
An Approach for Pipelining Nested Collections in
Scientific Workflows

Timothy M. McPhillips
Natural Diversity Discovery Project

tmcphillips@nddp.org

Shawn Bowers
∗

UC Davis Genome Center
sbowers@ucdavis.edu

ABSTRACT
We describe an approach for pipelining nested data collections in
scientific workflows. Our approach logically delimits arbitrarily
nested collections of data tokens using special, paired control to-
kens inserted into token streams, and provides workflow compo-
nents with high-level operations for managing these collections.
Our framework provides new capabilities for: (1) concurrent opera-
tion on collections; (2) on-the-fly customization of workflow com-
ponent behavior; (3) improved handling of exceptions and faults;
and (4) transparent passing of provenance and metadata within to-
ken streams. We demonstrate our approach using a workflow for
inferring phylogenetic trees. We also describe future extensions
to support richer typing mechanisms for facilitating sharing and
reuse of workflow components between disciplines. This work
represents a step towards our larger goal of exploiting collection-
oriented dataflow programming as a new paradigm for scientific
workflow systems, an approach we believe will significantly reduce
the complexity of creating and reusing workflows and workflow
components.

1. INTRODUCTION
New instrumentation, automation, computers, and networks are

catalyzing high-throughput scientific research. These technolo-
gies promise to deliver data at rates orders of magnitude greater
than in the past. Amid high expectations, however, is a growing
awareness that existing software infrastructure for supporting data-
intensive research will not meet future needs. Researchers in high-
energy physics, biology, nanotechnology, climate research, and
other disciplines recently reported at the 2004 Data-Management
Workshops [7] that current technologies for managing large-scale
scientific research do not satisfy even current needs and warned
of a “coming tsunami of scientific data.” They identified crit-
ical computing challenges including: (1) integrating large data
sets from diverse sources; (2) capturing data provenance and
other metadata; and (3) streaming data through geographically dis-
tributed experimental and computing resources in real time. An
emerging challenge is the need to make high-throughput automa-
tion technologies, developed and made cost-effective by large re-
search consortia, available to medium-sized collaborations, small
research groups, and individual investigators through virtual lab-
oratories composed of network-accessible research tools. Effec-
tive information-intensive research by small groups requires auto-
mated workflow approaches where computing infrastructure inte-
grates disparate resources and explicitly manages project data [7].

The goals of the Natural Diversity Discovery Project (NDDP)
[19] illuminate the challenges of supporting scientific workflows

∗Supported in part through NSF/ITR 0225676 (SEEK).

for genomics and bioinformatics. Aiming to help the public un-
derstand scientific explanations for the diversity of life, the NDDP
is developing a virtual laboratory for inferring and analyzing evo-
lutionary relationships between organisms, i.e., phylogenetic trees
[8]. Professional research tools and a web-based discovery envi-
ronment will enable evolutionary biologists and the general pub-
lic to: (1) infer, display, and compare phylogenetic trees based on
morphology, molecular sequences, and genome features; (2) cor-
relate these phylogenies with events in Earth history using molec-
ular clocks and the fossil record; (3) iterate over alternative phy-
logenetics methods, character weightings, and algorithm parameter
values; (4) maintain associations between phylogenies and the data,
methods, parameters, and assumptions used to infer them; (5) share
workflows and results; and (6) repeat studies reported by others and
note the effects of varying data sets, approaches, and parameters.

To support these research and discovery environments, the
NDDP is addressing the following requirements for scientific work-
flows:

• Workflows must support operations on nested collections
of data. Data sets for phylogenetics, and bioinformatics
in general, can be large, complex, and nested in structure
[10]. Workflows must operate efficiently on these sometimes
deeply nested collections of data, while maintaining the as-
sociations they signify.

• Workflow results must be repeatable. Researchers need
to be able to repeat the work of others easily and reliably.
Workflow infrastructure must automatically record how re-
sults were obtained and allow others to use this information
to reproduce the results. The provenance of input data and
important intermediate results must be associated automati-
cally with outputs.

• Workflow definitions must be reusable. Researchers must
be able to develop generic, reusable workflows from exist-
ing workflow components. Moreover, users of the NDDP
web-based discovery environment must be able to apply pre-
defined workflows to data sets of their choice. Running a
new set of data through a previously defined workflow must
not entail manual reconfiguration of component parameters
or interconnections.

• Workflows and components must be robust. Exceptions
thrown for particular data or parameter sets must not disrupt
operations on unrelated sets. Similarly, it should be possible
for a workflow author to specify the consequences of faults
during workflow processing.

12 SIGMOD Record, Vol. 34, No. 3, Sept. 2005



Figure 1: A collection-aware KEPLER workflow for inferring phylogenetic trees. The PhylipParsLoop composite actor (top) con-
tains a nested sub-workflow (bottom), which iteratively executes the PARS algorithm.

We report our experiences addressing these requirements using
the KEPLER scientific workflow system and detail the resulting ap-
proach. We give a brief description of KEPLER in Section 2 and
describe our extensions for supporting pipelined nested data col-
lections in scientific workflows in Section 3. Our approach treats
pipelined dataflow as sequences of data tokens containing special,
paired control tokens that delimit arbitrarily nested collections. We
show how our implementation of these capabilities within KEPLER
automates the management of nested collections and simplifies the
development of “collection-aware” pipelined components. In Sec-
tion 4 we describe planned extensions for supporting rich data typ-
ing of collections and workflow components. These extensions will
further support the design and development of pipelined workflows
and will facilitate mechanisms for workflow verification and anal-
ysis. Related work is discussed in Section 5.

2. THE KEPLER SYSTEM
KEPLER [12] is a Java-based, open-source scientific work-

flow system being developed jointly by a collaboration of
application-oriented scientific research projects. KEPLER extends
the PTOLEMY II1 system (hereafter, PTOLEMY) with new features
and components for scientific workflow design and for efficient
workflow execution using distributed computational and experi-
mental resources [16]. PTOLEMY was originally developed by the
electrical engineering community as a visual dataflow program-
ming application [14] that facilitates actor-oriented programming
[13]. In PTOLEMY and thus in KEPLER, users develop workflows
by selecting appropriate components (called actors or blocks) and
placing them on the design canvas. Once on the canvas, compo-
nents can be “wired” together to form the desired dataflow graph,
e.g., as shown in Figure 1. Actors have input ports and output ports
that provide the communication interface to other actors. Actors
can be hierarchically nested, using composite actors to contain sub-
1http://ptolemy.eecs.berkeley.edu/index.htm

workflows. Control-flow elements such as branches and loops are
also supported (see the bottom of Figure 1). In KEPLER, actors can
be written directly in Java or can wrap external components. For
example, KEPLER provides mechanisms to create actors from web
services, C/C++ applications, scripting languages, R2 and Matlab,
database queries, SRB3 commands, and so on.

In PTOLEMY, dataflow streams consist of data tokens, which are
passed from one actor to another via actor connections. PTOLEMY
differs from other similar systems (including those for scientific
workflows) in that the overall execution and component interaction
semantics of a workflow is not determined by actors, but instead is
defined by a separate component called a director. This separation
allows actors to be reused in workflows requiring different mod-
els of computation. PTOLEMY includes directors that specify, e.g.,
process network, continuous time, discrete event, and finite state
computation models.

As an example, the Process Network (PN) director executes each
actor in a workflow as a separate process (or thread). Connections
(or channels) are used to send (i.e., stream) sequences of data to-
kens between actors, and actors map input sequences to output se-
quences. Actors communicate asynchronously in process networks
through buffered channels implemented as queues of effectively
unbounded size. Thus, the PN director can be used to pipeline
data tokens through scientific workflows, enabling highly concur-
rent execution.

3. PIPELINING NESTED DATA COLLEC-
TIONS

As previously noted, scientific data sets are often large. Oper-
ating efficiently on such data sets can require pipelined process-
ing of data set contents, a task for which scientific workflows are

2http://www.r-project.org/
3Storage Resource Broker, http://www.sdsc.edu/srb/

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 13



potentially well suited. PTOLEMY, however, does not provide ex-
plicit support for pipelining the nested structures typical of scien-
tific data. PTOLEMY represents collections as individual tokens,
meaning that pipelining, e.g., using process networks, occurs at
the granularity of an entire collection. This approach precludes
efficiency gains that might be realized by operating on collection
members concurrently in a pipelined fashion.

To work around this limitation, workflow authors use a variety of
approaches. One approach, for example, is to send the members of
a collection as individual tokens, and use a separate channel (con-
nection) to send a token count denoting the size of the collection
being processed. For nested collections, this approach becomes
even more complicated as it requires a large number of additional
connections.

Alternatively, an actor can send special “control” tokens mixed
in with the data to delimit the beginning and end of a collection
(or nested collection). This approach is similar to the use of open-
bracket and close-bracket information packets described by Morri-
son [18] and the approach proposed in Ludäscher et al [15] for sup-
porting “pipelined arrays.”4 However, ad hoc use of control tokens
leads to code redundancy and tightly couples actor implementation
with workflow design. These problems in turn hamper rapid proto-
typing of workflows and associated data structures; make compre-
hension, reuse, and refactoring of existing workflows difficult; and
limit reuse of actors designed for these workflows.

Our solution is to provide explicit support within KEPLER for
pipelining nested data collections using control tokens. Specifi-
cally, we have extended KEPLER to denote nested collections using
explicit, paired opening and closing delimiter tokens inserted into
the data streams. We have also added to KEPLER generic opera-
tions for managing these collections.

Figure 2 illustrates how nested data collections can be streamed
through consecutive actors in our approach. The collection labeled
b is nested within the collection labeled a using explicit start and
end control tokens. Delimited collections may contain data tokens
(labeled di in Figure 2), explicit metadata tokens (labeled mj in
Figure 2), and other sub-collections (denoted using nested control
tokens, e.g., bstart and bend). Metadata tokens are used to carry
information that applies to a collection as a whole, including data
provenance. As shown in Figure 2, each actor within the pipeline is
able to execute concurrently on a collection’s contents. In particu-
lar, each actor is processing a part of a and its metadata simultane-
ously: actor 3 is processing the beginning of the a collection, actor
2 is processing the nested b collection, and actor 1 is processing the
end of the a collection.

…
Actor 1 Actor 2 Actor 3

aend d6 d5 astartm1d1d2d3bstartbend m2d4

…

Figure 2: Pipelining data collections via explicit control tokens.

The rest of this section describes the details of our implementa-
tion. We first discuss extensions to PTOLEMY for making actors
“collection-aware.” We describe how an actor can easily “listen”
for collections of interest. We discuss the use of collection meta-
data, support for provenance, and our approach to exception han-
dling. Finally, we describe a real-world, collection-based workflow
for inferring phylogenetic trees.

4This approach is also similar to the use of XML in stream-based
query frameworks.

3.1 Collection-Aware Actors
In PTOLEMY, atomic actors are implemented by extending one

of the existing actor classes. Creating a new atomic actor entails
overriding the fire operation (as well as other related methods),
which is called by a director when the actor is “activated.” Within
fire, an actor may read (consume) tokens from input ports, operate
on input data, and write (produce) tokens to output ports. In pro-
cess networks, for example, an indefinite number of tokens may be
received and sent each time fire is called.

We encapsulate the complexity of creating, managing, and pro-
cessing nested data collections by introducing a new type of actor
called CollectionActor, and a new system component for managing
collections called CollectionManager. Figure 3 shows a simplified
definition of these classes. Collection-processing actors are derived
from CollectionActor. Instances of CollectionManager are used to
manipulate particular collections. The CollectionActor base class
facilitates collection nesting by maintaining a stack of Collection-
Manager objects corresponding to all collections concurrently pro-
cessed by an actor.

Rather than reading tokens directly from input ports, collection
actors operate on collections from within methods analogous to
SAX API event handlers for parsing XML files. The CollectionAc-
tor fire method triggers calls to the handleCollectionStart method
when the opening delimiter for a collection is received; the han-
dleData or handleMetadata method when a data or metadata token
is received; and the handleCollectionEnd method when the closing
delimiter for a collection is received. These calls pass the Col-
lectionManager object associated with the incoming collection to
these event handlers, and the newly received token to the handle-
Data and handleMetadata methods. This event-based approach to
processing collections allows collection-aware actors to be mixed
freely with actors that operate on data tokens individually; the lat-
ter actors override the handleData method alone, thereby ignoring
events related to collection structures and metadata.

Collection actor output is “indirect” as well. An actor may add
data or metadata to a collection it is processing using methods pro-
vided by the associated CollectionManager object. An actor may
create a new collection within another collection and add data or
metadata to it; and it may replace data or metadata or copy the
information to other collections. Collection actors specify the dis-
position of incoming collections, data, and metadata via the return
values of the event handlers. The return value of the handleCol-
lectionStart method declares whether the actor will further pro-
cess a collection and whether the collection should be discarded
or forwarded to the next actor in the workflow. Similarly, the re-
turn values of the handleData and handleMetadata methods indicate
whether the token in question should be forwarded or discarded.
Incoming information not discarded by an actor is streamed to suc-
ceeding actors in the workflow as the collection is received and
processed.

3.2 Collection Types and Paths
Each collection is associated with a type (implemented as a Java

class) denoting a (conceptual) scientific or data-management re-
source. For example, a collection with the type Nexus contains data
or results associated with one or more phylogenetics computations,
while a TextFile collection contains string tokens representing the
contents of a text file.

Collection types simplify the processing of collections. Each
instance of a collection actor has a CollectionPath parameter that
specifies what conceptual types of collections and data the actor can
handle. Collections and data tokens with types matching the Col-
lectionPath value trigger collection-handling events, e.g., calls to

14 SIGMOD Record, Vol. 34, No. 3, Sept. 2005



Actor
fire()
…

CollectionActor

handleCollectionStart()
handleData(Token)
handleException(ExceptionToken)
handleMetadata(MetadataToken)
handleParameterChange(Parameter, Token)
handleCollectionEnd()

CollectionManager0..*

metadataValue(String name)
…

MetadataToken

String name
Token value

VariableToken

1..1

0..1

parentCollectionManager

Figure 3: A simplified UML representation of the collection
actor and manager classes.

the actor’s handleCollectionStart and handleData methods. Collec-
tions and data not matching the CollectionPath value are streamed
silently to the next actor in the workflow (i.e., no further processing
is required by the actor to forward the tokens). Collection paths are
expressed using a simplified XPath-style syntax expressed against
type names and may specify collection types occurring anywhere
in a hierarchy; parent and child collections not matching the path
are ignored (although metadata for parent collections are always
available). Thus, workflow developers may use the CollectionPath
parameter to operate selectively on particular collection and data
types, while actor authors may fix the value of these parameters to
simplify actor implementation.

3.3 Context-Dependent Operations
Independent data sets passing through a workflow may require

different actor behavior within a single workflow run. Actors used
in such workflows must be dynamically configurable and able to
operate context dependently. Metadata tokens can be used to com-
municate this context to actors.

An instance of the MetadataToken class (see Figure 3) stores the
name of a metadata item and an embedded token representing the
item’s value. Any number of metadata tokens with distinct names
may be placed within the sequence of tokens comprising a single
collection.

Actors may use metadata values to tune their own behavior ap-
propriately for the current collection. Actors may observe metadata
sequentially via the handleMetadata method or on demand using
the CollectionManager metadataValue method after the metadata
tokens have been received. The latter random access method tra-
verses the stack of successively enclosing collections to return the
first metadata value corresponding to the given name. Thus, the
context for actor behavior may be defined at any level within a set
of nested collections and overridden at successively lower levels.

In KEPLER, actor parameters can be used to specify default actor
behavior prior to workflow execution. Passing actor configuration
information within collections enhances this capability. In particu-
lar, our framework allows instances of VariableToken, a subclass
of MetadataToken, to automatically override the values of actor
parameters at run time. A previous value of the parameter is re-
stored when the end of a collection that overrides the parameter is
reached. Among other advantages, variable tokens make it easy
for workflow users to apply particular parameter values to subsets
of data flowing through dynamically reconfigurable workflows (see
the workflow described at the end of this section for an example).

3.4 Provenance Support
Collection metadata provide a convenient mechanism for record-

ing provenance. The origin of input data, intermediate results, and
workflow outputs can be described using metadata tokens, and this
provenance information can be used to reproduce workflow results
later. Inserting metadata directly into the data stream is an effective
alternative to storing provenance information within databases or
other persistent storage during workflow execution. The approach
ensures that metadata is associated with the appropriate collections
of data even when independent data sets are processed concurrently
by pipelined workflows. It also reduces the burden on the authors
of actors that do not require access to metadata: the event-based
model for handling data and metadata tokens makes provenance
annotations effectively “invisible ink” to actors that do not over-
ride the handleMetadata method of CollectionActor. Finally, the
in-stream approach to recording provenance is convenient for dis-
tributed computing environments where all nodes may not have ac-
cess to a single shared resource for storing metadata.

3.5 Exception Handling
Exception handling is a significant hurdle to supporting complex

scientific workflows [16]. Exceptions can occur for many reasons.
For example, many NDDP workflows include actors that wrap ex-
isting software. These legacy scientific application programs vary
widely in robustness. Inappropriate input data or parameters can
result in program faults. Moreover, many scientific applications
are prone to crashes even when given valid instructions and data.
Without mechanisms for handling exceptions in pipelined work-
flows, an error caused by a single data set (or collection) can result
in the sudden termination of an entire workflow run.

We have addressed these issues by adding support in KEPLER
for associating exceptions with collections. A collection-aware ac-
tor that catches an external application error (or other exception)
may add an ExceptionToken to the collection that caused the error.
This actor may then proceed to operate on the next collection. A
downstream exception-catching actor can filter out collections that
contain exception tokens, and may do so at a level in the collection
nesting appropriate for the particular application. This approach
limits the effects of exceptions to the collections that trigger them.

3.6 Example: Inferring Phylogenetic Trees
We have used all of the above KEPLER extensions in a number of

NDDP workflows. One such workflow for inferring phylogenetic
trees is shown in Figure 1. The workflow is run by specifying a
list of files containing input data in the Nexus file format [17]. The
TextFileReader actor reads these Nexus files from disk and outputs
a generic TextFile collection for each; NexusFileParser transforms
these text collections into corresponding Nexus collections. Phylip-
ParsLoop is a composite actor containing the sub-workflow shown
at the bottom of Figure 1. Within this sub-workflow the PhylipPars
actor executes the PARS program (as a separate system process) on
each Nexus collection it receives, adding the phylogenetic trees it
infers to the collection. The sub-workflow iteratively executes the
PARS application using the StartLoop-EndLoop construct.

The actors labeled Initialize seed and Increment seed are in-
stances of the SetVariable class. A SetVariable actor may add or
update the value of a VariableToken using a configurable expres-
sion referring to collection metadata or variable values. The first
instance of SetVariable adds a VariableToken named jumbleSeed to
each Nexus collection, while the second increments the value of
this variable. The VariableToken overrides the value of the jum-
bleSeed parameter of the PhylipPars actor, causing the PARS ap-

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 15



plication to jumble the order of analyzed taxa differently on each
execution.

The UniqueTrees actor removes redundant trees from the Nexus
collection on each pass through the loop. Both PhylipPars and Uni-
queTrees update the treeCount metadata item. The loop is exe-
cuted until a minimum number of unique trees has been found, or
the maximum allowed number of cycles has been performed. The
PhylipConsense actor applies the CONSENSE external application
to the trees inferred by the PhylipParsLoop sub-workflow, adding
a consensus tree (reflecting commonalities in the trees inferred by
PARS) to each Nexus collection. The rest of the workflow discards
Nexus collections that triggered exceptions and writes out the re-
maining Nexus collections to disk. The PARS and CONSENSE
programs are part of the Phylip phylogeny inference package5.

The visual simplicity of the workflow (as shown in Figure 1)
highlights the power of the pipelined collection approach in KE-
PLER. Fairly complex, nested data collections (including trees and
character matrices) are streamed through the pipeline; the actors
PhylipPars and PhylipConsense wrap external scientific applica-
tions; and conditional control-flow constructs are used. All this is
achieved without introducing numerous connections between ac-
tors or customizing actor Java code for the particular workflow.
Moreover, the flow of data is pipelined automatically, with work-
flow components operating concurrently.

An ad hoc approach to processing collections would signifi-
cantly complicate the visual appearance and development of this
workflow. Even the relatively straightforward UniqueTrees actor
likely would need at least two input ports, one for receiving to-
kens representing the trees to compare, and another for receiving a
token count indicating how many trees the actor should expect to
receive. This actor might require two output ports for similar rea-
sons. Other actors in the workflow would require multiple ports and
connections as well. Supporting the looping, exception handling,
and metadata processing features of this workflow would introduce
even more complexity. Passing aggregate tokens (e.g., tokens con-
taining arrays of other tokens) between actors would reduce this
complexity somewhat at the cost of limiting concurrent actor ex-
ecution. In contrast, our delimited-collections approach not only
allows multiple, independent collections to stream through work-
flows at the same time (e.g., if multiple Nexus input files are spec-
ified by the List actor in Figure 1), it also allows the members of
each collection to be processed concurrently in pipelined fashion as
appropriate (as illustrated in Figure 2). Most significant, the above
alternative implementations would require the scientist developing
the workflow to pay considerable attention to the detailed control-
flow aspects of the workflow, rather than focusing primarily on the
scientific tasks modeled succinctly in Figure 1.

4. TYPING EXTENSIONS
Type safety is a key element of robust programming environ-

ments. PTOLEMY provides type safety by enabling actor authors
to specify the types of tokens that may pass through actor input
and output ports. Exceptions are thrown if incompatible tokens
are received or sent by such ports. Further, it is possible to de-
termine prior to workflow execution if connections are type-safe.
Such static workflow analysis is desirable both for workflow de-
sign and for notifying users of potential problems prior to workflow
execution.

In the context of pipelining nested data collections, however, the
static typing approach employed by PTOLEMY is no longer appro-
priate. Any type of token can occur within a stream, including

5http://evolution.gs.washington.edu/phylip.html

metadata and delimiter token types. Only certain types of collec-
tions and data (specified, e.g., using collection paths) are processed
by an actor, while all non-relevant data is forwarded transparently
to downstream components. Restricting an input port to a partic-
ular structural type would unnecessarily limit the applicability of
an actor to streams containing information only of that type; and
restricting an output port to a particular type would cause unneces-
sary exceptions for all non-relevant data.

PTOLEMY type checking is disabled in our current implemen-
tation, but we intend as future work to “resurrect” the typing of
actors as follows. Using a collection-based typing language, sim-
ilar to content model definitions in XML Schema and DTDs (and
subtyping rules, e.g., [11]), we allow actors to explicitly define the
types of collections they process both conceptually (see below) and
structurally. In this way, collection paths are extended to support
structural collection types, expressed as restrictions on the allow-
able types of data tokens and sub-collections they may contain.

In addition, actor authors can provide output types specifying
the types of collections (both conceptually and structurally) an ac-
tor can produce upon firing. In a static analogy to the current dy-
namic use of return types in the CollectionActor class, we allow
actor authors to specify explicitly whether an input collection of a
certain type will be forwarded or discarded by the actor. Actor au-
thors can also specify whether an output collection will result from
creating a new collection or by altering particular input collections.
With these specifications, KEPLER can perform static type anal-
yses, e.g., to determine that a particular connection will result in
an actor never firing, or that an actor may receive a conceptually
appropriate collection from an upstream actor, but with an unsup-
ported structural type. For output types, KEPLER can also perform
runtime type checking using these specifications.

The current CollectionPath implementation defines conceptual
types using a hierarchy of Java classes. This approach works when
the number of collection types is small, the types are fairly static,
and the actors operating on these types are developed by the same
organization. As other organizations develop their own collection-
based actors, developers independently define their own collection
types, and users begin mixing collection actors and types originally
developed for different disciplines, more robust and richer typing
mechanisms will be needed. As future work we intend to adopt the
ontology-based hybrid typing approach [2, 3] in KEPLER to specify
both structural and conceptual types of collections.

In particular, KEPLER extends the type system of PTOLEMY by
separating the concerns of conventional data modeling (structural
data types) from conceptual data modeling (semantic data types).
A semantic type represents an ontology concept, expressed in de-
scription logic (e.g., in OWL-DL).6 Optionally, hybrid types permit
structural types and semantic types to be linked through semantic
annotations, expressed as logical constraints. Within KEPLER, hy-
brid types enable concept-based searching for actors, can be used to
further propagate and refine known (structural or semantic) types in
scientific workflows, and can help to infer (partial) structural map-
pings between structurally incompatible workflow components.

5. RELATED WORK
A number of scientific workflow systems have recently emerged

[1, 6, 20, 22, 21, 4]. To the best of our knowledge, none of-
fer approaches for pipelining and managing nested data collec-
tions for workflows consisting of external and opaque (as opposed

6Thus, different organizations can define their own ontologies (ter-
minologies) and easily articulate mappings among them for inter-
operability.

16 SIGMOD Record, Vol. 34, No. 3, Sept. 2005



to declarative or query-based) components. We believe that KE-
PLER is well-suited for our extensions because of its advanced
and well-defined computation models inherited from PTOLEMY,
and because it provides an elegant extension mechanism via actor-
oriented design. The way collection actors and managers operate
on pipelined nested collections has similarities with some XML
stream processing techniques [9], which thus are good candidates
for collection processing optimization strategies. Finally, our ap-
proach to pipelining workflows is similar in spirit to list process-
ing constructs in functional programming [5] as well as dataflow
programming [18]. We believe that many constructs in these ap-
proaches may help make scientific-workflow design and develop-
ment simpler and more intuitive for scientists.

6. CONCLUDING REMARKS
Our approach and associated KEPLER extensions facilitate the

concurrent execution of collection-oriented scientific workflows.
In particular, our framework automates the pipelining of individ-
ual data tokens within nested collections passing through a work-
flow, and at the same time explicitly maintains the inherent struc-
ture of the collections. The approach also allows metadata to be
inserted into token streams on the fly; this metadata can be used for
recording provenance and dynamically customizing actor behavior.
Similarly, the repercussions of external application faults and other
exceptions can be limited and controlled through special excep-
tion tokens. Our event-based model for handling nested collections
makes collection-aware actors simple to implement and maintain,
and workflows based on them easy to prototype and extend. Our ap-
proach simplifies collection-oriented scientific workflows by elim-
inating the need for explicit control ports and workflow-specific
actors. Future extensions to support true semantic collection types
will enable static analysis of workflows and will provide better sup-
port for cross-discipline and inter-organization sharing and reuse of
workflow components.

The source code for the implementation described here is avail-
able in the latest release of KEPLER, which can be downloaded
from the KEPLER project web site [12].

7. REFERENCES
[1] A. Ailamaki, Y. Ioannidis, and M. Livny. Scientific workflow

management by database management. In SSDBM, 1998.
[2] C. Berkley, S. Bowers, M. Jones, B. Ludäscher,

M. Schildhauer, and J. Tao. Incorporating semantics in
scientific workflow authoring. In SSDBM, 2005.

[3] S. Bowers and B. Ludäscher. Actor-oriented design of
scientific workflows. In Proc. of the Intl. Conf. on
Conceptual Modeling (ER), 2005.

[4] L. Bright and D. Maier. Deriving and managing data
products in an environmental observation and forecasting
system. In Conf. on Innovative Data Systems Research
(CIDR), 2005.

[5] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles
of programming with complex objects and collection types.
Theoretical Computer Science, 149(1), 1995.

[6] D. Churches, G. Gombas, A. Harrison, J. Maassen,
C. Robinson, M. Shields, I. Taylor, and I. Wang.
Programming scientific and distributed workflow with Triana
services. Concurrency and Computation: Practice and
Experience, Special Issue on Scientific Workflows, 2005.

[7] The office of science data-management challenge. Report
from the DOE Office of Science Data-Management
Workshops, March–May 2004.

[8] J. Felsenstein. Inferring Phylogenies. Sinauer Associates,
Inc., 2004.

[9] L. Golab and M. T. Özsu. Issues in data stream management.
ACM SIGMOD Record, 2003.

[10] P. Gordon. XML for molecular biology.
http://www.visualgenomics.ca/gordonp/xml/.

[11] H. Hosoya and B. C. Pierce. Regular expression pattern
matching for XML. Journal of Functional Programming,
13(6), 2003.

[12] The Kepler Project. http://www.kepler-project.org.
[13] E. A. Lee and S. Neuendorffer. Actor-oriented models for

codesign: Balancing re-use and performance. In Formal
Methods and Models for Systems. Kluwer, 2004.

[14] E. A. Lee and T. M. Parks. Dataflow process networks. Proc.
of the IEEE, 83(5):773–801, 1995.

[15] B. Ludäscher and I. Altintas. On providing declarative design
and programming constructs for scientific workflows based
on process networks. Technical report,
SciDAC-SPA-TN-2003-01, 2003.

[16] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience,
Special Issue on Scientific Workflows, 2005.

[17] D. Maddison, D. Swofford, and W. Maddison. NEXUS: An
extensible file format for systematic information. Systematic
Biology, 46(4), 1997.

[18] J. Morrison. Flow-Based Programming. Van Nostrand
Reinhold, 1994.

[19] Natural Diversity Discovery Project. http://www.nddp.org.
[20] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,

M. Greenwood, T. Carver, K. Glover, M. Pocock, A. Wipat,
and P. Li. Taverna: A tool for the composition and enactment
of bioinformatics workflows. Bioinformatics Journal, 20(17),
2004.

[21] SciTegic. http://www.scitegic.com/.
[22] D. Weinstein, S. Parker, J. Simpson, K. Zimmerman, and

G. Jones. Visualization Handbook, chapter Visualization in
the SCIRun Problem Solving Environment. Elsevier, 2005.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 17




