, or legacy systems, are not
accessed through a query language but rather through a data
access interface. The wrapper must then provide enough
query processing capabilities. For example, [1] describes a
query enabling wrapper for web interfaces based on Xpath.
By contrast, if the wrapped XML documents are managed
by a system providing SQL interfaces, the wrapper is query
translating and mainly concerned with translating and
decomposing queries of the common query language used
by the mediator systems into queries of the wrapped data
source. Query translating wrappers can be complex, since a
data source with a query language such as SQL provides
opportunities for advanced optimization choices to split
work between the wrapper and the back-end query
processor, while a primitive non-query based data source
interface provides fewer choices for optimization [2].
Another important aspect of a wrapper/mediator system is
how it is accessed from other systems. For example, SQL
provides a well established standard for data access and a
mediator system providing standardized SQL interfaces,
such as IBM DB2 Information Integrator, can be used by
many applications. When legacy systems that use an
outdated interfaces, such as COBOL file access, are to be
left unchanged when upgrading to, say, relational database
technology, a component that wraps the relational databases
needs to be linked to the legacy application. This can be
done either by replacing the native COBOL API with the
wrapper (as with Microfocus COBOL), in which case the
programs are left unaltered, or by replacing the native I/O
statements with wrapper invocations, in which case the
programs have to be modified in a simple way that is
particularly easy to automate [4].

3.2 Evolution of the Models and Languages
Over the years, several models have been used for
describing wrapped data, such as the relational model which
has been frequently used. Since XML has become the
standard information exchange language through the Web,
there has been a shift to using it as the pivot modeling
language which the others have to be translated to or from
[3]. The recent trends are to use RDF [2]. This shift has
been motivated by the need for high level semantic
descriptions of web information for use in, e.g, reasoning
tools. The original use of XML was for tree-based
structuring of individual text documents. For these
documents DTDs provide a primitive schema definition
language. For more data-oriented use of XML, XML
Schema provides a sophisticated XML-based type and
structure system.
By contrast, the data model of RDF is based on triples,
<subject, predicate, object>, that can annotate any web
resource with arbitrary properties referencing other web
resources. The RDF model can be seen as a binary

relational data model with well-defined semantics based on
logic. An RDF database forms a graph of associations
between different web resources rather than an XML-
markup that describes a single document. The languages
built on top of RDF, e.g., RDF-Schema and OWL also are
formally based on logic, which makes them more appealing
than, e.g., XML Schema, for describing knowledge. This
makes XML and its derivatives suited for data integration
and high level reasoning.

4. TOPICS FOR FUTURE WORK
The observations drawn at the workshop and our
understanding of the whole area of wrapping yield a number
of open questions to be discussed in the future, possibly at
the next WRAP workshop. Open issues include:
• Both data and web wrappers may be leveraged using

Semantic Web technologies (e.g., Thesaurus or Ontology)
in order to infuse more context knowledge in the wrapper.

• Regardless of the type of wrapper, an important issue that
needs to be resolved is how these wrappers may be
developed or generated in an effective manner for
different kinds of data sources so that specific wrapper
interfaces can be generated for specific data sources. A
critical success factor for developing wrappers seems to
be to (semi-) automatically acquire deep generic
understanding about each kind of mapping between the
structure of the data sources and that of the data advertised
by the wrapper.

• Another research direction could be directed at making
wrappers more robust and enhance the automation degree;
this might be based on the integration of statistical
approaches/automated learning approaches in order to
make the wrapper framework more “intelligent”. It seems
especially important to overcome difficulties if the
structure of data (either provided on the web or in some
database/file system) is not entirely known a priori.

• Moreover, the evolution of wrappers, once in place, will
most likely become an important issue of future research.

• Lastly, the issue of which functionalities in a Mediator-
Wrapper system can be delegated to the wrapper will be
an interesting topic. E.g., some approaches rely on a
wrapper-supported query planning.

 REFERENCES
[1] Ch. Göldner, Th. Kabisch and J. G. Süß, Developing robust

wrapper-systems with Content Based Recognition, in WRAP,
2004.

[2] J. Petrini and T. Risch, Processing Queries over RDF views
of Wrapped Relational Databases, in WRAP, 2004.

[3] J. Vila and C. Costilla, Heterogeneous Data Extraction in
XML, in WRAP, 2004.

[4] J. Henrard, A. Cleve and J.-L. Hainaut, Inverse Wrappers for
Legacy Information Systems Migration, in WRAP, 2004.

86 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Exchange, Integration, and Consistency of Data.
Report on the ARISE/NISR Workshop.

Leopoldo Bertossi (Carleton University), Jan Chomicki (University at Buffalo),
Parke Godfrey (York University), Phokion G. Kolaitis (IBM Almaden Research Center),

Alex Thomo (University of Victoria), and Calisto Zuzarte (IBM CAS, Toronto Lab.)

1 Introduction

The “ARISE/NISR Workshop on Exchange and Integra-
tion of Data” was held at the IBM Center for Advanced
Studies, Toronto Lab., between October 7-9, 2004.

The Advanced Research Initiative for Software Excel-
lence (ARISE), now referred to as the National Institute
for Software Research (NISR), was founded by the Na-
tional Research Council’s Institute for Information Tech-
nology, the IBM Toronto Lab., the University of Toronto,
the University of Waterloo, and York University, as an ef-
fort to create a national institute that will enhance knowl-
edge in the area of software, helping Canada to increase
its competitive advantage in the field. NISR’s program in-
cludes the creation and support of workshops, seminars,
courses, and research projects. This first ARISE work-
shop was organized by Leopoldo Bertossi, Parke God-
frey, Paul Smith (IBM Toronto Lab.), and Calisto Zuzarte;
it congregated a large number of researchers. Details
and presentations are available at the workshop web site:
http://www.scs.carleton.ca/∼diis/arise/workshop.html.

2 Workshop Contents
Kelly Lyons (IBM Toronto Lab. and technical steer-
ing committee of NISR) provided the opening remarks.
The three keynote presentations, “INFOMIX: Data Inte-
gration meets Nonmonotonic Deductive Databases” by
Thomas Eiter, “Model Management: Generic Operators
for Schema Mappings and Database Integration” by Philip
A. Bernstein, and “Hyper: A Framework for P2P Infor-
mation Integration” by Maurizio Lenzerini, represented
well the three areas of research that emerged during
the workshop: (a) Virtual Data Integration; (b) Data Ex-
change and Schema Mappings; and (c) Inconsistency
Handling in Databases. It was particularly interesting to
see the connections between them. Data exchange and
mediator-based data integration share several ideas, con-
cepts, and techniques, but the corresponding communi-
ties have stayed relatively distant from each other. Con-
sistency issues naturally arise in both of them.

In data exchange, where data is shipped from a source
database in order to populate a target schema, integrity
constraints (ICs) imposed at the target level have to be
kept satisfied. Instead of restoring the consistency of data
at the target a posteriori, after the population process, a
more appealing alternative takes into account the ICs at

the target when the data mappings between the source
and the target are being established and/or used. In vir-
tual data integration there is no centralized consistency
maintenance mechanism that makes the data in the me-
diated system satisfy certain global ICs. Again, these ICs
have to be captured by the mappings between the sources
and the global schema or at query time [5], when global
queries are being answered. In the two scenarios, the plans
for data transfer or query answering have to deal with po-
tential inconsistencies of data.

Research around the management, mapping, and inte-
gration of database schemata is also relevant to both data
exchange and integration. It is common that research in
these two latter areas starts from given source and target
schemas on one side, or source and global schemas on
the other. Given those schemas, the problem is to design
exchange or query plans. However, there is not much re-
search that addresses the impact of schema design on the
latter tasks. This perception was an additional motivation
for gathering people from those different areas.

Industrial presentations gave overviews of trends in the
area of metadata management for information integra-
tion in the data warehousing industry, and of the IBM R©

DB2 R© Information Integrator (now called WebSphere R©

Information Integrator). A hands on demo of aspects
of federation, replication and enterprise search features
of WebSphere Information Integrator, can be found at
http://db2ii2.dfw.ibm.com/wps/myportal/!ut/p/.scr/LoggedIn.1

Break-out sessions were run in parallel around each of
the three areas mentioned above. Acting as group dis-
cussion leaders Alex Thomo (data integration), Phokion
Kolaitis (schema-mappings and data exchange), and Jan
Chomicki (consistency). The following sections describe
relevant research problems and trends that were identified
by the working groups.

3 Data Integration
In this session, the main focus was on view-based data in-
tegration. The goal of data integration is to provide a uni-
form interface for querying a collection of disparate and
heterogeneous data sources. The two main approaches,
namely the global-as-view (GAV) and the local-as-view
(LAV) were overviewed. In both, the user poses queries

1 DB2, IBM, and WebSphere are registered trademarks of In-
ternational Business Machines Corporation in the United
States, other countries, or both.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 87

on a mediated global schema. The main difference lies in
the way the data sources are represented. In GAV, each
data source exposes a view defined over the local schema,
and the view name is an element of the global schema. On
the other hand, in LAV, the data sources expose views de-
fined over the global schema. The pros and cons of each
approach are as follows. In GAV the query answering is
simple: It amounts to view unfolding. However, adding
sources to the data integration system is non-trivial. In
particular, given a new source, we need to figure out all
the ways in which it can be used to obtain tuples for each
of the views in the global schema, and this limits the abil-
ity of the GAV approach to scale to a large collection of
sources. In contrast, in the LAV approach each source is
described in isolation. It is the system’s task to figure out
(at query time) how the sources interact and how their data
can be combined. In this case, query answering and query
reformulation are harder, and sometimes require recursive
queries over the sources.

This session focused mostly on the LAV approach. It
was discussed that there is sometimes a confusion about
how the answer to a query should be characterized. There
are two ways of doing that. The first is syntactical: The
query answer is the one that can be computed by evalu-
ating the maximal view-based query rewriting expressed
in some fixed language. The second characterization is
semantical: We try to find the certain answers, that be-
long to all the answers sets that can be obtained on each
database that is consistent with the views (on the global
schema). The source of confusion is that these two char-
acterizations coincide in the case of conjunctive queries
and views. Thus, they have been often used interchange-
ably in previous works, but this coincidence is not true for
more complex queries and views, such as those containing
recursion.

As pointed out in [24], in the context of semistructured
data, a natural and quite general fragment of recursive
Datalog did emerge in the mid 1990s: The class of reg-
ular queries, whose basic element is that of regular path
queries. For such queries and views to compute the certain
answers is computationally hard. For example, to decide
whether a tuple is a certain answer is CoNP-complete with
respect to the size of data [10]. On the other hand, given
a view-based rewriting expressed in some fixed language
(e.g., regular language, or Datalog), computing the answer
is in PTIME on the size of the data. Clearly, the answer
computed by evaluating the maximal (w.r.t. to some fixed
language) view-based rewriting is only a subset of the cer-
tain answers, but this is often an acceptable approxima-
tion. In the session it was concluded that the best sources
of information regarding the rewriting-based answers vs.
certain answers, are the seminal papers [9, 10]. Moreover,
a recent important achievement was pointed out: In [11]
the notion of view-based containment and equivalence
for regular path queries was investigated and positively

solved. By using the solution in [11], one can test, in com-
pile time, whether a computed view-based rewriting will
generate the full certain answers when evaluated on the
views.

The session was concluded outlining some new promis-
ing directions for further research, among others, the opti-
mization of view-based rewritings and data-integration in
P2P systems.

4 Data Exchange and Metadata
This session focused on research issues and directions
in data exchange and metadata management. A common
thread in both these areas is the systematic use of schema-
mappings, which are high-level specifications in some
logical formalism that describe the relationships between
schemas.
Issues in data exchange. Data exchange is the problem of
taking data structured under a source schema and trans-
lating them into data structured under a target schema.
Although there are clear similarities with data integra-
tion, the main difference between the two frameworks is
that, given a source instance, the goal in data exchange
is to actually materialize a target instance such that (i)
it satisfies the specifications of the schema-mapping be-
tween the source schema and the target; (ii) it reflects
the given source data as accurately as possible. The chal-
lenges in data exchange arise because typically there are
more than one target instances (called solutions) that sat-
isfy the specifications of the schema-mapping. This state
of affairs raises both semantical issues and algorithmic is-
sues in data exchange: Given a source instance, which so-
lutions are better than others? Which solution should one
choose to materialize? How difficult is to compute such a
good solution? What is the semantics of target queries and
how difficult is it to evaluate such queries?

In recent years, the study of the theoretical under-
pinnings of data exchange has mainly centered on data
exchange settings between relational schemas and with
schema-mappings specified by source-to-target tuple gen-
erating dependencies that can be thought of as global-and-
local-as-view (GLAV) constraints [15, 16]. The next step
is to attempt to extend this study to richer data exchange
settings. One concrete direction is to study the semantics
of data exchange between semistructured schemas and
XML schemas, and to relate this investigation to the ac-
tual practice of existing data exchange tools, such as the
CLIO system [21].

During the break-out session, there was a vigorous dis-
cussion about rethinking the semantics of query answer-
ing in data exchange. Thus far, the certain answers seman-
tics has been used as the standard semantics in both data
exchange and data integration, and much of the research
has focused on the complexity of computing the certain
answers to target queries. The definition of the certain an-
swers is based on the entire space of solutions to the data

88 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

exchange problem. What is so sacred about this seman-
tics? Are there meaningful alternatives to the certain an-
swers semantics that also take into account the “pragmat-
ics” of the situation at hand? Is there a way to gauge the
“quality” of the answer to a query, in addition to mainly
focusing on the complexity of computing this answer?
Issues in metadata management. Schema-mappings are
metadata. Bernstein [4] has made a compelling case for
the importance of developing both the theory and the prac-
tice of metadata management, which in this framework,
is achieved by combining certain basic generic opera-
tors on schema-mappings, such as composition, merge,
match, and change. Repeated combinations of these op-
erators can produce complex transformations on schema-
mappings and can be used to analyze schema evolution.

The first main challenge in metadata management is to
develop rigorous semantics for each of the basic opera-
tors. Once this is achieved, the next challenge is to investi-
gate the properties of these operators for different schema-
mapping languages. One concrete issue has to do with the
closure properties of the schema-mapping languages. For
instance, is a given schema-mapping language closed un-
der composition? In other words, can the composition of
two schema-mappings be expressed in the same language
used to express each of the two schema-mappings? An-
other issue has to do with the algorithmic properties of the
basic operators and the schema-mapping languages used
to express them. In particular, for which schema-mapping
languages can the outputs of these operators be efficiently
computed? Progress has been made in the study of sev-
eral operators, including composition [20, 17] and merge
[22]. Nonetheless, much more remains to be done for the
remaining operators.

Another major challenge in this area is the development
of better user interfaces for visualizing and manipulat-
ing schema-mappings. Techniques from other areas, such
as graph drawing, may have a role to play in designing
more effective user interfaces that will make it possible to
achieve large-scale metadata management.

Finally, there is a need to create a suite of benchmarks
to be used to carry out experiments to compare tools for
data exchange and metadata management. Research in
this area will undoubtedly benefit from the existence of
a public-domain repository with data, schemas that have
evolved over time, complex schema-mappings, and chal-
lenging queries. Building such a repository will be a real
service to the community and will advance the field.

5 Handling Inconsistency of Data
The notion of inconsistency has been extensively studied
in many contexts. In classical logic, an inconsistent set of
formulas implies every formula (triviality). In databases,
a database instance is inconsistent if it does not satisfy in-
tegrity constraints (ICs) (constraint violation). Those two
kinds of inconsistency are closely related. Triviality is not

a problem in the database context because the semantics
of query answers does not take into account ICs.

Inconsistent databases arise in data integration, during
long-running database activities, and in other situations
in which ICs cannot or would not be enforced. In order
to deal with inconsistency in a flexible manner, database
research has developed different approaches that we will
illustrate using a simple example.

Consider a database schema consisting of two unary
relations P and Q and the IC: ∀x.¬(P (x) ∧ Q(x)). As-
sume a database instance consists of the following facts:
{P (a), Q(a), P (b)}. Under prevention (usual constraint
enforcement), such an instance could not arise: only one
of P (a) and Q(a) could be inserted into the database. Un-
der ignorance (constraint non-enforcement), no distinc-
tion is made between P (a) and P (b), despite that the
latter, not being involved in a constraint violation, ap-
pears to represent more reliable information. Under iso-
lation [7], both P (a) and Q(a) would be dropped (or
ignored in query answering). Under weakening [3, 19],
P (a) and Q(a) would be replaced by P (a) ∨ Q(a) or
some other form of disjunctive information. Allowing ex-
ceptions [6], means that the constraint is weakened to
∀x.¬(P (x) ∧ Q(x) ∧ x �= a). Materialized repairing
[14] produces a repair: a consistent instance minimally
different from the original one, in this case {P (a), P (b)}
or {Q(a), P (b)}. Virtual repairing [1] does not change
the database but rather returns query answers true in all
repairs (consistent query answers). So the query asking
for all such x that P (x) is true, returns only x = b. Fi-
nally, under the attack/support approach [23], P (a) at-
tacks Q(a) and vice versa, and thus the support for both
is lower than for P (b).

Research has focused on materialized or virtual repair-
ing, and different notions of repair have been proposed, to
capture the notion of minimal change in different ways [1,
8, 25]. Also, different evaluation mechanisms for comput-
ing consistent query answers have been developed and the
complexity of this problem studied [2, 13, 18, 8, 12].

The following research issues in the area of inconsistent
databases were viewed as important by the participants:
1. How to generalize/integrate/parameterize existing ap-
proaches to the computation of consistent query answers.
2. What kind of preferences are useful and do they help?
Although preferences may reduce the number of repairs,
they introduce additional minimization criteria, which
may negatively influence computational complexity.
3. Should null and default values be considered in con-
structing repairs?
4. How to identify contexts suitable for a specific notion
or repair. For example, if the database is assumed to be
complete, all repairs are obtained by deleting facts. How-
ever, in the absence of such an assumption, insertions of
facts should also be considered.
5. How to integrate inconsistency resolution with various

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 89

data cleaning tasks: Data normalization/standardization,
record linkage and merging.
6. How to design more powerful query languages by cap-
turing the notion of possible query answer (answer true
in some repair) and embedding the computation of both
consistent and possible answers in a first-order query lan-
guage.
7. How to deal with intractability. Trade-offs between ex-
pressive power and complexity should be further identi-
fied and approximate answers, possibly with confidence
factors, studied.
8. How to test different algorithms. Measures of incon-
sistency should be defined and the issue of benchmarking
and systematically generating inconsistent data explored.
9. How to generalize current approaches to repairing to
XML databases and various data integration scenarios
(e.g., data exchange, peer-to-peer). In such scenarios an
inconsistent database is not necessarily stored but vir-
tual, which creates additional challenges for repairing and
computation of consistent query answers. Some current
approaches to data integration presently ignore data in-
consistencies and have to be extended to deal with them.

References

1. Arenas, M., Bertossi, L. and Chomicki, J. Consistent
Query Answers in Inconsistent Databases. In ACM Sym-
posium on Principles of Database Systems (PODS), pp.
68–79, 1999.

2. Arenas, M., Bertossi, L. and Chomicki, J. Answer
Sets for Consistent Query Answering in Inconsistent
Databases. Theory and Practice of Logic Programming,
3(4–5):393–424, 2003.

3. Baral, C., Kraus, S., Minker, J. and Subrahmanian, V.S.
Combining Knowledge Bases Consisting of First-Order
Theories. Computational Intelligence, 8:45–71, 1992.

4. Bernstein, P. A. Applying Model Management to Clas-
sical Meta-Data Problems. In Conference on Innovative
Data Systems Research (CIDR). 209–220, 2003.

5. Bertossi, L. and Bravo, L. Consistent Query Answers in
Virtual Data Integration Systems. In Inconsistency Toler-
ance, Springer LNCS 3300, 2004, pp. 42-83.

6. Borgida, A. Language Features for Flexible Handling of
Exceptions in Information Systems. Proc. ACM Transac-
tions on Database Systems, 10(4):565–603, 1985.

7. Bry, F. Query Answering in Information Systems with
Integrity Constraints. In IFIP WG 11.5 Working Confer-
ence on Integrity and Control in Information Systems, pp.
113–130. Chapman &Hall, 1997.

8. Calı̀, A., Lembo, D. and Rosati, R. On the Decidability
and Complexity of Query Answering over Inconsistent
and Incomplete Databases. Proc. ACM Symposium on
Principles of Database Systems (PODS), pp. 260–271,
2003.

9. Calvanese D., De Giacomo, G., Lenzerini, M. and Vardi,
M.Y. Rewriting of Regular Expressions and Regular
Path Queries. Proc. ACM Symposium on Principles of
Database Systems (PODS), pp. 194–204, 1999.

10. Calvanese D., De Giacomo, G., Lenzerini, M. and Vardi,
M.Y. Answering Regular Path Queries Using Views.
Proc. International Conference on Data Engineering
(ICDE), pp. 389–398, 2000.

11. Calvanese D., De Giacomo, G., Lenzerini, M. and Vardi,
M.Y. View-based Query Containment. Proc. ACM Sym-
posium on Principles of Database Systems (PODS), pp.
56–67, 2003.

12. Chomicki, J. and Marcinkowski, J. Minimal-Change In-
tegrity Maintenance Using Tuple Deletions. Information
and Computation, 197(1-2):90-121, 2005.

13. Eiter, T., Fink, M., Greco, G. and Lembo, D. Effi-
cient Evaluation of Logic Programs for Querying Data
Integration Systems. Proc. International Conference
on Logic Programming (ICLP), pp. 163–177. Springer-
Verlag, LNCS 2916, 2003.

14. Embury, S.M., Brandt, S.M., Robinson, J.S., Sutherland,
I., Bisby, F.A., Gray, W.A., Jones, A.C. and White, R.J.
Adapting integrity enforcement techniques for data rec-
onciliation. Information Systems, 26(8):657–689, 2001.

15. Fagin, R., Kolaitis, Ph. G., Miller, R. J., and Popa, L. Data
Exchange: Semantics and Query Answering. In Interna-
tional Conference on Database Theory (ICDT). 207–224,
2003.

16. Fagin, R., Kolaitis, Ph. G., and Popa, L. Data Exchange:
Getting to the Core. In ACM Symposium on Principles of
Database Systems (PODS). 90–101, 2003.

17. Fagin, R., Kolaitis, Ph.G., Popa, L., and Tan, W.-C. Com-
posing Schema Mappings: Second-Order Dependencies
to the Rescue. In ACM Symposium on Principles of
Database Systems (PODS). 83-94, 2004.

18. Greco, G., Greco, S. and Zumpano, E. A Logical Frame-
work for Querying and Repairing Inconsistent Databases.
IEEE Transactions on Knowledge and Data Engineering,
15(6):1389–1408, 2003.

19. Lin, J. and Mendelzon, A.O. Merging Databases under
Constraints. International Journal of Cooperative Infor-
mation Systems, 7(1):55–76, 1996.

20. Madhavan, J. and Halevy, A. Y. Composing Mappings
Among Data Sources. In International Conference on
Very Large Data Bases (VLDB). 572–583, 2003.

21. Popa, L., Velegrakis, Y., Miller, R. J., Hernandez, M. A.,
and Fagin, R. Translating Web Data. In International
Conference on Very Large Data Bases (VLDB). 598–609,
2002.

22. Pottinger, R., and Bernstein, P. A., Merging Models
Based on Given Correspondences In International Con-
ference on Very Large Data Bases (VLDB). 826-873,
2003.

23. Pradhan, S. Argumentation Databases. Proc. Interna-
tional Conference on Logic Programming (ICLP), pp.
178–193. Springer-Verlag, LNCS 2916, 2003.

24. Vardi. M. Y. A Call to Regularity. Proc. PCK50 - Prin-
ciples of Computing & Knowledge, Paris C. Kanellakis
Memorial Workshop ’03, pp. 11.

25. Wijsen, J. Condensed Representation of Database Re-
pairs for Consistent Query Answering. Proc. Interna-
tional Conference on Database Theory (ICDT), pages
378–393. Springer-Verlag, LNCS 2572, 2003.

90 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Query Answering Exploiting Structural Properties∗

Francesco Scarcello
DEIS, Università della Calabria, Italy

scarcello@unical.it

ABSTRACT
We review the notion of hypertree width, a measure of the degree
of cyclicity of hypergraphs that is useful for identifying and solv-
ing efficiently easy instances of hard problems, by exploiting their
structural properties. Indeed, a number of relevant problems from
different areas, such as database theory, artificial intelligence, and
game theory, are tractable when their underlying hypergraphs have
small (i.e., bounded by some fixed constant) hypertree width. In
particular, we describe how this notion may be used for identifying
tractable classes of database queries and answering such queries in
an efficient way.

1. INTRODUCTION
In this paper we deal with the fundamental problem of evaluating
queries in relational databases, focusing on recently proposed tech-
niques based on structural properties of the queries. For the sake
of simplicity, we consider conjunctive queries (CQs), though most
results may be easily extended to more general queries. The class
CQ, equivalent in expressive power to the class of Select-Project-
Join queries, is probably the most thoroughly analyzed class of
database queries. Note that the great interest in conjunctive queries
is also due to the fact that CQ evaluation is essentially the same
problem as conjunctive query containment [6], which is of central
importance in view-based query processing [2], and constraint sat-
isfaction, which is one of the major problems studied in the field of
AI (see, e.g., Vardi’s survey paper [47] on the interactions between
the areas of query evaluation and constraint satisfaction).

Recall that database management systems (DBMSs) have special-
ized modules, called query optimizers, looking for good ways to
deal with any given query. For all commercial DBMSs, such a
way is always based on quantitative methods: they examine a num-
ber of alternative plans for answering a query and then choose the
best one, according to some cost model. These planners exploit in-
formation on the data, e.g., sizes of relations, indices, and so on.
In fact, all of them compute just approximations of optimal query
plans, as the optimization problem is NP-hard, in general. See [39]
for a short survey of quantitative methods and for further refer-
ences.

A completely different approach to query answering is based on
structural properties of queries, rather than on quantitative informa-
tion about data values. Exploiting such properties is possible to an-
swer large classes of queries efficiently, that is, with a polynomial-
time upper bound. The structure of a query Q is best represented

∗Database Principles Column. Column editor: Leonid Libkin,
Department of Computer Science, University of Toronto, Toronto,
Ontario M5S 3H5, Canada. E-mail:libkin@cs.toronto.edu

by its query hypergraph H(Q) = (V, H), whose set V of vertices
consists of all variables occurring in Q, and where the set H of
hyperedges contains, for each query atom A, the set var(A) of all
variables occurring in A. As an example, consider the following
query
Q0: ans ← s1(A,B, D) ∧ s2(B, C, D) ∧ s3(B, E) ∧
s4(D, G) ∧ s5(E, F, G) ∧ s6(E, H) ∧ s7(F, I) ∧ s8(G, J).
Figure 1 shows its associated hypergraph H(Q0).

One of the most important and deeply studied class of tractable
queries is the class of acyclic queries [5, 7, 9, 14, 28, 33, 37,
48, 49]. It was shown that acyclic queries coincide with the tree
queries [4], see also [1, 30, 43]. The latter are queries whose
query hypergraph has a join tree (or join forest) (see Section 3 for
a formal definition). By well-known results of Yannakakis [48],
acyclic conjunctive queries are efficiently solvable. More precisely,
all answers of an acyclic conjunctive query can be computed in
time polynomial in the combined size of the input and the output.
This is the best possible result, because in general the answer of a
query may contain an exponential number of tuples. Recall that, for
cyclic queries, even computing small outputs, e.g. just one tuple,
or checking whether the answer of a query is non-empty (Boolean
queries) requires exponential time (unless P = NP) [6].

Therefore, many attempts have been made in the literature for ex-
tending the good results about acyclic conjunctive queries to rel-
evant classes of nearly acyclic queries. We call these techniques
structural query decomposition methods,1 because they are based
on the acyclicization of cyclic (hyper)graphs. More precisely,
each method specifies how appropriately transforming a conjunc-
tive query into an equivalent tree query (i.e., acyclic query given
in form of a join tree), by organizing its atoms into a polynomial
number of clusters, and suitably arranging the clusters as a tree
(see Figure 1). Each cluster contains a number of atoms. After per-
forming the join of the relations corresponding to the atoms jointly
contained in each cluster, we obtain a join tree of an acyclic query
which is equivalent to the original query. The resulting query can
be answered in output-polynomial time by Yannakakis’s algorithm.
Thus, in case of a Boolean query, it can be answered in polynomial
time. The tree of atom-clusters produced by a structural query de-
composition method on a given query Q is referred to as the decom-
position of Q. Figure 1 also shows two possible decompositions of
our example query Q0. A decomposition of Q can be seen as a
query plan for Q, requiring to first evaluate the join of each cluster,
and then to process the resulting join tree in a bottom-up fashion
(following Yannakakis’s algorithm).

1In the field of constraint satisfaction, the same notion is known as
structural CSP decomposition method, cf. [15].

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 91

s s
1 2
(A,B,D), (B,C,D)

s s
1 3
(A,B,D), (B,E)

s
6
(E,H) s s

3 4
(B,E), (D,G)

s
8
(G,J) s

5
(E,F,G)

s
7
(F,I)

s s
1 5
(A,B,C), (E,F,G)

s
6
(E,H) s

2
(B,C,D) s

3
(B,E) s

4
(D,G)s

7
(F,I)s

8
(G,J)

s
1

s
2 s

3
s

5

s
4

s
6

s
7

s
8

AA

B

C

D

E

F

G

H

I

J

Figure 1: Hypergraph H(Q0) (left), two hypertree decompositions of width 2 ofH(Q0) (right and bottom).

Thus, the efficiency of a structural decomposition method essen-
tially depends on the maximum size of the produced clusters, mea-
sured (according to the chosen decomposition method) either in
terms of the number of variables or in terms of the number of
atoms. For a given decomposition, this size is referred-to as the
width of the decomposition. For example, if we adopt the number
of atoms, then the width of both decompositions shown in Figure 1
is 2. Intuitively, the complexity of transforming a given decompo-
sition into an equivalent tree query is exponential in its width w. In
fact, the evaluation cost of each of the (polynomially many) clus-
ters is bounded by the cost of performing the (at most) w joins of its
relations, which is in turn bounded by O(|rmax|w−1 log |rmax|),
where |rmax| denotes the size of the largest relation rmax in the
database. The overall cost (transformation+evaluation of the re-
sulting acyclic query) is thus O(v|rmax|w−1 log |rmax|), where
v is the number of vertices of the decomposition tree. It is
worthwhile noting that, for queries involving many atoms, exploit-
ing such a structural information may lead to a quite remarkable
computational saving. For instance, the above upper bound is
O(7|rmax| log |rmax|) for the query in Figure 1, whereas typi-
cal query answering algorithms would take O(|rmax|7 log |rmax|)
time, in the worst case.

In general, a rough upper bound for the cost of answering a
given query Q according to any structural method D is given by
O(nw+1 log n), where w is the D-width of Q and n is the total
size of the input problem, that is, the size of the query and of the
database encoding [15]. Therefore, once we fix a bound k for such
a width, the structural method D identifies a class of queries that
can be answered in polynomial time, namely, the class of all queries
having k-bounded D-width (i.e., D-width at most k).2 The main
structural decomposition methods are based on the notions of Bi-
connected Components [11], Tree Decompositions [35, 7, 28, 8,
25, 10], Hinge Decompositions [26], and Hypertree Decomposi-
tions [18, 19, 21, 40].

Among them, the Hypertree Decomposition Method (HYPER-
TREE) seems to be the most powerful method, as a large class of
cyclic queries has a low hypertree-width, and in fact it strongly
generalizes all other structural methods [15]. More precisely,

2Intuitively, the D-width of a query Q is the minimum width of the
decompositions of Q obtainable by method D.

this means that every class of queries that is recognized as
tractable according to any structural method D (has k-bounded D-
width), is also tractable according to HYPERTREE (has k-bounded
HYPERTREE-width), and that there are classes of queries that are
tractable according to HYPERTREE, but not tractable w.r.t. D
(have unbounded D-width). Moreover, for any fixed k > 0, de-
ciding whether a hypergraph has hypertree width at most k is feasi-
ble in polynomial time, and is actually highly parallelizable, as this
problem belongs to LOGCFL [19] (See [36, 17], for properties and
characterizations of this complexity class). In fact, it has been con-
jectured that a class of queries is tractable if and only the cores of
their structures have bounded hypertree width (under some widely
believed complexity-theoretic assumptions) [24]. The first part of
this paper is devoted to the presentation of the main results about
hypertree decompositions.

Despite their very nice computational properties, all the above
structural decomposition methods, including Hypertree Decompo-
sition, are often unsuited for some real-world applications. For
instance, in a practical context, one may prefer query plans (i.e.,
minimum-width decompositions) which minimize the number of
clusters having the largest cardinality. Even more importantly, de-
composition methods focus “only” on structural features, while
they completely disregard “quantitative” aspects of the query, that
may dramatically affect the query-evaluation time. For instance,
while answering a query, the computation of an arbitrary hypertree
decomposition (having minimum width) could not be satisfactory,
since it does not take into account important quantitative factors,
such as relation sizes, attribute selectivity, and so on. These fac-
tors are flattened in the query hypergraph (which considers only the
query structure), while their suitable exploitation can significantly
reduce the cost of query evaluation.

On the other hand, query optimizers of commercial DBMSs are
based solely on quantitative methods and do not care of structural
properties at all. Indeed, all the commercial DBMSs restrict the
search space of query plans to very simple structures (e.g., left-
deep trees), and then try to find the best plans among them, by es-
timating their evaluation costs, exploiting quantitative information
on the input database. It follows that, on some low-width queries
with a guaranteed polynomial-time evaluation upper-bound, they
may also take time O(n�), which is exponential in the length � of

92 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

the query, rather than on its width. On some relevant applications
with many atoms involved, this may lead to unacceptable costs. For
instance, consider the problem of the population and refreshing of
cubes in data warehouse initialization and management. Period-
ically, a number of batch queries are executed on the reconciled
operational database. Note that these queries are typically very
different from OLAP queries. Indeed, while the latter queries are
executed on star schemes (or similar simple schemes), these popu-
lating queries usually span several tables in the reconciled scheme
in order to update both dimension and fact tables. Thus, they are
very often long queries involving many join operations, plus selec-
tions, projections and, possibly, grouping and aggregate operators.
In this context, the choice of a good query-execution strategy is
therefore particularly relevant, because the differences among exe-
cution times can be several orders of magnitude large. In fact, very
often such queries are not very intricate and have low hypertree
width, though they are not necessarily acyclic.

To overcome the above mentioned drawbacks of both approaches,
we proposed an extension of hypertree decompositions, in order
to combine this structural decomposition method with quantita-
tive approaches [41]. In the second part of this paper, we re-
view the main results on this generalized notion of HYPERTREE,
where hypertree decompositions are equipped with polynomial-
time weight functions that may encode quantitative aspects of the
query database, or other additional requirements. In general, com-
puting a minimal weighted-decomposition is harder than comput-
ing a standard decomposition. However, we present a class of func-
tions, called tree aggregation functions (TAFs), which is useful for
query optimization and easy to deal with.

We describe how the notion of weighted hypertree decomposition
can be used for generating effective query plans for the evaluation
of conjunctive queries, by combining structural and quantitative in-
formation. We also briefly report some results of an ongoing ex-
perimental activity, showing that this hybrid approach may in fact
lead to significant computational savings.

2. QUERIES AND ACYCLIC HYPER-
GRAPHS

We will adopt the standard convention [1, 43] of identifying a rela-
tional database instance with a logical theory consisting of ground
facts. Thus, a tuple 〈a1, . . . ak〉, belonging to relation r, will be
identified with the ground atom r(a1, . . . , ak). The fact that a tu-
ple 〈a1, . . . , ak〉 belongs to relation r of a database instance DB is
thus simply denoted by r(a1, . . . , ak) ∈ DB.

A (rule-based) conjunctive query Q on a database schema DS =
{R1, . . . , Rm} consists of a rule of the form

Q : ans(u)← r1(u1) ∧ · · · ∧ rn(un),

where n ≥ 0; r1, . . . rn are relation names (not necessarily dis-
tinct) of DS; ans is a relation name not in DS; and u,u1, . . . ,un

are lists of terms (i.e., variables or constants) of appropriate length.
The set of variables occurring in Q is denoted by var(Q). The set
of atoms contained in the body of Q is referred to as atoms(Q).

The answer of Q on a database instance DB with associated uni-
verse U , consists of a relation ans, whose arity is equal to the
length of u, defined as follows. Relation ans contains all tuples
uθ such that θ : var(Q) −→ U is a substitution replacing each
variable in var(Q) by a value of U and such that for 1 ≤ i ≤ n,
ri(ui)θ ∈ DB. (For an atom A, Aθ denotes the atom obtained from

A by uniformly substituting θ(X) for each variable X occurring in
A.)

If Q is a conjunctive query, we define the hypergraph H(Q) =
(V, E) associated to Q as follows. The set of vertices V , denoted
by var(H(Q)), consists of all variables occurring in Q. The set
E, denoted by edges(H(Q)), contains for each atom ri(ui) in
the body of Q a hyperedge consisting of all variables occurring in
ui. Note that the cardinality of edges(H(Q)) can be smaller than
the cardinality of atoms(Q), because two query atoms having ex-
actly the same set of variables in their arguments give rise to only
one edge in edges(H(Q)). For example, the three query atoms
r(X, Y), r(Y, X), and s(X, X, Y) all correspond to a unique hy-
peredge {X, Y }.

A query Q is acyclic if and only if its hypergraph H(Q) is acyclic
or, equivalently, if it has has a join forest. A join forest for the
hypergraph H(Q) is a forest G whose set of vertices VG is the set
edges(H(Q)) and such that, for each pair of hyperedges h1 and h2

in VG having variables in common (i.e., such that h1 ∩ h2
= ∅),
the following conditions hold:

1. h1 and h2 belong to the same connected component of G,
and

2. all variables common to h1 and h2 occur in every vertex on
the (unique) path in G from h1 to h2.

If G is a tree, then it is called a join tree for H(Q).

Intuitively, the efficient behavior of acyclic instances is due to the
fact that they can be evaluated by processing any of their join trees
bottom-up by performing upward semijoins, thus keeping the size
of the intermediate relations small (while it could become exponen-
tial, if regular join were performed).

Let us recall the highly desirable computational properties of
acyclic queries:

1. Acyclic instances can be efficiently solved. Yannakakis pro-
vided a (sequential) polynomial time algorithm for Boolean
acyclic queries3. Moreover, he showed that the answer of a
non-Boolean acyclic conjunctive query can be computed in
time polynomial in the combined size of the input instance
and of the output relation [48].

2. We have shown that answering queries is highly paralleliz-
able on acyclic queries, as this problem (actually, the deci-
sion problem of answering Boolean queries) is complete for
the low complexity class LOGCFL [18]. Efficient parallel
algorithms for Boolean and non-Boolean queries have been
proposed in [18] and [16]. They run on parallel database ma-
chines that exploit the inter-operation parallelism [44], i.e.,
machines that execute different relational operations in par-
allel. These algorithms can be also employed for solving
acyclic queries efficiently in a distributed environment.

3. Acyclicity is efficiently recognizable: deciding whether a hy-
pergraph is acyclic is feasible in linear time [42] and belongs
to the class L (deterministic logspace). The latter result is

3Note that, since both the database DB and the query Q are part of
an input-instance, what we are considering is the combined com-
plexity of the query [46].

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 93

new: it follows from the fact that hypergraph acyclicity be-
longs to SL [17], and from the very recent proof that SL is in
fact equal to L [34].

3. HYPERTREE DECOMPOSITIONS
We recall the formal definition and the most important results about
hypertree width and hypertree decompositions.

A hypertree for a hypergraph H is a triple 〈T, χ, λ〉, where T =
(N, E) is a rooted tree, and χ and λ are labeling functions which
associate to each vertex p ∈ N two sets χ(p) ⊆ var(H) and
λ(p) ⊆ edges(H). The width of a hypertree is the cardinality of
its largest λ label, i.e., maxp∈N |λ(p)|.

We denote the set of vertices of any rooted tree T by vertices(T),
and its root by root(T). Moreover, for any p ∈ vertices(T), Tp

denotes the subtree of T rooted at p. If T ′ is a subtree of T , we
define χ(T ′) =

⋃
v∈vertices(T ′) χ(v).

Definition 3.1 [21]A generalized hypertree decomposition of a
hypergraphH is a hypertree HD = 〈T, χ, λ〉 forH which satisfies
the following conditions:

1. For each edge h ∈ edges(H), all of its variables occur to-
gether in some vertex of the decomposition tree, that is, there
exists p ∈ vertices(T) such that h ⊆ χ(p) (we say that p
covers h).

2. Connectedness Condition: for each variable Y ∈ var(H),
the set {p ∈ vertices(T) | Y ∈ χ(p)} induces a (con-
nected) subtree of T .

3. For each vertex p ∈ vertices(T), variables in the χ labeling
should belong to edges in the λ labeling, that is, χ(p) ⊆
var(λ(p)).

A hypertree decomposition is a generalized hypertree decomposi-
tion that satisfies the following additional condition:

4. Special Descendant Condition: for each p ∈ vertices(T),
var(λ(p)) ∩ χ(Tp) ⊆ χ(p).

The HYPERTREE width hw(H) (resp., generalized hypertree
width ghw(H)) of H is the minimum width over all its hypertree
decompositions (resp., generalized hypertree decompositions).

An edge h ∈ edges(H) is strongly covered in HD if there exists
p ∈ vertices(T) such that var(h) ⊆ χ(p) and h ∈ λ(p). In this
case, we say that p strongly covers h. A decomposition HD of hy-
pergraphH is a complete decomposition ofH if every edge ofH is
strongly covered in HD. From any (generalized) hypertree decom-
position HD ofH, we can easily compute a complete (generalized)
hypertree decomposition ofH having the same width.

Note that the notions of hypertree width and generalized hypertree
width are true generalizations of acyclicity, as the acyclic hyper-
graphs are precisely those hypergraphs having hypertree width and
generalized hypertree width one. In particular, as we will see in
the next section, the classes of conjunctive queries having bounded
(generalized) hypertree width have the same desirable computa-
tional properties as acyclic queries [19].

At first glance, a generalized hypertree decomposition of a hyper-
graph may simply be viewed as a clustering of the hyperedges (i.e.,
query atoms) where the classical connectedness condition of join
trees holds. However, a generalized hypertree decomposition may
deviate in two ways from this principle: (1) A hyperedge already
used in some cluster may be reused in some other cluster; (2) Some
variables occurring in reused hyperedges are not required to fulfill
any condition.

For a better understanding of this notion, let us focus on the two
labels associated with each vertex p: the set of hyperedges λ(p),
and the set of effective variables χ(p), which are subject to the con-
nectedness condition (2). Note that all variables that appear in the
hyperedges of λ(p) but that are not included in χ(p) are “ineffec-
tive” for v and do not count w.r.t. the connectedness condition.
Thus, the χ labeling plays the crucial role of providing a join-tree
like re-arranging of all connections among variables. Besides the
connectedness condition, this re-arranging should fulfill the fun-
damental Condition 1: every hyperedge (i.e., query atom, in our
context) has to be properly considered in the decomposition, as for
graph edges in tree-decompositions and for hyperedges in join trees
(where this condition is actually even stronger, as hyperedges are
in a one-to-one correspondence with vertices of the tree). Since the
only relevant variables are those contained in the χ labels of ver-
tices in the decomposition tree, the λ labels are “just” in charge of
covering such relevant variables (Condition 3) with as few hyper-
edges as possible. Indeed, the width of the decomposition is deter-
mined by the largest λ label in the tree. This is the most important
novelty of this approach, and comes from the specific properties
of hypergraph-based problems, where hyperedges often play a pre-
dominant role. For instance, think of our database framework: the
cost of evaluating a natural join operation with k atoms (read: k hy-
peredges) is O(nk−1 log n), no matter of the number of variables
occurring in the query.

Example 3.2 Consider the following conjunctive query Q1:

ans ← a(S,X, X ′, C, F) ∧ b(S, Y, Y ′, C′, F ′)
∧ c(C, C′, Z) ∧ d(X, Z) ∧
e(Y,Z) ∧ f(F, F ′, Z′) ∧ g(X ′, Z′) ∧
h(Y ′, Z′) ∧ j(J, X, Y, X ′, Y ′).

Let H1 be the hypergraph associated to Q1. Since H1 is cyclic,
hw(H1) > 1 holds. Figure 2 shows a (complete) hypertree de-
composition HD1 ofH1 having width 2, hence hw(H1) = 2.

In order to help the intuition, Figure 3 shows an alternative repre-
sentation of this decomposition, called atom (or hyperedge) repre-
sentation [19]: each node p in the tree is labeled by a set of atoms
representing λ(p); χ(p) is the set of all variables, distinct from ‘ ’,
appearing in these hyperedges. Thus, in this representation, pos-
sible occurrences of the anonymous variable ‘ ’ take the place of
variables in var(λ(p)) − χ(p).

Another example is depicted in Figure 1, which shows two hyper-
tree decompositions of query Q0 in Section 1. Both decomposi-
tions have width two and are complete decompositions of Q0. �

Let k be a fixed positive integer. We say that a CQ instance I has
k-bounded (generalized) hypertree width if (g)hw(H(I)) ≤ k. A
class of queries has bounded (generalized) hypertree width if there
is some k ≥ 1 such that all instances in the class have k-bounded
(generalized) hypertree width.

94 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

{X′, Y ′, F, F ′, Z′} {j, f}{X, Y, C, C′, Z} {j, c}

{X′, Z′} {g} {Y ′, Z′} {h}{X, Z} {d}

{X, X′, Y, Y ′, S, C, C′, F, F ′} {a,b}

{J, X, Y, X′, Y ′} {j}

{Y, Z} {e}

Figure 2: A 2-width hypertree decomposition of hypergraph
H1 in Example 3.2

a(S, X, X′, C, F), b(S, Y, Y ′, C′, F ′
)

j(J, X, Y, X′, Y ′
)

e(Y, Z)

j(, X, Y, ,), c(C, C′, Z) j(, , , X′, Y ′
), f(F, F ′, Z′

)

d(X, Z) g(X′, Z′
) h(Y ′, Z′

)

Figure 3: Atom representation of the hypertree decomposition
in Figure 2

Clearly enough, choosing a tree and a clever combination of χ and
λ labeling for its vertices in order to get a decomposition below
a fixed threshold width k is not that easy, and is definitely more
difficult than computing a simple tree decomposition, where only
variables are associated with each vertex. In fact, the tractability
of generalized hypertree width is an interesting open problem, as
no polynomial time algorithm is known for deciding whether a hy-
pergraph has generalized hypertree width at most k, for any fixed
k ≥ 2.

It is thus very nice and somehow surprising that dealing with the
hypertree width is a very easy task. More precisely, for any fixed
k ≥ 1, deciding whether a given hypergraph has hypertree width
at most k is in LOGCFL, and thus it is a tractable and highly paral-
lelizable problem. Correspondingly, the search problem of comput-
ing a k-bounded hypertree decomposition belongs to the functional
version of LOGCFL, which is LLOGCFL [19]. See the Hypertree
Decomposition Homepage [40], for available implementations of
algorithms for computing hypertree decompositions, and further
links to heuristics and other papers on this subject.

Let us briefly discuss the only difference of hypertree decomposi-
tion with respect to generalized hypertree decomposition, that is,
the descendant condition (Condition 4 in Definition 3.1). Consider
a vertex p of a hypertree decomposition and a hyperedge h ∈ λ(p)
such that some variables X̄ ⊆ h occur in the χ labeling of some
vertices in the subtree Tp rooted at p. Then, according to this con-

dition, these variables must occur in χ(p), too. This means, intu-
itively, that we have to deal with variables in X̄ at this point of the
decomposition tree, if we want to put h in λ(p). For instance, as a
consequence of this condition, for the root r of any hypertree de-
composition we always have χ(r) = var(λ(r)). However, once
a hyperedge has been covered by some vertex of the decomposi-
tion tree, any subset of its variables can be used freely in order to
decompose the remaining cycles in the hypergraph.

To shed more light on this restriction, consider what happens in the
related hypergraph-based notions: in query decompositions [7], all
variables are relevant; at the opposite side, in generalized hypertree
decompositions, we can choose as relevant variables any subset of
variables occurring in λ, without any limitation; in hypertree de-
compositions, we can choose any subset of relevant variables as
long as the above descendant condition is satisfied. Therefore, the
notion of hypertree width is clearly more powerful than the (in-
tractable) notion of query width, but less general than the (proba-
bly intractable) notion of generalized hypertree width, which is the
most liberal notion.

For instance, look at Figure 3: the variables in the hyperedge cor-
responding to atom j inH1 are jointly included only in the root of
the decomposition, while we exploit two different subsets of this
hyperedge in the rest of the decomposition tree. Note that the de-
scendant condition is satisfied. Take the vertex at level 2, on the
left: the variables j, X′ and Y ′ are not in the χ label of this vertex
(they are replaced by the anonymous variable ‘ ’), but they do not
occur anymore in the subtree rooted at this vertex. On the other
hand, if we were forced to take all the variables occurring in every
atom in the decomposition tree, it would not be possible to find a
decomposition of width 2. Indeed, j is the only atom containing
both pairs X, Y and X′, Y ′, and it cannot be used again entirely,
for its variable J cannot occur below the vertex labeled by a and b,
otherwise it would violate the connectedness condition (i.e., Con-
dition 2 of Definition 3.1). In fact, every query decomposition of
this hypergraph has width 3, while the hypertree width is 2. In this
case the generalized hypertree width is 2, as well, but in general
it may be less than the hypertree width. However, after a recent
interesting result by Adler et al. [3], the difference of these two
notions of width is within a constant factor: for any hypergraphH,
ghw(H) ≤ hw(H) ≤ 3ghw(H) + 1. It follows that a class of
hypergraphs has bounded generalized hypertree width if and only
if it has bounded hypertree width, and thus the two notions identify
the same set of tractable classes.

Though the formal definition of hypertree width is rather involved,
it is worthwhile noting that this notion has very natural characteri-
zations in terms of games and logics [21]:

• The robber and marshals game (R&Ms game). It is
played by one robber and a number of marshals on a hyper-
graph. The robber moves on variables, while marshals move
on hyperedges. At each step, any marshal controls an entire
hyperedge. During a move of the marshals from the set of
hyperedges E to to the set of hyperedges E′, the robber can-
not pass through the vertices in B = (∪E) ∩ (∪E′), where,
for a set of hyperedges F , ∪F denotes the union of all hy-
peredges in F . Intuitively, the vertices in B are those not
released by the marshals during the move. As in the mono-
tonic robber and cops game defined for treewidth [38], it is
required that the marshals capture the robber by monotoni-
cally shrinking the moving space of the robber. The game is

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 95

won by the marshals if they corner the robber somewhere in
the hypergraph. A hypergraph H has k-bounded hypertree
width if and only if k marshals win the R&Ms game onH.

• Logical characterization of hypertree width. Let L de-
note the existential conjunctive fragment of positive first or-
der logic (FO). Then, the class of queries having k-bounded
hypertree width is equivalent to the k-guarded fragment of
L, denoted by GFk(L). Roughly, we say that a formula Φ
belongs to GFk(L) if, for any subformula φ of Φ, there is a
conjunction of up to k atoms jointly acting as a guard, that
is, covering the free variables of φ. Note that this notion
is related to the loosely guarded fragment as defined (in the
context of full FO) by Van Benthem [45], where an arbitrary
number of atoms may jointly act as guards (see also [23]).

3.1 Query Decompositions and Query Plans
In this section we describe the basic idea to exploit (generalized)
hypertree decompositions for answering conjunctive queries.

Let k ≥ 1 be a fixed constant, Q a conjunctive query over a
database DB, and HD = 〈T, χ, λ〉 a generalized hypertree de-
composition of Q of width w ≤ k. Then, we can answer Q in two
steps:

1. For each vertex p ∈ vertices(T), compute the join opera-
tions among relations occurring together in λ(p), and project
onto the variables in χ(p). At the end of this phase, the con-
junction of these intermediate results forms an acyclic con-
junctive query, say Q′, equivalent to Q. Moreover, the de-
composition tree T represents a join tree of Q′.

2. Answer Q′, and hence Q, by using any algorithm for acyclic
queries, e.g. Yannakakis’s algorithm.

For instance, Figure 4 shows the tree JT1 obtained after Step 1
above, from the query Q1 in Example 3.2 and the generalized hy-
pertree decomposition in Figure 3. E.g. observe how the vertex
labeled by atom p3 is built. It comes from the join of atoms j and
c (occurring in its corresponding vertex in Figure 3), and from the
subsequent projection onto the variables X, Y, C, C′, and Z (be-
longing to the χ label of that vertex). By construction, JT1 satisfies
the connectedness condition. Therefore, the conjunction of atoms
labeling this tree is an acyclic query, say Q′

1, such that JT1 is one
of its join trees. Moreover, it is easy to see that Q′

1 has the same
answer as Q1 [19].

Step 1 is feasible in O(m|rmax|w−1 log |rmax|) time, where m
is the number of vertices of T , and rmax is the relation of DB
having the largest size. In fact, for Boolean queries, Yannakakis’s
algorithm in Step 2 does not take more time than Step 1, and thus
its cost is an upper bound for the entire query evaluation process.
For non-Boolean queries, Yannakakis’s algorithm works in time
polynomial in the combined size of the input and of the output, and
thus we should add to the above cost a term that depends on the
answer of the given query (which may be exponential w.r.t. the
input size). For instance, if we consider query Q1, the above upper
bound is O(7|rmax| log |rmax|), whereas typical query answering
algorithms (which do not exploit structural properties) would take
O(|rmax|7 log |rmax|) time, in the worst case.

It has been observed that, according to Definition 3.1, a hyper-
graph may have some (usually) undesirable hypertree decompo-

p2(X, X′, Y, Y ′, S, C, C′, F, F ′)

p1(J, X, Y, X′, Y ′)

p6(Y, Z)

p3(X, Y, C, C′, Z) p4(X′, Y ′, F, F ′, Z′)

p5(X, Z) p7(X′, Z′) p8(Y ′, Z′)

Figure 4: Join tree JT1 computed for query Q′
1

sitions [19], possibly with a large number m of vertices in the de-
composition tree. For instance, a decomposition may contain two
vertices with exactly the same labels. Therefore, a normal form
for hypertree decompositions has been defined in [19], and then
strengthened in [41], in order to avoid such kind of redundancies.
Hypertree decompositions in normal form having width at most k
may be computed in time polynomial in the size of the given hy-
pergraph H (but exponential in the parameter k). The number m
of vertices cannot exceed the number of variables inH, and is typ-
ically much smaller. Moreover, H has a hypertree decomposition
of width w if and only if it has a normal-form hypertree decompo-
sition of the same width w.

It follows that, for any fixed k ≥ 1, the class of all queries hav-
ing k-bounded hypertree width may be answered in polynomial
time (actually, in input-output polynomial time, for non-Boolean
queries). Indeed, given a query Q, both computing a hypertree de-
composition HD of width at most k of H(Q), and then answering
Q exploiting HD are polynomial-time tasks.

As far as generalized hypertree decompositions are concerned, we
currently miss a polynomial-time algorithm for recognizing queries
having k-bounded generalized hypertree-width. However, there is a
great deal of interest in these decompositions, and some first results
are coming. For instance, some very good heuristics for computing
generalized hypertree decompositions are described in [29, 32].

4. WEIGHTED HYPERTREE DECOMPO-
SITIONS

As described in the previous section, given a query Q on a database
DB and a small-width decomposition HD for Q, we know that
there is a polynomial time upper bound for answering Q, while in
general this problem is NP-hard and all the available algorithms
requires exponential time, in the worst case. However, HD is
not just a theoretical indication of tractability for Q. Rather, the
above two steps for evaluating Q actually represent a query plan
for it, though not completely specified. For instance, no actual
join method (merge, nested-loop, etc.) is chosen, but this final
more physical phase can be easily implemented using well-known
database techniques. We remark that such optimizations are exe-
cuted just on relations belonging to the same vertex, and hence on
w relations at most, if w is the width of HD. Thus, also optimal
methods based on dynamic programming or sophisticated heuris-
tics can be employed, as the size of the problem is small.

96 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

The remaining interesting problem is before this evaluation phase,
where we have to compute a decomposition for H(Q). Indeed,
in general there is an exponential number of hypertree decompo-
sitions of a hypergraph. Every decomposition encodes a way of
aggregating groups of atoms and arranging them in a tree-like fash-
ion. As far as the polynomial-time upper bound is concerned, we
may be happy with any minimum-width decomposition. However,
in practical real-world applications we have to exploit all available
information. In particular, for database queries, we cannot get rid
of information on the database DB. Indeed, looking only at the
query structure is not the best we can do, if we may additionally
exploit the knowledge of relation sizes, attribute selectivity, and so
on.

4.1 Minimal Decompositions
In this section, we thus consider hypertree decompositions with an
associated weight, which encodes our preferences, and allows us to
take into account further requirements, besides the width. We will
see how to answer queries more efficiently, by looking for their best
decompositions.

Formally, given a hypergraph H, a hypertree weighting function
(short: HWF) ωH is any polynomial-time function that maps each
generalized hypertree decomposition HD = 〈T, χ, λ〉 of H to a
real number, called the weight of HD.

For instance, a very simple HWF is the function ωw
H(HD) =

maxp∈vertices(T) |λ(p)|, that weights a decomposition HD just on
the basis of its worse vertex, that is the vertex with the largest λ la-
bel, which also determines the width of the decomposition.

In many applications, finding such a decomposition having the min-
imum width is not the best we can do. We can think of minimiz-
ing the number of vertices having the largest width w and, for de-
compositions having the same numbers of such vertices, minimiz-
ing the number of vertices having width w − 1, and continuing
so on, in a lexicographical way. To this end, we can define the
HWF ωlex

H (HD) =
∑w

i=1 |{p ∈ N such that |λ(p)| = i}| ×Bi−1,
where N = vertices(T), B = |edges(H)| + 1, and w is the
width of HD. Note that any output of this function can be repre-
sented in a compact way as a radix B number of length w, which
is clearly bounded by the number of edges in H. Consider again
the query Q0 of the Introduction, and the hypertree decomposi-
tion, say HD′, of H(Q0) shown in Figure 1, on the right. It is
easy to see that HD′ is not the best decomposition w.r.t. ωlex

H
and the class of hypertree decompositions in normal form. In-
deed, ωlex

H (HD′) = 4 × 90 + 3 × 91, and thus the decomposi-
tion HD′′ shown on the bottom of Figure 1 is better than HD′, as
ωlex
H (HD′′) = 6× 90 + 1× 91.

Let k > 0 be a fixed integer and H a hypergraph. We define the
class kHDH (resp., kNFDH) as the set of all hypertree decompo-
sitions (resp., normal-form hypertree decompositions) ofH having
width at most k.

Definition 4.1 [41]Let H be a hypergraph, ωH a weighting func-
tion, and CH a class of generalized hypertree decompositions ofH.
Then, a decomposition HD ∈ CH is minimal w.r.t. ωH and CH, de-
noted by [ωH, CH]-minimal, if there is no HD′ ∈ CH such that
ωH(HD′) < ωH(HD). �

For instance, the [ωw
H, kHDH]-minimal decompositions are ex-

actly the k-bounded hypertree decompositions having the mini-
mum possible width, while the [ωlex

H , kHDH]-minimal hypertree
decompositions are a subset of them, corresponding to the lexico-
graphically minimal decompositions described above.

It is not difficult to show that, for general weighting functions, the
computation of minimal decompositions is a difficult problem even
if we consider just bounded hypertree decompositions [41]. We
thus restrict our attention to simpler HWFs.

Let 〈R+,⊕, min,⊥, +∞〉 be a semiring, that is, ⊕ is a commu-
tative, associative, and closed binary operator, ⊥ is the neuter ele-
ment for ⊕ (e.g., 0 for +, 1 for ×, etc.) and the absorbing element
for min, and min distributes over ⊕.4 Given a function g and a
set of elements S = {p1, ..., pn}, we denote by

⊕
pi∈S g(pi) the

value g(p1)⊕ . . .⊕ g(pn).

Definition 4.2 [41]Let H be a hypergraph. Then, a tree aggrega-
tion function (short: TAF) is any hypertree weighting function of
the form

F⊕,v,e
H (HD) =

⊕

p∈N

(
vH(p) ⊕

⊕

(p,p′)∈E

eH(p, p′)
)
,

associating an R
+ value to the hypertree decomposition HD =

〈(N, E), χ, λ〉, where vH : N �→ R
+ and eH : N × N �→ R

+

are two polynomial functions evaluating vertices and edges of hy-
pertrees, respectively. �

We next focus on a tree aggregation function that is useful for query
optimization. We refer the interested reader to [41] for further ex-
amples and applications.

Given a query Q over a database DB, let HD = 〈T, χ, λ〉 be a
hypertree decomposition in normal form for H(Q). For any ver-
tex p of T , let E(p) denote the relational expression E(p) =
�h∈λ(p)

∏
χ(p) rel(h), i.e., the join of all relations in DB cor-

responding to hyperedges in λ(p), suitably projected onto the vari-
ables in χ(p). Given also an incoming node p′ of p in the decom-
position HD, we define v∗

H(Q)(p) and e∗H(Q)(p, p′) as follows:

• v∗
H(Q)(p) is the estimate of the cost of evaluating the expres-

sion E(p), and

• e∗H(Q)(p, p′) is the estimate of the cost of evaluating the
semi-join E(p) � E(p′).

Let costH(Q) be the TAF F+,v∗,e∗
H(Q) (HD), determined by the above

functions. Intuitively, costH(Q) weights the hypertree decomposi-
tions of the query hypergraph H(Q) in such a way that minimal
hypertree decompositions correspond to “optimal” query evalua-
tion plans for Q over DB. Note that any method for computing the
estimates for the evaluation of relational algebra operations from
the quantitative information on DB (relations sizes, attributes se-
lectivity, and so on) may be employed for v∗ and e∗. For instance,
in our experiments described in the next section, we employ the
standard techniques described in [12, 13].

4For the sake of presentation, we refer to min and hence to min-
imal hypertree decompositions. However, it is easy to see that all
the results presented in this paper can be generalized easily to any
semiring, possibly changing min, R

+, and +∞.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 97

Clearly, all these powerful weighting functions would be of lim-
ited practical applicability, without a polynomial time algorithm for
the computation of minimal decompositions. Surprisingly, it turns
out that, unlike the traditional (non-weighted) framework, work-
ing with normal-form hypertree decompositions, rather than with
any kind of bounded-width hypertree decomposition, does mat-
ter. Indeed, computing such minimal hypertree decompositions
with respect to any tree aggregation function is a tractable prob-
lem, while it has been proved that the problem is still NP-hard
if the whole class of bounded-width hypertree decomposition is
considered. A polynomial time algorithm for this problem, called
minimal-k-decomp, is presented in [41].

4.2 Some Experiments
We implemented the algorithm cost-k-decomp, which com-
putes a minimal decomposition with respect to the weighting func-
tion costH(Q) and the class of k-bounded normal-form hypertree
decompositions. In this section, we report some results of an ongo-
ing experimental activity on the application of cost-k-decomp
to database query evaluation. A more detailed description and fur-
ther experiments can be found in the full version of [41], currently
available at the hypertree decomposition homepage [40]. Our aim
here is just to show that Algorithm cost-k-decomp may signif-
icantly speed-up the evaluation of database queries having struc-
tural properties to be exploited. All benchmark queries are exe-
cuted on the commercial DBMS Oracle 8.i by using either Ora-
cle standard query execution method, or the following technique,
based on minimal decompositions: the query plans are generated
by the algorithm cost-k-decomp (with k ranging over (2..5)),
by exploiting the information of the data available from Oracle;
the plan execution is then enforced in the DBMS by supplying a
suitable translation in terms of views and hints (NO MERGE, OR-
DERED) to Oracle 8.i, which eventually executes the query by its
engine, following the desired plan. In both methods, we do not
allow indices on database relations, in order to focus just on the
less-physical aspects of the optimization task.

We tested the methods with different kinds of queries by varying
the hypertree width, the number of query atoms, and the num-
ber of variables. Here, we report only the experiments on a set
of test queries: we consider again query Q1 described in Exam-
ple 3.2, as well as two modifications Q2 and Q3, such that Q2

consists of 8 atoms and 9 distinct variables, and query Q3 is made
of 9 atoms, 12 distinct variables, and 4 output variables. All these
queries have width 2. They are evaluated over synthetic data: For
each query atom p, we first fix the size rp of the corresponding re-
lation, and we then exploit a random generator that materializes rp

data tuples, by choosing attribute values uniformly at random from
a fixed set of possible values. All the experiments were performed
on 1600MHz/256MB Pentium IV machine running Windows XP
Professional. Time measurements for query evaluation in Oracle
8.i have been done by using the SQL Scratchpad utility. We con-
sidered different values for the parameter k. It is worthwhile noting
that a higher value of k permits to consider a larger number of hy-
pertree decompositions, and can therefore allow to generate a bet-
ter plan; but it obviously causes a computational overhead due to a
larger search space to be explored by cost-k-decomp. For the
experiments reported in this paper, we chose k = 3, which seems
empirically a good bound to be used in practice for queries with
less than 10 atoms. Figure 5 shows the absolute execution times
for Oracle and cost-k-decomp over a database of 1500 tuples.
It can be observed that, on all considered queries, the evaluation
of the query plans generated by our approach is significantly faster

than the evaluation which exploits the internal query optimization
module of Oracle 8.i.

Figure 5: Evaluation time for test queries Q1, Q2, and Q3.

5. CONCLUSION
We described the notion of hypertree width and some of its exten-
sions, and we showed how they can be exploited for identifying and
solving efficiently tractable classes of database queries.

Our ongoing work includes an integration of the optimization tech-
nique based on minimal decompositions with the query optimizer
of the open source DBMS PostgreSQL, as well as a thorough ex-
perimentation activity with real queries and databases, loaded with
non-random data.

Many interesting questions about structural decompositions are still
open and deserve further research. For instance, we do not know
if having bounded hypertree width is a necessary condition for a
class of queries to be tractable. Moreover, for many real world
applications with hundreds of hyperedges, we need good heuris-
tics for computing generalized hypertree decompositions. We refer
the interested reader to [22] for a recent graph-theoretic survey on
hypertree decompositions, with further results and details on these
related issues.

Acknowledgments
The author sincerely thanks Georg Gottlob and Nicola Leone, who
worked with him on these issues since 1999, when they jointly de-
fined the notion of hypertree decompositions. Moreover, he thanks
Gianluigi Greco for his recent contribution to the weighted exten-
sion, and Alfredo Mazzitelli for his valuable work in designing and
implementing the tools for experiments.

6. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[2] S. Abiteboul and O.M. Duschka. Complexity of Answering Queries
Using Materialized Views. In Proc. of PODS’98, pp. 254–263,
Seattle, Washington, 1998.

98 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

[3] I. Adler, G. Gottlob, and M. Grohe. Hypertree-Width and Related
Hypergraph Invariants. In Proc. of EuroComb’05, Berlin, 2005.

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability
of acyclic database schemes. J.ACM, 30(3):479–513, 1983.

[5] P.A. Bernstein and N. Goodman. The power of natural semijoins.
SIAM J.Comput., 10(4):751–771, 1981.

[6] A.K. Chandra and P.M. Merlin. Optimal Implementation of
Conjunctive Queries in relational Databases. In Proc. of STOC’77,
pp.77–90, Boulder, Colorado, USA, 1977.

[7] C. Chekuri and A. Rajaraman. Conjunctive query containment
revisited. TCS, 239(2):211–229, 2000.

[8] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[9] R. Fagin, A.O. Mendelzon, and J.D. Ullman. A simplified universal
relation assumption and its properties. ACM TODS, 7(3):343–360,
1982.

[10] J. Flum, M. Frick, and M. Grohe. Query evaluation via
tree-decompositions. J.ACM, 49(6):716–752, 2002.

[11] E.C. Freuder. A sufficient condition for backtrack-bounded search.
J.ACM, 32(4):755–761, 1985.

[12] H. Garcia-Molina, J. Ullman, and J. Widom. Database system
implementation. Prentice Hall, 2000.

[13] Y.E. Ioannidis. Query Optimization. The Computer Science and
Engineering Handbook, pp. 1038–1057, 1997.

[14] N. Goodman and O. Shmueli. Tree queries: a simple class of
relational queries. ACM TODS, 7(4):653–6773, 1982.

[15] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural
CSP decomposition methods. Artif. Intell., 124(2):243–282, 2000.

[16] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Advanced
parallel algorithms for processing acyclic conjunctive queries, rules,
and constraints. In Proc. of the Conference on Software Engineering
and Knowledge Engineering (SEKE’00), pp. 167–176, Chicago,
USA, 2000.

[17] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic
conjunctive queries. J.ACM, 48(3):431–498, 2001.

[18] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions:
A survey. In In Proc. of MFCS’2001, pp. 37–57, Marianske Lazne,
Czech Republic, 2001.

[19] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions
and tractable queries. JCSS, 64(3):579–627, 2002.

[20] G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL
Certificates. TCS, 270(1-2):761–777, 2002.

[21] G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and
guards: game theoretic and logical characterizations of hypertree
width. JCSS, 66(4):775–808, 2003.

[22] G. Gottlob, M. Grohe, N. Musliu, M. Samer, and F. Scarcello.
Hypertree Decompositions: Structure, Algorithms, and
Applications. In Proc. of WG’05, Metz, France, 2005.

[23] E. Grädel. On the Restraining Power of Guards. J. Symb. Logic,
Vol. 64,pp. 1719–1742, 1999.

[24] M. Grohe. The Complexity of Homomorphism and Constraint
Satisfaction Problems Seen from the Other Side. In Proc. of
FOCS’03, pp. 552–561, Cambridge, MA, USA, 2003.

[25] M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of
conjunctive queries tractable? In Proc. of STOC’01, pp. 657–666,
Heraklion, Crete, Greece, 2001.

[26] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint
satisfaction problems using database techniques. J. of Algorithms,
66:57–89, 1994.

[27] D.S. Johnson, A Catalog of Complexity Classes, Handbook of
Theoretical Computer Science, Volume A: Algorithms and
Complexity, pp. 67-161, 1990.

[28] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and
constraint satisfaction. JCSS, 61(2):302–332, 2000.

[29] T. Korimort. Constraint Satisfaction Problems – Heuristic
Decomposition. PhD thesis, Vienna University of Technology, April
2003.

[30] D. Maier. The Theory of Relational Databases. Computer Science
Press, 1986.

[31] B.J. McMahan, G.Pan, P.Porter, and M.Y. Vardi. Projection Pushing
Revisited. In Proc of EDBT’04, pp. 441–458, Heraklion, Crete,
Greece, 2004.

[32] B. McMahan. Bucket Eliminiation and Hypertree Decompositions.
Implementation report, DBAI, TU Vienna, 2004.

[33] C.H. Papadimitriou and M. Yannakakis. On the complexity of
database queries. In Proc. of PODS’97, pp. 12–19, Tucson, Arizona,
USA, 1997.

[34] O. Reingold. Undirected ST-Connectivity in Log-Space, manuscript,
2004, currently available at http://www.wisdom.weizmann.
ac.il/˜reingold/publications/sl.ps

[35] N. Robertson and P.D. Seymour. Graph minors ii. algorithmic
aspects of tree width. J. of Algoritms, 7:309–322, 1986.

[36] W.L. Ruzzo. Tree-size bounded alternation. JCSS, 21:218–235,
1980.

[37] D. Saccà. Closures of database hypergraphs. J.ACM, 32(4):774–803,
1985.

[38] P.D. Seymour and R. Thomas. Graph Searching and a Min-Max
Theorem for Tree-Width. J.Comb. Theory B, 58:22–33, 1993.

[39] F. Scarcello. Answering Queries: Tractable Cases and
Optimizations. Technical Report D2.R3, Project “Integrazione,
Warehousing e Mining di Sorgenti Eterogenee (MURST
COFIN-2000),” 2001.

[40] Francesco Scarcello and Alfredo Mazzitelli. The hypertree
decompositions homepage, since 2002. http:
//wwwinfo.deis.unical.it/˜frank/Hypertrees/

[41] Francesco Scarcello, Gianluigi Greco, and Nicola Leone. Weighted
Hypertree Decompositions and Optimal Query Plans. In Proc. of
PODS’04, pp. 210-221, Paris, 2004.

[42] R.E. Tarjan, and M. Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs. SIAM J.Comput.,
13(3):566-579, 1984.

[43] J. D. Ullman. Principles of Database and Knowledge Base Systems.
Computer Science Press, 1989.

[44] A.N. Wilschut, J. Flokstra, and P. M.G. Apers. Parallel evaluation of
multi-join queries. In Proc. of SIGMOD’95, San Jose, CA, USA,
1995.

[45] J. Van Benthem. Dynamic Bits and Pieces. ILLC Research Report,
University of Amsterdam, 1997.

[46] M. Vardi. Complexity of relational query languages. In Proc. of
STOC’82, pp. 137–146, San Francisco, CA, USA, 1982.

[47] M. Vardi. Constraint Satisfaction and Database Theory. Tutorial at
PODS’00, Dallas, Texas, USA, 2000.

[48] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of
VLDB’81, pp. 82–94, Cannes, France, 1981.

[49] C.T. Yu and M.Z. Özsoyoğlu. On determining tree-query
membership of a distributed query. Infor, 22(3):261–282, 1984.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 99

John Wilkes Speaks Out

on What the DB Community Needs to Know About Storage, How the DB and

Storage Communities Can Join Forces and Change the World, and More

by Marianne Winslett

John Wilkes

http://www.hpl.hp.com/personal/john_wilkes

Welcome to this installment of ACM SIGMOD Record’s series of interviews with distinguished members of

the database community. I'm Marianne Winslett, and today [February 2004] we are at the Department of

Computer Science at the University of Illinois at Urbana-Champaign. I have here with me John Wilkes, who

is an HP Fellow in the Internet Systems and Storage Laboratory at Hewlett Packard Laboratories in Palo

Alto, California, where his research focuses on the design and management of storage systems. John is a

member of the editorial board of ACM Transactions on Computer Systems, and until recently he was a

member of the Technical Council of the Storage Network Industry Association. John is an ACM Fellow, and

his PhD is from the University of Cambridge. So, John, welcome!

Thank you.

John is not a pillar of the database research community; he is a pillar of the storage research community,

which is next of kin to the database research community. Ironically, though, most database researchers

know very little about storage. We tend to treat it as a black box. In fact, John, I can sum up for you

everything that most of us database researchers know about disks in six easy terms: sector, block, seek,

rotational latency, transfer rate, and RAID---and that's all we teach about disks in our database courses.

You forgot capacity.

No, we don't do capacity! We're interested in the number of disk arms, rather than how much you can stuff

onto each disk.

John, you co-authored a wonderful paper last century that described the actual behavior of a particular disk

in great detail. That's the March 1994 IEEE Computer article, “An Introduction to Disk Drive Modeling,”

that you wrote with with Chris Ruemmler. Can you give us some highlights regarding the actual behavior of

real disks today?

The disk industry has been doing a spectacularly good job of continuing to provide more capacity with lower

cost and greater reliability. They have also done a quite good job of increasing the performance of those

drives, and they have been slowly making them more sophisticated. Back when we wrote that paper in the

early nineties, SCSI disks were becoming the norm, and now they are de facto everywhere. The

100 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

complexities, features, and functionalities that the disk drive vendors have put into them slowly increase

with time, and the result is that we now get spectacularly good value out of those disks. I am glad I am not in

the disk drive business---it is a cut throat environment. But the hard work of the disk industry has left

storage system designers and database people in a marvelous position.

I can see how capacity might be important for storage, in the broadest sense. But in the database world, we

are more concerned about the number of disk arms and the amount of material under those arms, because

performance is so important a factor.

I wish that was more true of the customers who still continue to buy storage based on dollars per gigabyte.

Yes, I have agreed with you for a long time that performance is the most important attribute, but not

everyone has managed to get to that level of enlightenment.

Are there things that the disk industry could do to really make big improvements there?

They actually are doing it already. You already see a bifurcation in the market between the large capacity,

relatively slow drives and the much more expensive, hotter, faster, high speed drives that are optimized for

the high end database world. So, the market is driven primarily by what people will pay money for.

When database people think about disks, they don't think about things like the fact that the disk arm first

speeds up, then slows down when doing seeks; the big difference between short seeks and long seeks; and all

those sorts of details. Should we be thinking about those things, or are those just details that are better

ignored?

I've always wondered whether it might be better if the database and storage communities could get together

to agree on a slightly more sophisticated model of the storage device behavior.

What features would be in that model?

In the same way that you people may not know about storage devices, we don't know about databases either.

But my understanding is that the query models and the optimization algorithms that get used are wonderfully

sophisticated algorithms on top of a relatively simplistic base of expectations about how the storage device

will behave--

Oh, yes.

--and that seems almost backwards. For example, most people do not put databases on raw disk drives any

more; instead, they put them on storage arrays, which have massive amounts of caching and pre-fetching

and intelligent algorithms to try and do data layout themselves inside the boxes. And unless you are aware of

some of those things, you could get surprised at run time.

I view the creation of a model of storage device behavior as something that neither community could do well

by itself. We could probably do much better if we collaborate on trying to find some way of expressing what

it is that the storage system is trying to do and what the database would like to have done.

Do storage companies have liaisons with the database companies and--?

Yes, certainly.

So maybe those connections will happen?

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 101

Who knows? Part of the problem is that this model and its underlying assumptions need to be brought out in

the cold, gray light of day, and I think that is something the research community can contribute to.

So would you say that the research community is not aware of the issues that those liaisons would be looking

at?

That is probably too broad an allegation. I have an association with Carnegie Mellon University, where there

is research on how to do joint optimizations between the database and storage system. We can probably

benefit from more of this kind of cross-community research.

Let's move up a level of abstraction, from the disk to the storage system. Most database graduate students

know nothing about storage systems. They do not learn about them in their database classes, and there

aren't any classes that focus on storage systems. In fact, there are hardly any professors who focus on

storage systems, yet storage systems are extremely important in industry. Big businesses spend a lot of

money buying them. A range of companies build and sell storage systems, from behemoths like IBM through

midsize companies like EMC and on down to startups like Network Appliances. In fact, IBM Almaden has

about as many researchers working on storage as on databases. Yet there was not even a research

conference that focused on storage, until a few years ago when the FAST conference was started. How could

an area of such immense economic importance be so invisible in academia, both in research and education?

I wish I knew. It is absurd. People spend as much money on their storage system as they do on their

processors these days, but the amount of attention paid to the two is wildly disparate, at least in academia.

Would you say that the CS curriculum should include coverage of the storage area?

I think it would be a wonderful thing to do. As we mentioned earlier, the performance of many systems is

dictated by the behavior of the storage subsystem---and by performance I mean not just an aggregate read

and write rate, but reliability and generic quality of service. The storage subsystem is becoming one of the

more complicated parts of many systems. Unless we can persuade people that spending time on this area is

interesting and worthwhile, I think we will find that we have to rely on what the storage industry will do. It

is actually doing a pretty good job, but I am sure we could do better, as we have done in other areas.

What would researchers do that is not already being done in industry?

One of the things that the academic community can accomplish is that to try things that would not appear to

make immediate business sense. The industry is dedicated to doing what is going to be delivered next year,

and that limits very much the scope of things that can be tried. One of the great things about the academic

community is that they can go far enough ahead to say, “Hey, this is worth looking at, and maybe we don't

have to have a business justification for investing in it.” Think of them as scouts, looking out in the world

and saying, “What if we tried this? What if we removed that restriction?” The academic community has that

wonderful degree of freedom that can benefit everybody.

What hot topics do you think people would work on if we had academics looking at storage issues?

I'd like to see more emphasis put on the large scale systems that people have in the real world. All too much

energy is spent on the kinds of things you can do with a desktop system, with a single disk inside it running

Linux. That is not the way most real databases and large data stores behave.

So what are those large things like? I think our audience doesn't know. What do they consist of?

102 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Think terabytes on the way to petabytes, rather than a few gigabytes. I was having a conversation this

morning with one of your colleagues, and he was talking about having large quantities of data. I asked, “So

what does large mean to you?” And he said, “Oh, a few gigabytes, at least.”

Oh, come on! Obviously not a database colleague.

This was a database colleague.

You're kidding!

He was interested in the algorithms that you get to apply to the data, and the algorithms were large and

complicated rather than the data. For a real-world large-scale scenario, just add a few zeros on the end of all

the calculations, move to a world where instead of single disk spindles we are now talking thousands of

spindles, move to a world where your multiple data centers have to collaborate 24 by 7---they never go

down---, move to a world where battery backup and uninterruptible power supplies are the norm rather than

the exception. Those are assumptions that change many things. One of the things that has been neglected for

many years---and I made one stab at it but there is plenty of work still to be done---is how to guarantee

quality of service in that space. I think we need to try to move to a world where predictability is the most

important parameter: if it works this way now and I like it, I want to work it that way tomorrow, and I will

still like it.

Predictability is a great goal, but I know you also work a lot on making self-tuning storage systems, and in

my experience, self-tuning systems tend not to be so predictable because they change their behavior. So how

do you reconcile those two goals?

The point of being self-tuning is to achieve some end result which ought to be “the system is doing what I

want,” i.e., behaving the way I like, and that is a kind of predictability. So I view self-tuning as a way of

responding to the vagaries of the environment and workload in order to be able to achieve a target business

goal or, in my case, a quality of service goal.

So in that continuum between predictability and performance, you would rather skip the peaks of really

excellent performance if it meant you could deliver things at a steady rate?

No, that depends on what you, the user, want. If meeting those peaks is more important to you than meeting

the steady rate, you should say so and the system should adjust accordingly.

So, you can tune the relative importance of those two parameters, the consistency and the peak performance.

Are there other tunable variables besides those two?

For example, is the system reliable? Does it store data in a way that is not going to get corrupted? Maybe the

data is transient and I can make optimizations to get better performance at the cost of things going wrong

once in a while. The system should not pre-decide the level of reliability available to the user.

Performance is the easy tunable parameter, the one most people have focused on so far. In some sense, we

have made pretty good progress there. Let's work on some of the other areas, such as reliability, availability,

usability, functionality, manageability. Very few systems are static and unchanging over their lifetime;

instead, they are always being tinkered with, added to. Their requirements are being changed. And the easier

it is to make those changes and accommodate those things, the better the resulting system is going to be.

The database community is very interested in having self-tuning database systems. What kind of techniques

do you use to make storage systems self-tuning?

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 103

Probably much the same techniques, actually. I have long advocated the notion of a control feedback loop,

where you take measurements of the system; compare those measurements against what you would like to

be happening (which by the way, requires ways of describing what you like); design some kind of response,

perhaps diagnosing some kind of problem; determine what is currently the most appropriate solution to

apply; and then find some way to apply that solution, preferably in a non-disruptive fashion; get the system

back to a state where it is operating again; and repeat the whole process. The only question is, how

sophisticated can you be in each of those stages? We started off with really simple measurements of average

transfer rates we were trying to achieve. The design considered how far across multiple spindles to spread

the data. Now we are moving towards taking into account more things, like reliability. You can imagine the

system responding, for example, if something within it breaks. If one thing breaks, that's not such a big deal,

but if three things start breaking, maybe you should be rather more aggressive about making sure the

reliability goals are being met.

When you see that the system isn't behaving quite the way you wanted, and you want to move it closer, do

you rely on a cost model to determine whether the changes you are likely to make are going to move it in the

right direction?

There are two different philosophical approaches. One is prediction-based: you put a lot of emphasis on

being able to predict the result of a potential change, and you work quite hard to make sure those models are

accurate and reliable, so that you can use them to explore potential alternative designs. If your model is

right, then when tuning, you will probably get to where you want to be very quickly. My group has done a

lot of work in that space, and put a lot of effort into trying to produce good cost models. So that is

philosophy number one.

Philosophy number two, which I am now moving towards myself, says that we will never know the system

well enough to model it extremely accurately, so let's do a good job of modeling but not bend over too far

backwards to try for a perfect prediction. Instead, let’s do a good enough job that when tuning, we can say,

“That direction is the one I want to go in.” And then perhaps lift some ideas from traditional control theory

to determine how far should we go in that direction, and put in a responsive feedback loop.

The issue I have found in my own research is that if I require a very accurate cost model, then every system

needs an installation specific cost model, and who is going to create that?

The system should create the cost model itself by learning. Observations are wonderful ways of deducing

how the system is behaving. My own group started with our own very well-crafted, hand-tuned analytical

models of the likely behavior of the system, and after a while we decided that this is crazy: it is too much

work and it requires too well-trained people. So we instead moved to an approach where we don’t measure

the heck of out something; instead we build a little table and use that to extrapolate, predict, interpolate.

That is the approach we now use. It is more robust, the information is easier to gather, and as the system

runs you can just add more entries into the table and make it more accurate for your particular situation. So I

believe in this approach----models that get better on their own as you use them.

So you can predict the performance of an expected workload very accurately with a little table?

At least as well as the clever analytical models.

I see. What accuracy can you could attain with that kind of simple table?

104 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

We tend to be comfortable once we get to prediction errors of 20-30%, which for one of these complicated

storage systems is pretty good. Remember again, with a feedback system, the cost model does not have to be

exactly right, it just has to be good enough to send you in the right direction.

So when the storage system is tuning itself, what kind of parameters does it have control over?

The easiest parameter is how many resources get used: disk spindles, memory available in the caches,

potential access paths (if there is more than one of them, which there often are for reliability reasons). The

second parameter is the way those resources get used. There are lots of policies embedded inside the storage

systems: what order requests get serviced in, how long are data left in a write buffer before they get flushed

out to the backend storage device, what kind of pre-fetching algorithms should you use, when should you

declare that a request pattern is sequential, and how should you place the data on the storage devices. The

behavior of the outside of the spindle is different than the inside of the spindle, so the placement of two

things on the same spindle can give widely different performance. You could start out with what appeared to

be two sequential workloads touching two objects on the same spindle, that when merged are essentially

random access with terrible performance for both of them, just because they continue to seek between the

two objects. There are actually quite a lot of knobs if you look inside a modern storage device; they are

incredibly complicated.

And those knobs will be interacting in nonlinear ways?

Absolutely, just delightful. [Laughs.]

If you have distilled your whole performance model down to a simple table, how can that table capture these

nonlinear interactions?

You said simple table. I just said table.

Oh, what kind of table is it?

It is a multidimensional table. The space that you are operating in has one dimension for each of the knob

settings you could have.

So you aren’t just measuring, you are measuring the heck out of the system. With all these different

combinations of parameter settings, everything is being measured all the time.

That is our ideal. I mean, why throw this data away? You might as well use it. As time goes by and you get

more comfortable with the prediction accuracy, then you can perhaps tone down the enthusiasm with which

you gather data and put it into the table. But at first, you may as well take advantage of as much of the data

as you can. We have learned that people are not very good at predicting which axes matter.

We had a little piece of work that we never got to publish because two or three people and a summer student

worked away for several months trying to built a predictive model for caching behavior on a couple of disk

arrays, and we could never get it right. We were off by factors of 2 to 10 in performance behavior. We

obviously didn’t capture enough of the important magic parameters. The approach of trying to predict

everything analytically works well for some things, but for others it has limitations.

Were you trying to model a preexisting storage system, or were you also building the system?

We had two systems we had just bought off the shelf. Standard--

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 105

Shouldn't these models be created by the people who put the devices together and know what policies they

are using for caching, and so on?

You would think so, but this is in the business world. Those people haven’t that motivation. Vendors

provided models in certain places, but the people who had designed the systems thought those models were

remarkably simplistic. Vendors sell a lot of disk arrays based on benchmarks, which push the system into

extreme behavior on very simplistic loads. We were much more interested in realistic loads. We do a lot of

work with trace replay from systems where we have measured the actual behavior, as opposed to synthetic

loads. We have discovered that the synthetic loads that people use are not very close to real loads, except for

the very special case of benchmarks. But real workloads are nothing like benchmarks.

Another open problem is the workload merging problem. You have one set of work, index accesses or

something like that, and another set of table accesses. Now put them together. How they interleave is a very

complicated description problem. And the prediction problem for that is even worse.

The sad thing about that is that if you were up at a higher level, maybe at the application level, you would

know that information. But at the storage system level, it has been lost, and all you are getting is this

worthless little low level trace, from which you are trying to deduce the high level behavior. Why can't you

have the higher level tell you this up front, so you don't have to try to guess it?

I think we should ask the database people that. Why wouldn't they pass the information down? Intentions

are incredibly valuable piece of information.

How would database people pass that down to you? (I think they should pass it down, for the record.)

Let’s start really simply: just tell me that this access path that I’m about to do will be random, this one will

be sequential. Just actually telling us about sequential accesses before they happen is probably going to be

the single most useful thing to do.

One thing that database people have on hand already is the query plans for things that are going to be

executed, and they could certainly share that information. I don’t know if it would help you or hinder you.

It seems tragic to have all of that useful information gathered and then not passed down.

Thrown away.

To be fair, both communities are guilty, because we have not managed to sit down and negotiate an interface

for passing this kind of information down to the storage system. The academic community can help in

figuring out what is the right interface. How simple can the interface be, to get the maximum return value?

Also, I think there isn't exactly a normal form for representing query plans---it is more vendor specific. But

from a query plan, you could tell which things might be interleaving randomly and which things were

actually related, and could probably handle things a lot better.

The other interesting question is, when do you pass this information to the storage system? Clearly at run

time when the query is issued, you have a quite a lot of information about what the query is about to do, but

when you are doing the system design and provisioning and placing data on the system---that is well before

you have actually run the system. Perhaps during the tuning process this information could be made

available and could be used.

106 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

That is a nice segue into something we were talking about earlier, this notion of how if you are tuning at two

different levels, what happens when you put the two together, because they could--

A mess--

--have been fighting each other. The only self-tuning OS I have run on was Windows NT. We were trying to

do self-tuning, but we had a hard a time tuning anything because the OS kept changing its behavior.

[Perkily.] It was just trying to help.

Just trying to help, yes. And in the end, just like you said earlier, we would have been happier for the OS to

be predictable and slower, rather than faster and inconsistent.

A recurring theme in the computer science community is that the people on top always want the thing

underneath to not do anything clever, because they think they are in control and understand what needs to

happen. When things start out, I think that's probably right. We made a huge leap forward in the disk

community when the disk device driver for Berkeley UNIX came along, because it actually had a model of

how the disk drive was going to behave and got hugely better performance. But then the disk drive guys

moved on, and people need to let go of assuming they have complete control of the innards of the system.

We need to move to a world where the user declares, “I want you to behave this way; I don’t need to know

how you do it, but the behavior I want is like this”---and then the storage system can optimize around that.

We haven't made that transition yet.

In the case of the interface between database and storage systems, how would we specify that behavior?

Would it be in terms of quality of service? For what kind of things?

We should specify the behavior that is most important for the database level: reliability, performance,

availability, those kinds of things. They all matter, so they all have to be specified somehow. I am being a

little vague here about precisely how that is done. We have done some work in that space, but we have not

done the validation of putting it into a database and a storage system and having the two collaborate. That is

something I would like to see done, as there are a lot of open-ended questions regarding how much better

could we make the system if we are willing to exchange information across that boundary.

I don't have a model in my head for what database people would tell the storage system that they want their

behavior to be. At the highest level, I could imagine handing a workload to the storage system and saying,

“Here, run this and be sure you finish it all in a certain amount of time, with a certain response time, and

don’t lose the data.” I can imagine that, but surely we are talking at a lower level.

I am going to let you know that I am making this up on the fly.

That is okay.

Suppose we pass the query plan down to the storage system and say, “I am going to do all these things in

this order.” Surely we could do better with that information. Now maybe that is too much information to

pass down. The question is how much could we back off from passing down that entire query plan.

But how would you specify your non-functional requirements? Would you say, “Here is my query plan and I

want it done in the next five minutes”? Would it be more like a real time system, then?

I think you might do that. I could imagine saying, “Here is the sequence of requests I'm going to emit. Here

are the dependencies I have: I cannot issue that request until this one is completed, or this one is completed

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 107

plus so many seconds have gone by because I need to process the content. Execute them in any order that

makes sense as long as it conforms to this set of dependencies.” So that provides degrees of freedom: “You

can do anything you like as long as it doesn’t violate this constraint.” Those degrees of freedom are what

give you opportunities for optimization down below.

So the constraints would be perhaps total time spent and consistency constraints for correctness and maybe

some constraints having to do with reliability and those other dimensions.

And probably things like the amount of buffer space available. The thing I have at the back of my mind is

the experience that we had with disk directed I/O in the parallel systems community, where once upon a

time we used to have the people using the data issue low-level requests to the backend storage nodes. After

a while we realized that the backend nodes were the bottleneck, and the better thing to do was to tell them

what we were trying to accomplish and let them do the sequence on their own.

And let them figure out the sequence on their own, yes.

Same idea now, just applied to the storage system of the database.

I think you may be the first person I have interviewed whose PhD is from a European university. If you were

graduating right now, would you still move to the US?

That is a good question. I don't know. When I came over 20 years ago, the opportunities in the United States

were much more interesting and attractive than in the UK; I was an operating systems person and the west

coast of the US was where things were happening. These days the European computing environment is

much more attractive. Cambridge, where I came from, now has little vibrant start-ups, with all sorts of

activities around the university; “Silicon Fen” they call it. That provides much more attractive opportunities

than existed back then. I now work for HP, and they now have a big research lab in Bristol. That is where I

grew up, so it is another potential attractive opportunity. And the climate has changed a lot. It used to be the

case that all of the interesting research in hard-core systems was done in the US, and that is less true now.

Do you see a globalization, at least in hard-core systems area research, or is that specific to England? You

were mentioning places in England.

The globalization of talent: some people have now chosen to put buildings around where some of the talent

is, as opposed to moving the talent to the buildings.

Recent years have seen some hard times for industrial research labs. What do you think the future holds for

industrial labs? Will they become extinct?

I certainly hope not. And I doubt it. This is one of those business questions of how to choose to invest in

your future. There are many different models, all of which appear to be viable. At HP, we have chosen a

model where we have a core center research lab whose funding is protected from the day to day throes of

getting products out the door. Other companies have chosen different ways, and they have been more or less

successful depending on many different factors. But insofar as HP Labs --and other research labs-- continue

to provide value to their investors, they will continue to exist.

It all comes down to that definition of value. So what is the value that you are providing at HP and that

people can't live without?

Ink jet printing is the one we always point to.

108 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

And what year did you do that?

It is a while back. We need to do a few of those big contributions each decade. It is hard to do that, I mean,

we are there to take the big risks. I used to have this conversation with the head of HP Labs, saying that if

we are not failing in two-thirds of the things we try, then we are not taking enough risks.

So what have you done since inventing ink jet printing?

PA-RISC, IA64 Itanium, and a bunch of other things that are smaller activities and that do not show up so

much. But there are 600 or so people now at HP Labs leading the way---

I see. But you did not mention anything in storage.

[Laughs.] I was trying to paint the broader picture.

Okay. Have any special things at HP come out of your storage group?

I like to think that we helped AutoRAID get out the door, which was one of HP’s first smart disk arrays. HP

has been quite big in the storage management arena for quite a few years, and we have had influence on the

storage management plan. Have we had as much impact as I would have liked? Absolutely not. We can

always aim for more. I am currently moving into the adaptive utility computing space, and I would argue

that the research we have been doing in my group for the past five or six years has been right on target. We

just happened to look at the storage domain first. As a proof of concept and a demonstration of what can be

done with kinds of control feedback loops we were talking about earlier, the storage domain has been great.

HP is now shipping products that provide these kinds of facilities, partly I think because we helped lay the

groundwork showing that these things are possible and can be done.

Do you have any words of advice for fledging or mid-career database researchers or practitioners?

If you are not in this for fun or profit, what the heck are you doing here? Think about what you are trying to

accomplish! The failing that I see is the people who get enamored of what I would call “science projects”:

little simple things that they would like to try to take to fruition and get across that published paper barrier.

Yes, that is fine. We all have to do that, and occasionally it is wonderfully rewarding to take a simple idea

and move it. But I would encourage people to take a step back and say, “Well that is great, but who cares?

What else do they care about? How can I solve their other problems, rather than just assuming that this is a

good solution?” Go back and see if you can find a broader set of questions.

If you magically had enough time to do one more thing at work you are not doing now, what would it be?

[Laughs.] Sleep.

Oh, you are going to sleep at your desk, are you?

[Laughs.]

That will look good.

Magically. You said magically. Okay: create more hours in the day.

But weren't you saying last night that the life of us academics is way too hard and we work so hard, and

here you are the next morning saying that you need more sleep!

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 109

I like to think of it this way: you get to do all the things I get to do, plus you have to teach, plus you have to

go through grant proposal writing. The reason I work hard is that I enjoy it, so that is not an issue.

If you could change one thing about yourself as a computer scientist, what would it be?

I would get better at persuading other people that the things I think are interesting are interesting to them,

because what we accomplish---

Marketing.

No, that's unkind!

Unkind? I think it-- [Laughs.]

I think marketing is trying to persuade people to do things that they don’t want to do.

Not necessarily. When you are showing the importance of what you are doing, such as when you are writing

a grant proposal, I consider it to be marketing, but it is not an evil thing (if you think marketing is evil).

Okay. In that sense, the positive sense, it is not evil.

[Teasing,] [To camera man.] We have got that on the audio tape, don’t we?

What you really accomplish, you cannot accomplish alone; you have to do it through and with other people.

True, absolutely.

And getting them as excited as you are---and it feeds on itself, right? If other people get excited, you do too.

Do you know how you could really build that skill and give back to the community? You are not going to

like this; are you ready?

I can see something coming. I am being set up.

What you (and anyone out there who is like you) need to do is go to a funding agency and start a program in

an area you think is important. In your case, that area might be storage, because the storage research

funding out there now is tucked inside other programs--- they don’t stand on their own. That is how you

could both build that skill (because program managers have to convince the upper levels that their topic is

important, and you know that storage is incredibly important, so it should be an easy sell) and then get that

funding program in place, which would encourage more academic types to start looking at storage issues.

That is an excellent idea, but I may not be the right person for it.

Well, I hope someone reading this article is the right person.

That would be wonderful.

Thank you, John.

My pleasure. Thank you.

110 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Reminiscences on Influential Papers

Kenneth A. Ross, editor

See http://www.acm.org/sigmod/record/author.html for submission guidelines.

Graham Cormode, Lucent Bell Laboratories, graham@dimacs.rutgers.edu.

[Noga Alon, Yossi Matias and Mario Szegedy: The Space Complexity of Approximating the Frequency
Moments. Journal of Computer and System Sciences 58(1), 137–147, 1999. Conference version appeared in
STOC 1996.]

This paper recently won the theory community’s prestigious Goedel award, yet it has also been tremendously
influential in the the database community in general and at a personal level on my research. In one short
paper, the authors established many founding principles of the data stream model, gave ingenious algorithms
for computing the second frequency moment, a general method for finding all frequency moments, and lower
bounds on the space needed. While these problems initially appear abstract, the paper has had wide influence
on algorithms, database and network research.

Reading this paper as a graduate student was a revelation: having been thinking about some related questions
before reading the paper, I found some of the results almost unbelievable. The crisp presentation inspired
me to learn the relevant tools used to give such initially surprising proofs. For the database community, the
best known result from this paper is a simple randomized “sketch” data structure which neatly and simply
computes F2 (sum of squares) of a stream of values that can be arrive in a very general update model.
Subsequently, it has been shown that this summary can also be used to compute point estimates, range
sums, inner products (join size estimates) and more. All this from just one page of the original conference
paper! Indeed, one of the inspirational aspects of the paper is that it contains not just one excellent idea
but many excellent ideas. Further, the fact that the paper appeared in a theory conference reminds us that
researchers are not confined to a single area, but can work across boundaries, and read and publish wherever
seems most appropriate.

Amol Deshpande, University of Maryland, amol@cs.umd.edu.

[Ron Avnur, Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. Proceedings of the
2000 ACM SIGMOD Conference, May 16-18, 2000, 261–272.]

I was initially hesitant to write about a relatively new paper written by my graduate advisor, but no other
paper has quite influenced my research career as much as this original eddies paper. This paper was published
when there was an increasing concern about the applicability of traditional query optimization techniques
in domains such as static web sites, dynamic web services, and data streams, and various adaptive query
processing techniques were being introduced. This paper presented probably the most radical overhaul of
the query processing architecture, proposing use of a new operator called an eddy (the work was done in the
context of the River data flow system, hence the name), through which all tuples processed by the system
are routed; the eddy reacts to observed data characteristics by changing the order in which tuples are routed
through the remaining operators, thus effectively changing the query plan used to execute the query.

This paper was fairly controversial when it first appeared, with many concerns being raised about its effi-
ciency. The technique did form the basis of the Telegraph system, and its impact can also be seen in other
follow-on work in adaptive query processing. I am personally biased, and won’t discuss the merits of the
idea itself in this note.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 111

Although the jury may still be out on the long-term impact of this paper, there is no doubt that it significantly
influenced my own research in many ways. To be honest, even though there was much work going on in our
group on eddies, it wasn’t until much later that I became interested in it. Because of its lack of rigorous
analysis, this paper confuses the relevant, impactful concepts presented from those that were ad-hoc or had
no merit. For example, it never proves under what conditions an eddy will produce correct results (this is
not obvious). But once I started analyzing the technique and tried to put it in perspective, I was amazed
by its simplicity and beauty, and very surprised that something so innovative could be discovered in a well-
established area. Other than its direct influence on my research, this paper also changed the way I think
about query processing, and taught me to think twice about accepting even well-established doctrines. In
retrospect, it was the perfect paper for me, then a relatively immature graduate student looking for research
ideas, to have run into.

Panagiotis Ipeirotis, New York University, panos@stern.nyu.edu.

[David R. Cox: Regression models and life-tables. Journal of the Royal Statistical Society, Series B 1972;
34:187-220.]

I read this paper while working on the problem of updating word- frequency histograms that characterize a
web database. Since databases change over time, the associated statistics should also be updated to reflect
content changes. The fundamental challenge in this problem is to learn how long it takes for a database to
“change.” Knowing this time, it is then possible to schedule updates appropriately. Most of the solutions
for related problems in the database field either assumed that this time is given, or that we can learn it by
observing a database for long periods of time: a costly solution when dealing with web databases. Then
I realized that actuaries face a similar problem all the time: predicting the lifetime of insured clients. I
started checking the literature, and this paper by Cox was by far the most frequently cited reference. I
started reading the paper, realizing that statisticians have been developing solutions for the problems that I
faced, for more than three decades. While it took me some time to read and digest the proposed methods,
at the end I was impressed. The proposed regression model was conceptually simple, theoretically sound,
and made a very limited number of assumptions about the data. The model could effectively use incomplete
(“censored”) data and could deal with non-linear effects. Furthermore, the applications seemed (and are)
endless. However, even after reading the paper, I was afraid that such a “traditional” method from statistics
could only be applied to relatively small number of data points, and that it would not scale for the large
data sets. I could not be more wrong. The regression ran quickly, returning simple and elegant formulas
that I could subsequently use for scheduling updates.

This paper, and subsequent work in the survival analysis field made me realize that “no man is an island.”
Research from other fields can be easily applied to traditional database problems. I am still working on
similar problems, and the work by Cox and other statisticians is a very fertile source of methods for my
research. I strongly believe that anyone who works on similar problems (view maintenance, histogram
refreshing, updating cached data, publish/subscription techniques, and so on) should read this paper and be
familiar with the general field of survival analysis. The 8,000 citations returned by Google Scholar for this
paper just prove its importance.

Donald Kossmann, ETH Zurich, kossmann@inf.ethz.ch.

[Michael J. Carey, David J. DeWitt, Jeffrey F. Naughton: The OO7 Benchmark. SIGMOD Conference 1993:
12–21.]

I have a personal and more general perspective on this paper. From my personal perspective, this paper
saved my PhD thesis and so it had a huge impact on my career. In my thesis, I was working on “pointer
swizzling” and “dual buffering”. I strongly believed in my ideas, but I had no way to show that they were

112 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

worth-while using the existing benchmarks. It turned out that my ideas worked extremely well on the OO7
Benchmark. I was lucky.

In general, benchmarks shape a field and strongly impact the research directions pursued. This was definitely
true for OO7 because in the OODB research community everybody tried to win the OO7 battle. Today,
we know that OODBs were a (commercial) failure and research on OODBs has stopped. Now, what does
that mean for OO7? There are two standpoints: (a) OO7 was harmful because it made us work on the
wrong problems and, as a result, we could never get the glorious ideas of OODBs to work; (b) OO7 was very
helpful because it made us realize early what the potential killer-applications of OODB technology would
be and that OODBs were doomed to fail. No matter what standpoint you take, OO7 was clearly extremely
influential: to the better or to the worse — I cannot judge.

Lucian Popa, IBM Almaden Research Center, lucian2@us.ibm.com.

[Catriel Beeri and Moshe Y. Vardi: A Proof Procedure for Data Dependencies. JACM 31(4), October 1984,
718–741.]

This is one of the classical papers of relational database theory. I first read the paper as a graduate student
at the University of Pennsylvania. It was my advisor, Val Tannen, who realized that our work on equational
rewriting of queries under constraints had something to do with the chase. He asked me to read several
papers on the subject, including the Beeri and Vardi paper. I took several weeks to read the paper. The
notation is a bit outdated and it may take a while to get used to it, but underneath, the paper is a gem. It
is probably the single paper that influenced my research the most, as I learned two fundamental concepts
that afterwards I used in many occasions and I still use: 1) the class of tgds and egds to express data
dependencies, and 2) the chase with tgds and egds.

The paper introduces tgds (standing for tuple-generating dependencies) and egds (standing for equality-
generating dependencies) as a general formalism to include most prior forms of database dependencies:
inclusion dependencies, foreign key constraints, multivalued and join dependencies, functional dependencies,
key constraints, and more. There were two other independently developed formalisms that turned out
to be equivalent to tgds and egds (the embedded implicational dependencies of Fagin and the algebraic
dependencies of Yannakakis and Papadimitriou). However, Beeri and Vardi are the first to define the chase
at this level of generality. The paper goes into great depth to prove the important properties of the chase,
such as completeness. In addition to the main results, many of the technical lemmas, the proof techniques
as well as the various subclasses of tgds and egds that appear in the paper are still relevant and instructive
today.

Although the formalism of tgds and egds did not quite make it as a practical framework for database
dependencies (the more common foreign key and key constraints are simpler to handle and maintain), today
such dependencies are striking back and not necessarily as database constraints. Tgds and egds are at
their best use when describing relationships between schemas or between components of schemas. They can
describe relationships between physical database structures and logical schemas. Such description can then
be used together with the chase and other techniques to perform query reformulation. Tgds and egds can
also be used to describe data integration style of schema mappings, in which case the chase can be used to
give an elegant semantics for the process of transforming data from one schema into another. This is in fact
the formal basis for the schema mapping language developed at IBM for the Clio data exchange system. So,
the language of tgds and egds and their chase are still very relevant today, after more than two decades.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 113

CMM and TODS

Richard Snodgrass

rts@cs.arizona.edu

TheCapability Maturity Model[4] is an orderly way for organizations to determine the capabilities of
their current processes for developing software and to establish priorities for improvement [2]. It defines
five levels of progressively more mature process capability[3].

Level 1: Initial The software process is characterized as ad hoc, and occasionally even chaotic. Few pro-
cesses are defined, and success depends on individual effort.

Level 2: RepeatableBasic project management processes are established to track cost, schedule, and func-
tionality. The necessary process discipline is in place to repeat earlier successes on projects with
similar applications.

Level 3: Defined The software process for both management and engineering activities is documented,
standardized, and integrated into an organization-wide software process. All projects use a docu-
mented and approved version of the organization’s process for developing and maintaining software.
This level includes all the characteristics defined for level 2.

Level 4: Managed Detailed measures of the software process and product quality are collected. Both the
software process and products are quantitatively understood and controlled using detailed measures.
This level includes all the characteristics defined for level 3.

Level 5: Optimizing Continuous process improvement is enabled by quantitativefeedback from the pro-
cess and from testing innovative ideas and technologies. This level includes all the characteristics
defined for level 4.

You may be asking, what does a maturity model for software development have to do with databases
generally and withTODSin particular? Well, CMM has been applied to personnel management, quality
management, and even weapons system development. And it canbe used as a framework for evaluating the
journal review process, as we will do here.

Manuscript review atTODSstarted, logically, at Level 1. In 2001, the ACM Publications Board ap-
proved a broad policy [1, 5, 6] that raised publishing of ACM journals and transactions to Level 2. In 2003
ACM adopted the Manuscript Central1 web-based manuscript tracking system [7], raising its manuscript
reviewing process to Level 3.

In parallel with these efforts at the ACM Publications Boardlevel, I have been refining the reviewing
process forTODS. In October 2003 I released the first edition of theACM TODS Associate Editor Manual,
with revisions in April 2004 and October 2004. This manual, at 22 pages, is quite detailed.

I have also been collecting detailed statistics since July 2001. Some of these statistics are reported on
the TODSweb site2: turnaround time, article length, number of articles, and end-to-end time [6]. I have
also kept records on the turnaround time of individual Associate Editors, and have closely monitored the
progress of individual papers.

1http://acm.manuscriptcentral.com
2http://www.acm.org/tods/TurnaroundTime.html

114 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

Through these efforts, and through a series of internal policies regarding the reviewing process that
has been adopted by theTODSEditorial Board, all of the statistics has improved, some considerably [8].
Average turnaround time is now down to 13 weeks, average article length has been brought down to levels
last seen in the mid-1990s (under 40 pages), the number of articles per volume is back up to that last
experienced in the early 1990’s (21 articles per year), and average end-to-end time is down to 17 months,
last experienced in the 1970’s.

The result is thatTODSis now operating at CMM Level 5.
Why should you, dear reader, care about internal processes at TODS? The short answer is that by being

at Level 5,TODScan provide assurances as to howyour submission will be handled.
Average turnaround and end-to-end times are nice, but what authors really care about is how longtheir

submission will take to be reviewed. Addressing this concern involves both average andmaximumtimes. A
low average turnaround time is of little reassurance to someone experiencing an abnormally long turnaround
time. As an example, while the average turnaround time for papers submitted in January 2002 toTODSwas
a quite reasonable 5.5 months, one paper submitted that month had to wait almost nine (!) months for a
decision.

By virtue of being at CMM Level 5, the variance of the turnaround time could be monitored and im-
proved, as shown in Figure 1.

The turnaround time has been slowly decreasing over the pastfour years. This figure shows four sets of
data. The bottom line is theaverage turnaround time, a moving average of the turnaround time for papers
submitted in the indicated month. To smooth monthly variations, the moving average includes all of the
submissions for the previous year. Each data point represents dozens of papers. The value for January 2005,
12.5 weeks, is the average turnaround time for all of the papers submitted between (inclusive) February
2004 and January 2005.

The next line up is the average turnaround time for external reviews only, a moving average of the
turnaround time for papers submitted in the indicated month. This includes only submissions that went out
to external reviewers and specifically excludes desk rejects. The value for January 2005, 15.6 weeks, is the
average turnaround time for external reviews of all the papers submitted during the year up through January
2005.

The points, one per month, denote the maximum or peak turnaround time for submissions in the indi-
cated month. Each point represents a single, unusually slowpaper submitted during the indicated month.
For all the papers submitted in January 2005, the longest turnaround time was 4.9 months (21 weeks).

In terms of turnaround time,TODSat 12.5 weeks is now equivalent to conferences (as exemplified by
SIGMOD and PODS at 12 weeks), while being more flexible in not imposing a submission deadline.

The straight line is thecommitted maximum turnaround time, the boundary that the Editorial Board has
committed to not exceed, for any submission. Several years ago the Editorial Board established a formal
policy stating its commitment to providing an editorial decision within 6 months [8].TODSthus joined
conferences in guaranteeing a stated turnaround time.

Due to the rigorous application of CMM Level 5, of continuousprocess improvement as exemplified by
the steady lowering of average turnaround time and the compression of the variance in turnaround time by
a factor of two, I can announce that the Editorial Board is nowcommitted to providing an editorial decision
within five months, starting with submissions in 2004. As depicted in the figure., we have met this stated
commitment for the past thirteen months. As of the writing ofthis column (June 29, 2005), all manuscripts
submitted before February 1 of this year have been processedand editorial decisions rendered.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 115

 0

 2

 4

 6

 8

 10

07/01 01/02 07/02 01/03 07/03 01/04 07/04 01/05

T
ur

na
ro

un
d

T
im

e
(in

 m
on

th
s)

Issue

Maximum
Maximum committed

Average (with reviews)
Average (without reviews)

Figure 1: ACMTODSTurnaround Time

That TODSnow matches conferences in terms of turnaround time is a testament to the hard work of
two groups of people: reviewers and the editorial board. I will recognize the reviewers in a future column,
but here I wish to thank the following people, who comprise the TODSEditorial Board, for their dedicated
effort work in achieving very fast decisions while upholding very high standards.

Surajit Chaudhuri, Microsoft Research
Jan Chomicki, SUNY Buffalo
Mary Fernandez, AT&T Labs
Michael Franklin, Univ. of California at Berkeley
Luis Gravano, Columbia University
Ralf Hartmut Güting, Fernuniversität Hagen
Richard Hull, Bell Labs
Christian S. Jensen, Aalborg University
Hank Korth, Lehigh University

Donald Kossmann, ETH Zurich
Heikki Mannila, University of Helsinki
Z. MeralÖzsoyoǧlu, Case Western Reserve
Raghu Ramakrishnan, University of Wisconsin
Arnie Rosenthal, MITRE
Betty Salzberg, Northeastern University
Sunita Sarawagi, IIT Bombay
Dan Suciu, University of Washington
Jennifer Widom, Stanford University

These 18 people are providing a truly valuable service to readers, to authors, and to reviewers. When you
see these people, please thank them personally for their role in achieving quick reviews of submitted papers.

116 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

References

[1] ACM Publications Board, “Rights and Responsibilities in ACM Publishing,” approved June 27, 2001.
(http://www.acm.org/pubs/rights.html)

[2] Watts S. Humphrey,A Discipline for Software Engineering, Addison-Wesley, 1995.

[3] M. C. Paulk, Bill Curtis, and M. B. Chrisis, “Capability Maturity Model for Software, Version 1.1,”
Software Engineering Institute Technical Report, CMU/SEI-93-TR, February 24, 1993.

[4] SEI, The Capability Maturity Model: Guidelines for Improving th e Software Process, Software
Engineering Inst. Carnegie Mellon Univ., Addison-Wesley,1995.

[5] Richard T. Snodgrass, “Rights and Responsibilities in ACM Publishing,” CACM 45(2): 97–101,
February 2002.

[6] Richard T. Snodgrass, “Rights ofTODS Readers, Authors and Reviewers,”SIGMOD Record,
31(4):5–9, December 2002.

[7] Richard T. Snodgrass, “ACMTODSin this Internet Age,”SIGMOD Record, 32(1):4–5, March 2003.

[8] Richard T. Snodgrass, “Journal Relevance,”SIGMOD Record, 31(3):11–15, September 2003.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 117

	p1-organizers.pdf
	p2-editornotes.pdf
	p3-special-intro.pdf
	p5-special-sw-section-1.pdf
	p12-special-sw-section-2.pdf
	p18-special-sw-section-3.pdf
	p24-special-sw-section-4.pdf
	p31-special-sw-section-5.pdf
	p37-special-sw-section-6.pdf
	p44-special-sw-section-7.pdf
	p50-special-sw-section-8.pdf
	p56-special-sw-section-9.pdf
	p63-article-verma.pdf
	p72-article-bicer.pdf
	p79-column-cetintemel-1.pdf
	p83-column-cetintemel-2.pdf
	p89-column-brian-1.pdf
	INTRODUCTION
	TECHNICAL PRESENTATIONS
	DISCUSSION
	Wrapper Definition
	Evolution of the Models and Languages

	TOPICS FOR FUTURE WORK
	REFERENCES

	p91-column-brian-2.pdf
	p95-column-libkin.pdf
	p104-column-winslett.pdf
	p115-column-ross.pdf
	p118-column-snodgrass.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

