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Abstract 
 
While a lot of work has been published on clustering of 
data on storage medium, little has been done about 
automating this process. This is an important area 
because with data proliferation, human attention has 
become a precious and expensive resource. Our goal is to 
develop an automatic and dynamic database clustering 
technique that will dynamically re-cluster a database with 
little intervention of a database administrator (DBA) and  
maintain an acceptable query response time at all times. 
In this paper we describe the issues that need to be solved 
when developing such a technique. 
 
1. Introduction 
 
Databases, especially data warehouses and temporal 
databases, can become quite large. The usefulness and 
usability of these databases highly depend on how quickly 
data can be retrieved. Consequently, data has to be 
organized in such a way that it can be retrieved 
efficiently. One big concern when using such databases is 
the number of I/Os required in response to a query. The 
time to access a randomly chosen page stored on a hard 
disk requires about 10 ms (Elmasri, 2003). This is several 
orders of magnitude slower than retrieving data from 
main memory. There are four common ways to reduce the 
cost of I/Os between main and secondary memory: 
indexing, buffering, clustering and parallelism.  
 
Much research has been done on indexing, buffering, 
clustering and parallelism. Some attempts to automate the 
indexing process have been undertaken (Chaudhuri, 1998; 
Aouiche, 2003). Several researchers have also worked on 
automating clustering (Brinkhoff, 2001; Darmont, 2000; 
Gay, 1997; McIver, 1994; Zaman, 2004), but these 
techniques are not fully automated and require lots of 
parameters and users’ hints. 
 
Few techniques have been designed to cluster large 
databases on storage medium. In our opinion, clustering is 
as important as indexing for a good clustering technique 
can dramatically reduce the number of I/Os, which will in 

turn speed up query response time. As noted in 
(Omiecinski, 1990), record clustering can be viewed as a 
complementary problem to indexing. Indexes greatly 
improve complex queries’ response time by identifying 
the records that are required. However if the data records 
themselves are not clustered into as few disk pages as 
possible, many disk accesses will be needed. Thus, an 
appropriate index will reduce the number of records to be 
retrieved while clustering these records on the same or 
adjacent pages will ensure that the number of disk 
accesses is minimized. 
 
Parallelism spreads data across multiple disks so that it 
can be retrieved in parallel (Ferhatosmanoglu, 1999). 
However, de-clustering techniques distribute data on 
different disks but do not specify the in-disk organization 
of data within a single disk. The following quote from the 
Asilomar Report on Database Research (Bernstein, 1998) 
suggests that besides exploiting parallelism, careful 
organization of each disk is essential for efficient 
retrieval: 
 

“While disk capacity is improving very quickly, seek 
times are improving relatively slowly. Hence, the 
amount of data that can be transferred to main 
memory during an average seek time is rising very 
quickly. Put differently, the cost of a seek relative to 
the transfer time of a byte of data is rising quickly.” 

 
Buffering is also essential to reducing the number of disk 
I/Os by keeping data pages in main memory. Using a 
page replacement strategy such as LRU (Least Recently 
Used) the buffer manager attempts to keep in memory 
data pages that may be accessed in the near future, hence, 
eliminating some disk I/Os. However if the underlying 
physical clustering scheme is not good enough, the buffer 
manager will become powerless for all data records 
needed in response to a query may reside on different disk 
pages. If some of these pages are not in the buffer at the 
time of the query, the system will have to perform 
additional disk I/Os. 
 
Therefore, good physical clustering of data on disk is 
essential to reducing the number of disk I/Os in response 

  SIGMOD Record, Vol. 34, No. 1, March 2005 33



to a query whether clustering is implemented by itself or 
coupled with indexing, parallelism, or buffering. 
 
A distinction among clustering techniques is whether they 
are manual or automatic. A manual clustering technique 
has to be started by the user. This in turn implies that the 
user should know when to run the re-clustering process. 
Even if the user developed a good feeling for when he or 
she should run the re-clustering, it would still be a great 
inconvenience, especially in a very dynamic environment 
where re-clustering could be triggered frequently. Rather, 
we advocate using an intelligent automatic clustering that 
could trigger itself when most appropriate. Another 
argument in favor of auto-clustering is the prediction from 
the Asilomar report on database research (Bernstein, 
1998) that in the near future everything will be monitored 
through the Internet and that trillions of gizmos will need 
billions of servers. Because of this, the report concludes 
the following: 
 

“The relative cost of computing and human attention 
has changed: human attention is the precious 
resource. This new economics requires that computer 
systems be autoeverything: autoinstalling, 
automanaging, autohealing, and autoprogramming. 
Computers can augment human intelligence by 
analyzing and summarizing data, by organizing it, by 
intelligently answering direct questions and by 
informing people when interesting things happen.” 

 
In (Aouiche, 2003) and (Zaman, 2004), the authors 
describe an attempt to automate database indexing to 
reduce human intervention. Microsoft addresses the same 
problem in  (Chaudhuri, 1998) and later addresses the 
problem of integrating vertical and horizontal partitioning 
into automated physical database design in (Agrawal, 
2004). The area of automatic computing has been getting 
a lot of attention lately as several conferences are 
dedicated to the topic (SAACS, 2004; AMS, 2003).  In 
(Dolev, 2004) the authors explain how to design self-
stabilizing operating systems. Twenty years after the 
movie “War Games” (1983) directed by John Badham, 
(Ibrahim, 2004) discuses the issues involved with 
removing the man from the loop and describes the 
systems where such a move is possible. 
 
In the remainder of this paper we describe the issues faced 
when designing an automatic and dynamic database 
clustering technique for relational databases. In Section 2 
we first review the challenges solved by traditional 
database clustering methods, then we discuss the issues 
encountered when designing an automatic and dynamic 
clustering technique. Whenever possible we also include 
in the discussion the way we approach the problem in our 
own automatic clustering technique currently under 

development, called AutoClust. Finally in Section 3 we 
give our conclusions. 
 
2. Issues in Automatic Database Clustering 
 
2.1 What to cluster? 
 
The first issue that arises when designing a clustering 
technique is what to cluster.  Should the entire database 
be clustered or only parts of it? This question becomes 
even more critical in the case of dynamic clustering since 
re-clustering the entire database can be extremely costly. 
Some techniques like StatClust (Gay, 1997) only re-
cluster the m most accessed objects of each class. The 
problem then is to determine how big the parameter m 
should be. Should it be fixed or variable and change with 
each re-clustering based on access frequency? Should it 
be a percentage of the database? Should the same value m 
be applied to all clusters/classes or should each cluster 
have a different value based on its access frequency? 
 
In AutoClust, we propose that attribute clusters be chosen 
based on frequent closed item sets (Pasquier, 1999; 
Durant, 2002). A closed item set is a maximal item set 
contained in the same transactions. For instance, if 
attributes A, C, and F form a frequent closed item set for a 
given support level threshold, then {A, C, F} will be 
considered as an attribute cluster. Re-clustering the entire 
database can be very costly. Instead, AutoClust could re-
cluster only attribute clusters having a support level 
greater than a user-defined threshold or re-cluster each 
cluster proportionally to its support level. For instance, an 
attribute cluster with a support level of 30% would have 
the 30% most frequently accessed tuples re-clustered. The 
advantage of this last solution is that it removes the need 
for a user parameter and moves us one step closer to a 
fully automated solution. 
 
2.2 How to cluster? 
 
The next issue is how to cluster/re-cluster. Database 
clustering has been an area of research for decades, 
foundation papers can be retraced as far back as the early 
1970’s (McCormick, 1972).  
 
Traditional database clustering groups together objects in 
the database based on some similarity criteria. Database 
clustering can take place along two dimensions: attribute 
(vertical) clustering and record (horizontal) clustering. 
Attribute clustering groups together attributes from 
different database relations while record clustering groups 
together records from different database relations. When 
the clustering takes place along both dimensions, the 
clustering is said to be mixed. A special kind of database 
clustering is database partitioning (or database 
fragmentation) where the grouping is performed within 
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each database relation instead of between database 
relations (Silberschatz, 2002). However, the term 
“database clustering” has been used loosely in the 
literature and is sometimes used in place of “database 
partitioning” (Yu, 1985; Omiecinski, 1990). 
 
Another possible confusion may occur between traditional 
database clustering and data mining clustering. While 
both have the same objective of grouping together objects 
based on some similarity criteria, it is how they achieve 
this goal that differentiates them. Traditional database 
clustering looks for similarities in the metadata such as 
the co-access frequencies to group objects, i.e. objects 
that are accessed together are grouped together. Instead, 
data mining clustering typically looks for similarity in the 
actual data to group data objects based on some distance 
function. Objects that have similar data values are 
grouped together independently of whether they are 
accessed together or not.  In the remainder of this paper 
we use “database clustering” to refer to traditional 
database clustering and “data mining clustering” for its 
data mining counterpart. “Attribute clustering” refers to 
traditional attribute clustering which generates attribute 
clusters (also called vertical clusters/partitions/fragments 
in the literature) and “record clustering” refers to 
traditional record clustering which generates record 
clusters (also called horizontal clusters/partitions/ 
fragments in the literature). In the remainder of this 
section we review the literature in database 
clustering/partitioning as well as data mining clustering. 
 
Many techniques have been designed for record clustering 
for relational databases (Yu, 1985; Omiecinski, 1990), for 
object-oriented databases (Hudson, 1989; Chang, 1989; 
Kim, 1990, McIver, 1994, Gay, 1997, Darmont, 2000), 
and attribute clustering and partitioning (McCormick, 
1972; Navathe, 1984; Navathe, 1989; Chu, 1993; Hartuv, 
2000).  With record clustering, relations are broken down 
into groups of records based on their affinity. Records that 
are more frequently used together are placed in the same 
groups. These groups are then assigned to physical pages. 
The most frequently accessed groups can also be assigned 
to faster memories. The problem with record clustering is 
that not all queries require all attributes of a record. In 
fact, some attributes may never be queried at all. Thus, 
when retrieving records from a record-clustered database, 
some of the retrieved information is useless leading to a 
poor performance. Attribute clustering helps solving this 
problem. 
 
Most record clustering techniques use some kind of 
statistical analysis to cluster records together. In (Yu, 
1985) the authors assign a position line to each record. 
After each query, the records accessed are then reassigned 
a position line closer to the centroid for that query. The 
idea is that eventually the records queried together will 

converge within the same location in the data file. In 
(Omiecinski, 1990) the authors formulate the record 
clustering problem as minimizing the objective function: 
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query Qi and P(Qi) is the number of pages which contain 
records for query Qi. Cactis (Hudson, 1989) is a clustering 
algorithm for object-oriented databases that stores objects 
based on their co-access frequencies. The most frequently 
accessed object is stored in a new block along with all the 
objects that are most frequently accessed with it. The 
process is repeated page after page until all objects are 
stored. ORION (Kim, 1990) stores objects along with 
their composite hierarchy. This technique targets 
applications where objects are queried along with their 
hierarchy. In (McIver, 1994) the clustering process uses 
two metrics, simple object references (heat) and co-
references (tension). The heat of an object is the 
frequency with which it has been accessed. The tension of 
a pair of objects expresses the likelihood that the two 
objects will be accessed together over the course of a 
series of transactions. The likelihood that a pair of objects 
will be accessed together is what will determine whether 
or not they should be stored together on disk. (Gay, 1997) 
uses four kinds of statistics (inter-class relationship, 
read/write ratio at the class level, access count for each 
individual object and statistics about the buffering 
process) to cluster objects. DRO (Darmont, 2000) uses 
two types of statistics: the object access frequency and the 
page usage rate which help identify pages that degrade the 
system performance. 
 
In attribute clustering, attributes of a relation are divided 
into groups based on their affinity.  Clusters consist of 
smaller records, therefore, fewer pages from secondary 
memory are accessed to process transactions that retrieve 
or update only some attributes from the relation, instead 
of the entire record (Navathe, 1984). This leads to better 
performance. The problem with attribute-clustered 
databases is that only attribute access frequency, not 
record frequency, is considered. Thus data records needed 
to answer a frequent query could be scattered at random 
across multiple disk blocks. A good clustering technique 
should be mixed and cluster along both dimensions. 
  
The attribute clustering problem is a very complex 
problem and the number of possible solutions is equal to 
the Bell number that satisfies the following recurrence 
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The Bond Energy Algorithm (BEA) (McCormick, 1972) 
is used to cluster database attributes. It creates an NxN 
matrix A where N is the number of attributes. The 
intersection of row i and column j contains the co-access 
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frequency between attributes i and j. The algorithm then 
minimizes the value of ME(A) = ½ ∑i=1

M ∑j=1
N  aij [ ai,j+1 + 

ai,j-1 + ai+1,j + ai-1,j ], where a0,j = aM+1,j = ai,0 = ai,N+1 = 0 and A 
is a nonnegative MxN array by permuting the rows and 
columns of A. In the end, A is in block diagonal form and 
each block of attributes can be used as an attribute cluster.  
 
In NVP (Navathe, 1984), the authors use the output of the 
BEA algorithm, which is a block diagonal matrix. The 
algorithm then finds the best location for a point x along 
the diagonal of the CA matrix. The point x splits the 
matrix attributes into two clusters. This splitting process 
is repeated until the resulting clusters minimize an 
objective function. In (Navathe, 1989), the authors 
propose a solution to the attribute clustering problem 
based on graph theory. A graph is created where each 
node represents an attribute and edges are weighted using 
the affinity values between attributes. Nodes/attributes 
that form a primitive cycle in the graph are clustered 
together. A proof is given that the solution is not 
dependent on the starting node.  In the Optimal Binary 
Partitioning algorithm (Chu, 1993) the authors use 
transactions to split the set of attributes into two subsets 
and discover the optimal binary partition of the set of 
attributes.  (Hartuv, 2000) proposes a clustering technique 
based on graph connectivity that aims at partitioning gene 
expression data in the field of bio-informatics. This 
technique is applicable to either attribute or record 
clustering. It is graph theoretic. The similarity data is used 
to form a similarity graph in which vertices correspond to 
elements and edges connect elements with similarity 
values above some threshold. In that graph, clusters are 
highly connected sub-graphs defined as sub-graphs, the 
edge connectivity of which exceeds half of the number of 
vertices. 
 
While in traditional database clustering, objects are 
grouped based on similarity in access patterns, in data 
mining clustering, objects are clustered based on 
similarity in the actual data. The more similar two objects 
are, the more likely they belong to the same cluster 
(Dunham, 2004).  Data mining clustering algorithms use a 
distance measure to compute the distance between any 
two data objects’ values. Data objects are then assigned to 
clusters such that the distance between objects within a 
cluster is less than a given threshold and the distance 
between objects in different clusters is greater than a 
given threshold. As an example, the BIRCH algorithm 
(Zhang, 1996) creates a tree of clusters such that all 
objects in a cluster are no further than a given distance 
from the center of the cluster.     New objects are added to  
clusters by descending the tree and according to the same 
criteria. When clusters reach a certain number of objects 
they are split into two sub-clusters. The process continues 
until all objects belong to a cluster. 

AutoClust is a mixed database clustering technique. First, 
the attribute clustering is done by mining frequent closed 
item sets using existing algorithms such as A-CLOSE 
(Pasquier, 1999) or CHARM (Zaki, 2002). The frequent 
closed item sets are then fed to an algorithm we have 
developed that considers all possible attribute clusters 
containing at least one cluster of attributes belonging to 
the set of frequent closed itemsets. AutoClust then selects 
the cluster of attributes that performs the best using its 
cost model. Within each attribute cluster created, record 
clustering is then done using a data mining clustering 
technique such as BIRCH. 
 
2.3 Static clustering vs. dynamic clustering 

Another design issue is whether the clustering is static or 
dynamic. Clustering techniques can be labeled as static or 
dynamic (Darmont, 1996; Gay, 1997). With static 
clustering, data objects are assigned to a disk block once 
at creation time, then, their locations on disk are never 
changed. There are three problems with that approach. 
First of all, in order to obtain good query response time, it 
requires that the DBA know how to cluster data 
efficiently at the time the clustering operation is 
performed. This means that the system must be observed 
for a significant amount of time until queries and data 
trends are discovered before the clustering operation can 
take place. This, in turn,  implies that the system must 
function for a while without any clustering. Even then, 
after the clustering process is completed, nothing 
guarantees that the real trends in queries and data have 
been discovered. Thus the clustering result may not be 
good.  In this case, the database users may experience 
very long query response time. In some dynamic 
applications such as GIS (Brinkhoff, 2001), queries tend 
to change over time and a clustering scheme is 
implemented to optimize the response time for one 
particular set of queries. Thus, if the queries or their 
relative frequencies change, the clustering result may no 
longer be adequate. The same holds true for a database 
that supports new applications with different query sets. 
 
In contrast, with dynamic clustering such as in AutoClust, 
objects are being relocated on disk if it is determined that 
the clustering in place has become inadequate due to a 
change in query patterns or database size.  
 
The remaining issues discussed in Sections 2.4-2.7 deal 
with the automatic aspect of the clustering. Most 
automatic clustering techniques (McIver, 1994; Gay, 
1997; Darmont, 2000) consist of the following modules:  
a Statistic Collector (SC) that accumulates information 
about the queries run and data returned. The SC is in 
charge of collecting, filtering, and analyzing the statistics. 
It is responsible for triggering the Cluster Analyzer (CA). 
The CA determines the best possible clustering given the 
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statistics collected. If the new clustering is better than the 
one in place, then the CA triggers the reorganizer that 
physically reorganizes the data on disk. 
 
2.4 When to trigger the re-clustering process? 
 
The most important issue in automatic clustering is when 
to trigger the Cluster Analyzer. Invoking the CA too often 
would impact the system performance because a lot of 
CPU time would be lost performing unnecessary 
calculations. On the other hand, not invoking the CA 
often enough would also negatively impact the system by 
letting queries run against an obsolete clustering scheme. 
Careful consideration must then be given to the problem 
of when to trigger the CA. 
 
One solution would be to trigger the CA when query 
response time drops below a user-defined threshold. The 
sub-issues would then be how to set the threshold and 
whether that threshold is a constant or variable. In 
StatClust (Gay, 1997) the SC collects statistics until it has 
established using confidence interval that the statistics 
collected is meaningful. The problem with that 
mathematically elegant solution is that the CA triggering 
is not related to the system performance, and the CA is 
likely to be triggered even if the query response time is 
adequate. Other alternatives would be to trigger the CA 
when there is too much time between re-clustering or 
when too many queries have run, too many data items 
have been queried or too many records have been 
accessed. Once again these solutions do not use the 
system response time and, therefore, could trigger 
unnecessary reorganizations. 
 
The ultimate goal is reduce the number of false positives 
by finding a way to reduce the number of times the CA is 
triggered. In AutoClust we intend to use the query 
response time as a criterion to trigger the CA. Whenever 
the query response time drops below a threshold, the CA 
is triggered. To fully automate our technique and to avoid 
human intervention, the threshold is variable. For 
instance, if the queries tend to get longer and the users’ 
given threshold cannot be satisfied, our adaptive 
algorithm progressively augments the threshold. 
 
2.5 What statistics to collect? 
 
Since most automatic clustering techniques collect 
statistics to achieve their goals, a major issue is what 
statistics to collect. (Omiecinski, 1990) collects for each 
query, the frequency of occurrence of the query and the 
locations of the records that satisfy the query. Cactis 
(Hudson, 1989) keeps track of the number of times each 
database object is accessed as well as the number of times 
each relationship between objects in the process of 
evaluation or marking out-of-date is crossed. (McIver, 

1994) keeps track of the heat and tension between objects. 
In StatClust (Gay, 1997), statistics about inter-class 
relationships are collected as well as the read/write access 
ratio at the class level, the number of accesses for each 
object and some statistics about the buffering process. 
DSTC and DRO (Darmont, 2000) keep track of the object 
access frequency and the page usage rate. 
 
Collecting statistics is a costly operation, not only it 
requires a lot of work and processing time but also it can 
require a lot of memory usage. Another problem related to 
collecting statistics is how much statistics is enough? 
When to stop collecting and how to remove the noise in 
the data? Some techniques such as DSTC actually filter 
the statistics collected before triggering the CA. 
 
AutoClust does not collect any statistics. Instead it uses a 
query log that contains for each query, the attributes 
accessed, the number of tuples returned and the number of 
disk blocks accessed. AutoClust mines the frequent closed 
item sets using the attributes as items. 
 
2.6 How to detect bad clustering? 
 
Another critical issue is how to detect bad clustering. We 
distinguish two kinds of bad clustering, namely record 
and attribute. Most techniques detect bad record 
clustering by computing the ratio between the number of 
disk pages accessed and the number of records retrieved 
or between the number of records retrieved in the memory 
buffer and the total number of records retrieved.  So a 
common technique as far as detecting bad record 
clustering seems to be to detect that the number of disk 
pages accessed is too high compared to a given threshold. 
This threshold, once again, may have to be provided by 
the user as an initial parameter and may have to vary over 
time. 
 
Though initially it seems that the same technique could be 
applied to detect bad attribute clustering, we believe there 
is a major difference between bad record clustering and 
bad attribute clustering. The former means that too many 
disk pages are being accessed whereas the latter means 
that too many clusters are being accessed. Therefore we 
advocate that bad attribute clustering should be detected 
when the number of clusters accessed is greater than some 
user given threshold. Note that if the number of clusters 
accessed is too high then so will the number of disk 
pages. Thus, bad attribute clustering is likely to cause bad 
record clustering as well but the reverse is not always 
true.  For this reason, we recommend testing for bad 
record clustering before testing for bad attribute clustering 
since we could have bad record clustering without having 
bad attribute clustering. In addition, bad attribute 
clustering is a more severe problem than bad record 
clustering but it is also less frequent. 
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2.7 How to re-cluster? 
 
If attribute re-clustering is needed, it should take place 
before record re-clustering because record re-clustering is 
always required after attribute re-clustering. Therefore, 
we should first create clusters of attributes, and then we 
group the records within each attribute cluster to form 
record clusters.   The record-clustering algorithm used 
does not need to be the same for each attribute cluster. It 
would be a good idea to select the record-clustering 
algorithm for an attribute cluster based on the data present 
in that cluster and the queries run against it. The 
automatic clustering framework developed should, 
therefore, facilitate the addition or substitution of record 
clustering algorithms. 
 
Another very important issue when performing automatic 
re-clustering is to choose a clustering/re-clustering 
algorithm that is efficient not only in terms of the quality 
of the clusters produced but also in terms of speed of 
execution. Thus, it is a good idea to look into algorithms 
that are incremental, i.e. those that reuse the results from 
the previous reorganization to reduce the number of 
calculations needed for the next re-clustering. 
 
3. Conclusions 
 
In this paper we discussed the issues that need to be 
solved when designing a database clustering technique. 
We also presented our framework for an automatic and 
dynamic mixed database clustering technique currently 
under development called AutoClust. AutoClust mines 
closed item sets to create clusters of attributes and uses 
data mining clustering to perform record clustering within 
each attribute cluster. AutoClust is triggered when a drop 
in the query response time is detected. It then checks for 
bad record and attribute clustering which are detected by 
an increased number of accesses to record and attribute 
clusters, respectively. If bad clustering is detected, 
AutoClust will trigger a re-clustering process. 
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