
Research Issues in Automatic Database Clustering

Sylvain Guinepain and Le Gruenwald
School of Computer Science
The University of Oklahoma

Norman, OK 73019, USA
{Sylvain.Guinepain, ggruenwald}@ou.edu

Abstract

While a lot of work has been published on clustering of
data on storage medium, little has been done about
automating this process. This is an important area
because with data proliferation, human attention has
become a precious and expensive resource. Our goal is to
develop an automatic and dynamic database clustering
technique that will dynamically re-cluster a database with
little intervention of a database administrator (DBA) and
maintain an acceptable query response time at all times.
In this paper we describe the issues that need to be solved
when developing such a technique.

1. Introduction

Databases, especially data warehouses and temporal
databases, can become quite large. The usefulness and
usability of these databases highly depend on how quickly
data can be retrieved. Consequently, data has to be
organized in such a way that it can be retrieved
efficiently. One big concern when using such databases is
the number of I/Os required in response to a query. The
time to access a randomly chosen page stored on a hard
disk requires about 10 ms (Elmasri, 2003). This is several
orders of magnitude slower than retrieving data from
main memory. There are four common ways to reduce the
cost of I/Os between main and secondary memory:
indexing, buffering, clustering and parallelism.

Much research has been done on indexing, buffering,
clustering and parallelism. Some attempts to automate the
indexing process have been undertaken (Chaudhuri, 1998;
Aouiche, 2003). Several researchers have also worked on
automating clustering (Brinkhoff, 2001; Darmont, 2000;
Gay, 1997; McIver, 1994; Zaman, 2004), but these
techniques are not fully automated and require lots of
parameters and users’ hints.

Few techniques have been designed to cluster large
databases on storage medium. In our opinion, clustering is
as important as indexing for a good clustering technique
can dramatically reduce the number of I/Os, which will in

turn speed up query response time. As noted in
(Omiecinski, 1990), record clustering can be viewed as a
complementary problem to indexing. Indexes greatly
improve complex queries’ response time by identifying
the records that are required. However if the data records
themselves are not clustered into as few disk pages as
possible, many disk accesses will be needed. Thus, an
appropriate index will reduce the number of records to be
retrieved while clustering these records on the same or
adjacent pages will ensure that the number of disk
accesses is minimized.

Parallelism spreads data across multiple disks so that it
can be retrieved in parallel (Ferhatosmanoglu, 1999).
However, de-clustering techniques distribute data on
different disks but do not specify the in-disk organization
of data within a single disk. The following quote from the
Asilomar Report on Database Research (Bernstein, 1998)
suggests that besides exploiting parallelism, careful
organization of each disk is essential for efficient
retrieval:

“While disk capacity is improving very quickly, seek
times are improving relatively slowly. Hence, the
amount of data that can be transferred to main
memory during an average seek time is rising very
quickly. Put differently, the cost of a seek relative to
the transfer time of a byte of data is rising quickly.”

Buffering is also essential to reducing the number of disk
I/Os by keeping data pages in main memory. Using a
page replacement strategy such as LRU (Least Recently
Used) the buffer manager attempts to keep in memory
data pages that may be accessed in the near future, hence,
eliminating some disk I/Os. However if the underlying
physical clustering scheme is not good enough, the buffer
manager will become powerless for all data records
needed in response to a query may reside on different disk
pages. If some of these pages are not in the buffer at the
time of the query, the system will have to perform
additional disk I/Os.

Therefore, good physical clustering of data on disk is
essential to reducing the number of disk I/Os in response

 SIGMOD Record, Vol. 34, No. 1, March 2005 33

to a query whether clustering is implemented by itself or
coupled with indexing, parallelism, or buffering.

A distinction among clustering techniques is whether they
are manual or automatic. A manual clustering technique
has to be started by the user. This in turn implies that the
user should know when to run the re-clustering process.
Even if the user developed a good feeling for when he or
she should run the re-clustering, it would still be a great
inconvenience, especially in a very dynamic environment
where re-clustering could be triggered frequently. Rather,
we advocate using an intelligent automatic clustering that
could trigger itself when most appropriate. Another
argument in favor of auto-clustering is the prediction from
the Asilomar report on database research (Bernstein,
1998) that in the near future everything will be monitored
through the Internet and that trillions of gizmos will need
billions of servers. Because of this, the report concludes
the following:

“The relative cost of computing and human attention
has changed: human attention is the precious
resource. This new economics requires that computer
systems be autoeverything: autoinstalling,
automanaging, autohealing, and autoprogramming.
Computers can augment human intelligence by
analyzing and summarizing data, by organizing it, by
intelligently answering direct questions and by
informing people when interesting things happen.”

In (Aouiche, 2003) and (Zaman, 2004), the authors
describe an attempt to automate database indexing to
reduce human intervention. Microsoft addresses the same
problem in (Chaudhuri, 1998) and later addresses the
problem of integrating vertical and horizontal partitioning
into automated physical database design in (Agrawal,
2004). The area of automatic computing has been getting
a lot of attention lately as several conferences are
dedicated to the topic (SAACS, 2004; AMS, 2003). In
(Dolev, 2004) the authors explain how to design self-
stabilizing operating systems. Twenty years after the
movie “War Games” (1983) directed by John Badham,
(Ibrahim, 2004) discuses the issues involved with
removing the man from the loop and describes the
systems where such a move is possible.

In the remainder of this paper we describe the issues faced
when designing an automatic and dynamic database
clustering technique for relational databases. In Section 2
we first review the challenges solved by traditional
database clustering methods, then we discuss the issues
encountered when designing an automatic and dynamic
clustering technique. Whenever possible we also include
in the discussion the way we approach the problem in our
own automatic clustering technique currently under

development, called AutoClust. Finally in Section 3 we
give our conclusions.

2. Issues in Automatic Database Clustering

2.1 What to cluster?

The first issue that arises when designing a clustering
technique is what to cluster. Should the entire database
be clustered or only parts of it? This question becomes
even more critical in the case of dynamic clustering since
re-clustering the entire database can be extremely costly.
Some techniques like StatClust (Gay, 1997) only re-
cluster the m most accessed objects of each class. The
problem then is to determine how big the parameter m
should be. Should it be fixed or variable and change with
each re-clustering based on access frequency? Should it
be a percentage of the database? Should the same value m
be applied to all clusters/classes or should each cluster
have a different value based on its access frequency?

In AutoClust, we propose that attribute clusters be chosen
based on frequent closed item sets (Pasquier, 1999;
Durant, 2002). A closed item set is a maximal item set
contained in the same transactions. For instance, if
attributes A, C, and F form a frequent closed item set for a
given support level threshold, then {A, C, F} will be
considered as an attribute cluster. Re-clustering the entire
database can be very costly. Instead, AutoClust could re-
cluster only attribute clusters having a support level
greater than a user-defined threshold or re-cluster each
cluster proportionally to its support level. For instance, an
attribute cluster with a support level of 30% would have
the 30% most frequently accessed tuples re-clustered. The
advantage of this last solution is that it removes the need
for a user parameter and moves us one step closer to a
fully automated solution.

2.2 How to cluster?

The next issue is how to cluster/re-cluster. Database
clustering has been an area of research for decades,
foundation papers can be retraced as far back as the early
1970’s (McCormick, 1972).

Traditional database clustering groups together objects in
the database based on some similarity criteria. Database
clustering can take place along two dimensions: attribute
(vertical) clustering and record (horizontal) clustering.
Attribute clustering groups together attributes from
different database relations while record clustering groups
together records from different database relations. When
the clustering takes place along both dimensions, the
clustering is said to be mixed. A special kind of database
clustering is database partitioning (or database
fragmentation) where the grouping is performed within

 34 SIGMOD Record, Vol. 34, No. 1, March 2005

each database relation instead of between database
relations (Silberschatz, 2002). However, the term
“database clustering” has been used loosely in the
literature and is sometimes used in place of “database
partitioning” (Yu, 1985; Omiecinski, 1990).

Another possible confusion may occur between traditional
database clustering and data mining clustering. While
both have the same objective of grouping together objects
based on some similarity criteria, it is how they achieve
this goal that differentiates them. Traditional database
clustering looks for similarities in the metadata such as
the co-access frequencies to group objects, i.e. objects
that are accessed together are grouped together. Instead,
data mining clustering typically looks for similarity in the
actual data to group data objects based on some distance
function. Objects that have similar data values are
grouped together independently of whether they are
accessed together or not. In the remainder of this paper
we use “database clustering” to refer to traditional
database clustering and “data mining clustering” for its
data mining counterpart. “Attribute clustering” refers to
traditional attribute clustering which generates attribute
clusters (also called vertical clusters/partitions/fragments
in the literature) and “record clustering” refers to
traditional record clustering which generates record
clusters (also called horizontal clusters/partitions/
fragments in the literature). In the remainder of this
section we review the literature in database
clustering/partitioning as well as data mining clustering.

Many techniques have been designed for record clustering
for relational databases (Yu, 1985; Omiecinski, 1990), for
object-oriented databases (Hudson, 1989; Chang, 1989;
Kim, 1990, McIver, 1994, Gay, 1997, Darmont, 2000),
and attribute clustering and partitioning (McCormick,
1972; Navathe, 1984; Navathe, 1989; Chu, 1993; Hartuv,
2000). With record clustering, relations are broken down
into groups of records based on their affinity. Records that
are more frequently used together are placed in the same
groups. These groups are then assigned to physical pages.
The most frequently accessed groups can also be assigned
to faster memories. The problem with record clustering is
that not all queries require all attributes of a record. In
fact, some attributes may never be queried at all. Thus,
when retrieving records from a record-clustered database,
some of the retrieved information is useless leading to a
poor performance. Attribute clustering helps solving this
problem.

Most record clustering techniques use some kind of
statistical analysis to cluster records together. In (Yu,
1985) the authors assign a position line to each record.
After each query, the records accessed are then reassigned
a position line closer to the centroid for that query. The
idea is that eventually the records queried together will

converge within the same location in the data file. In
(Omiecinski, 1990) the authors formulate the record
clustering problem as minimizing the objective function:

where F(Q∑
=

=
M

i
ii QPQFC

1
)(*)(i) is the frequency of

query Qi and P(Qi) is the number of pages which contain
records for query Qi. Cactis (Hudson, 1989) is a clustering
algorithm for object-oriented databases that stores objects
based on their co-access frequencies. The most frequently
accessed object is stored in a new block along with all the
objects that are most frequently accessed with it. The
process is repeated page after page until all objects are
stored. ORION (Kim, 1990) stores objects along with
their composite hierarchy. This technique targets
applications where objects are queried along with their
hierarchy. In (McIver, 1994) the clustering process uses
two metrics, simple object references (heat) and co-
references (tension). The heat of an object is the
frequency with which it has been accessed. The tension of
a pair of objects expresses the likelihood that the two
objects will be accessed together over the course of a
series of transactions. The likelihood that a pair of objects
will be accessed together is what will determine whether
or not they should be stored together on disk. (Gay, 1997)
uses four kinds of statistics (inter-class relationship,
read/write ratio at the class level, access count for each
individual object and statistics about the buffering
process) to cluster objects. DRO (Darmont, 2000) uses
two types of statistics: the object access frequency and the
page usage rate which help identify pages that degrade the
system performance.

In attribute clustering, attributes of a relation are divided
into groups based on their affinity. Clusters consist of
smaller records, therefore, fewer pages from secondary
memory are accessed to process transactions that retrieve
or update only some attributes from the relation, instead
of the entire record (Navathe, 1984). This leads to better
performance. The problem with attribute-clustered
databases is that only attribute access frequency, not
record frequency, is considered. Thus data records needed
to answer a frequent query could be scattered at random
across multiple disk blocks. A good clustering technique
should be mixed and cluster along both dimensions.

The attribute clustering problem is a very complex
problem and the number of possible solutions is equal to
the Bell number that satisfies the following recurrence

relation: . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=
+ k

n
bb

n

k
kn

0
1

The Bond Energy Algorithm (BEA) (McCormick, 1972)
is used to cluster database attributes. It creates an NxN
matrix A where N is the number of attributes. The
intersection of row i and column j contains the co-access

 SIGMOD Record, Vol. 34, No. 1, March 2005 35

frequency between attributes i and j. The algorithm then
minimizes the value of ME(A) = ½ ∑i=1

M ∑j=1
N aij [ai,j+1 +

ai,j-1 + ai+1,j + ai-1,j], where a0,j = aM+1,j = ai,0 = ai,N+1 = 0 and A
is a nonnegative MxN array by permuting the rows and
columns of A. In the end, A is in block diagonal form and
each block of attributes can be used as an attribute cluster.

In NVP (Navathe, 1984), the authors use the output of the
BEA algorithm, which is a block diagonal matrix. The
algorithm then finds the best location for a point x along
the diagonal of the CA matrix. The point x splits the
matrix attributes into two clusters. This splitting process
is repeated until the resulting clusters minimize an
objective function. In (Navathe, 1989), the authors
propose a solution to the attribute clustering problem
based on graph theory. A graph is created where each
node represents an attribute and edges are weighted using
the affinity values between attributes. Nodes/attributes
that form a primitive cycle in the graph are clustered
together. A proof is given that the solution is not
dependent on the starting node. In the Optimal Binary
Partitioning algorithm (Chu, 1993) the authors use
transactions to split the set of attributes into two subsets
and discover the optimal binary partition of the set of
attributes. (Hartuv, 2000) proposes a clustering technique
based on graph connectivity that aims at partitioning gene
expression data in the field of bio-informatics. This
technique is applicable to either attribute or record
clustering. It is graph theoretic. The similarity data is used
to form a similarity graph in which vertices correspond to
elements and edges connect elements with similarity
values above some threshold. In that graph, clusters are
highly connected sub-graphs defined as sub-graphs, the
edge connectivity of which exceeds half of the number of
vertices.

While in traditional database clustering, objects are
grouped based on similarity in access patterns, in data
mining clustering, objects are clustered based on
similarity in the actual data. The more similar two objects
are, the more likely they belong to the same cluster
(Dunham, 2004). Data mining clustering algorithms use a
distance measure to compute the distance between any
two data objects’ values. Data objects are then assigned to
clusters such that the distance between objects within a
cluster is less than a given threshold and the distance
between objects in different clusters is greater than a
given threshold. As an example, the BIRCH algorithm
(Zhang, 1996) creates a tree of clusters such that all
objects in a cluster are no further than a given distance
from the center of the cluster. New objects are added to
clusters by descending the tree and according to the same
criteria. When clusters reach a certain number of objects
they are split into two sub-clusters. The process continues
until all objects belong to a cluster.

AutoClust is a mixed database clustering technique. First,
the attribute clustering is done by mining frequent closed
item sets using existing algorithms such as A-CLOSE
(Pasquier, 1999) or CHARM (Zaki, 2002). The frequent
closed item sets are then fed to an algorithm we have
developed that considers all possible attribute clusters
containing at least one cluster of attributes belonging to
the set of frequent closed itemsets. AutoClust then selects
the cluster of attributes that performs the best using its
cost model. Within each attribute cluster created, record
clustering is then done using a data mining clustering
technique such as BIRCH.

2.3 Static clustering vs. dynamic clustering

Another design issue is whether the clustering is static or
dynamic. Clustering techniques can be labeled as static or
dynamic (Darmont, 1996; Gay, 1997). With static
clustering, data objects are assigned to a disk block once
at creation time, then, their locations on disk are never
changed. There are three problems with that approach.
First of all, in order to obtain good query response time, it
requires that the DBA know how to cluster data
efficiently at the time the clustering operation is
performed. This means that the system must be observed
for a significant amount of time until queries and data
trends are discovered before the clustering operation can
take place. This, in turn, implies that the system must
function for a while without any clustering. Even then,
after the clustering process is completed, nothing
guarantees that the real trends in queries and data have
been discovered. Thus the clustering result may not be
good. In this case, the database users may experience
very long query response time. In some dynamic
applications such as GIS (Brinkhoff, 2001), queries tend
to change over time and a clustering scheme is
implemented to optimize the response time for one
particular set of queries. Thus, if the queries or their
relative frequencies change, the clustering result may no
longer be adequate. The same holds true for a database
that supports new applications with different query sets.

In contrast, with dynamic clustering such as in AutoClust,
objects are being relocated on disk if it is determined that
the clustering in place has become inadequate due to a
change in query patterns or database size.

The remaining issues discussed in Sections 2.4-2.7 deal
with the automatic aspect of the clustering. Most
automatic clustering techniques (McIver, 1994; Gay,
1997; Darmont, 2000) consist of the following modules:
a Statistic Collector (SC) that accumulates information
about the queries run and data returned. The SC is in
charge of collecting, filtering, and analyzing the statistics.
It is responsible for triggering the Cluster Analyzer (CA).
The CA determines the best possible clustering given the

 36 SIGMOD Record, Vol. 34, No. 1, March 2005

statistics collected. If the new clustering is better than the
one in place, then the CA triggers the reorganizer that
physically reorganizes the data on disk.

2.4 When to trigger the re-clustering process?

The most important issue in automatic clustering is when
to trigger the Cluster Analyzer. Invoking the CA too often
would impact the system performance because a lot of
CPU time would be lost performing unnecessary
calculations. On the other hand, not invoking the CA
often enough would also negatively impact the system by
letting queries run against an obsolete clustering scheme.
Careful consideration must then be given to the problem
of when to trigger the CA.

One solution would be to trigger the CA when query
response time drops below a user-defined threshold. The
sub-issues would then be how to set the threshold and
whether that threshold is a constant or variable. In
StatClust (Gay, 1997) the SC collects statistics until it has
established using confidence interval that the statistics
collected is meaningful. The problem with that
mathematically elegant solution is that the CA triggering
is not related to the system performance, and the CA is
likely to be triggered even if the query response time is
adequate. Other alternatives would be to trigger the CA
when there is too much time between re-clustering or
when too many queries have run, too many data items
have been queried or too many records have been
accessed. Once again these solutions do not use the
system response time and, therefore, could trigger
unnecessary reorganizations.

The ultimate goal is reduce the number of false positives
by finding a way to reduce the number of times the CA is
triggered. In AutoClust we intend to use the query
response time as a criterion to trigger the CA. Whenever
the query response time drops below a threshold, the CA
is triggered. To fully automate our technique and to avoid
human intervention, the threshold is variable. For
instance, if the queries tend to get longer and the users’
given threshold cannot be satisfied, our adaptive
algorithm progressively augments the threshold.

2.5 What statistics to collect?

Since most automatic clustering techniques collect
statistics to achieve their goals, a major issue is what
statistics to collect. (Omiecinski, 1990) collects for each
query, the frequency of occurrence of the query and the
locations of the records that satisfy the query. Cactis
(Hudson, 1989) keeps track of the number of times each
database object is accessed as well as the number of times
each relationship between objects in the process of
evaluation or marking out-of-date is crossed. (McIver,

1994) keeps track of the heat and tension between objects.
In StatClust (Gay, 1997), statistics about inter-class
relationships are collected as well as the read/write access
ratio at the class level, the number of accesses for each
object and some statistics about the buffering process.
DSTC and DRO (Darmont, 2000) keep track of the object
access frequency and the page usage rate.

Collecting statistics is a costly operation, not only it
requires a lot of work and processing time but also it can
require a lot of memory usage. Another problem related to
collecting statistics is how much statistics is enough?
When to stop collecting and how to remove the noise in
the data? Some techniques such as DSTC actually filter
the statistics collected before triggering the CA.

AutoClust does not collect any statistics. Instead it uses a
query log that contains for each query, the attributes
accessed, the number of tuples returned and the number of
disk blocks accessed. AutoClust mines the frequent closed
item sets using the attributes as items.

2.6 How to detect bad clustering?

Another critical issue is how to detect bad clustering. We
distinguish two kinds of bad clustering, namely record
and attribute. Most techniques detect bad record
clustering by computing the ratio between the number of
disk pages accessed and the number of records retrieved
or between the number of records retrieved in the memory
buffer and the total number of records retrieved. So a
common technique as far as detecting bad record
clustering seems to be to detect that the number of disk
pages accessed is too high compared to a given threshold.
This threshold, once again, may have to be provided by
the user as an initial parameter and may have to vary over
time.

Though initially it seems that the same technique could be
applied to detect bad attribute clustering, we believe there
is a major difference between bad record clustering and
bad attribute clustering. The former means that too many
disk pages are being accessed whereas the latter means
that too many clusters are being accessed. Therefore we
advocate that bad attribute clustering should be detected
when the number of clusters accessed is greater than some
user given threshold. Note that if the number of clusters
accessed is too high then so will the number of disk
pages. Thus, bad attribute clustering is likely to cause bad
record clustering as well but the reverse is not always
true. For this reason, we recommend testing for bad
record clustering before testing for bad attribute clustering
since we could have bad record clustering without having
bad attribute clustering. In addition, bad attribute
clustering is a more severe problem than bad record
clustering but it is also less frequent.

 SIGMOD Record, Vol. 34, No. 1, March 2005 37

2.7 How to re-cluster?

If attribute re-clustering is needed, it should take place
before record re-clustering because record re-clustering is
always required after attribute re-clustering. Therefore,
we should first create clusters of attributes, and then we
group the records within each attribute cluster to form
record clusters. The record-clustering algorithm used
does not need to be the same for each attribute cluster. It
would be a good idea to select the record-clustering
algorithm for an attribute cluster based on the data present
in that cluster and the queries run against it. The
automatic clustering framework developed should,
therefore, facilitate the addition or substitution of record
clustering algorithms.

Another very important issue when performing automatic
re-clustering is to choose a clustering/re-clustering
algorithm that is efficient not only in terms of the quality
of the clusters produced but also in terms of speed of
execution. Thus, it is a good idea to look into algorithms
that are incremental, i.e. those that reuse the results from
the previous reorganization to reduce the number of
calculations needed for the next re-clustering.

3. Conclusions

In this paper we discussed the issues that need to be
solved when designing a database clustering technique.
We also presented our framework for an automatic and
dynamic mixed database clustering technique currently
under development called AutoClust. AutoClust mines
closed item sets to create clusters of attributes and uses
data mining clustering to perform record clustering within
each attribute cluster. AutoClust is triggered when a drop
in the query response time is detected. It then checks for
bad record and attribute clustering which are detected by
an increased number of accesses to record and attribute
clusters, respectively. If bad clustering is detected,
AutoClust will trigger a re-clustering process.

4. References

(Agrawal, 2004) Sanjay Agrawal, Vivek Narasayya, and Beverly Yang,
“Integrating Vertical and Horizontal Partitioning into Automated Physical
Database Design,” the 2004 ACM SIGMOD International Conference on
Management of Data. June 2004.
(AMS, 2003) Automatic Computing Workshop, 5th Annual International
Workshop on Active Middleware Services., June 2003.
(Aouiche, 2003) Kamel Aouiche, Jerome Darmont, and Le Gruenwald, "Frequent
Itemsets Mininig for Database Auto-Administration", the International Database
Engineering and Applications Symposium, 2003, 16-18 July 2003, pages 98-103.
(Bernstein, 1998) Phil Bernstein, Michael Brodie, Stefano Ceri, David DeWitt,
Mike Frankiln, Hector Garcia-Molina, Jim Gray, Jerry Held, Joe Hellerstein, H. V.
Jagadish, Michael Lesk, Dave Maier, Jeff Naughton, Hamid Pirahesh, Mike
Stonebraker, and Jeff Ullman, "The Asilomar Report on Database Research",
ACM SIGMOD Record,Vol. 27 , Issue 4, pp. 74-80, December 1998.
(Brinkhoff, 2001) Thomas Brinkhoff, “Using a Cluster Manager in a Spatial
Database System”, Proceedings of the ninth ACM international symposium on
Advances in geographic information systems, 2001, pp. 136-141.

 (Chang, 1989) E. E. Chand and R. H. Katz, “Exploiting Inheritance and Structure
Semantics for Effective Clustering and Buffering inObject-Oriented DBMS”,
ACM SIGMOD International Conf. on Data Management, June 1989.
(Chaudhuri, 1998) Surajit Chaudhuri and Vivek Narasayya, ‘AutoAdmin “What-
if” Index Analysis Utility”, SIGMOD 1998, Proceedings ACM SIGMOD
International Conference on Management of Data, June 1998.
(Chu, 1993) Wesley W. Chu and Ion Tim Ieong, “A Transaction-Based Approach
to Vertical Partitioning for Relational Database Systems”, IEEE Transactions on
Software Engineering, Vol. 19, No. 8, August 1993.
(Darmont, 2000) J. Darmont, C. Fromantin, S. Regnier, L. Gruenwald, M.
Schneider, "Dynamic Clustering in Object-Oriented Databases: An Advocacy for
Simplicity", ECOOP 2000 Symposium on Objects and Databases, June 2000;
LNCS, Vol. 1944, 71-85.
(Dolev, 2004) Shlomi Dolev and Reuven Yagel, “Towards Self-Stabilizing
Operating Systems”, DEXA 2004, pp. 684-688, Sept. 2004.
(Dunham, 2004) Margaret H. Dunham, “Data Mining, Introductory and Advanced
Topics”, Prentice Hall, 2004.
(Durand, 2002) Nicolas Durand and Bruno Cremilleux, "Extraction of a Subset of
Concepts from Frequent Closed Itemset Lattice: A New Approach of Meaningful
Clusters Discovery", 2002.
(Elmasri, 2003) Ramez Elmasri and Shamkant B. Navathe, “Fundamentals
Of Database Systems”, Addison-Wesley, 2003.
(Ferhatsomanoglu , 1999) Hakan Ferhatsomanoglu, Divyakant Agrawal, Amr El
Abbadi, "Clustering Declustered Data for Efficient Retrieval", the Conference on
Information and Knowledge Management, Nov. 1999, pages 343--350,
 (Gay, 1997) Jean Yves Gay and Le Gruenwald, “A Clustering Technique for
Object-Oriented Databases”, the 8th International Conference, DEXA ’97,
September 1997.
(Hartuv, 2000) Erez Hartux, and Ron Shamir, "A Clustering Algorithm Based on
Graph Connectivity", Information Processing Letters, Vol. 76, No. 4-6, pp. 175-
181, 2000.
 (Hudson, 1989) Scott E. Hudson and Roger King, "CACTIS: A Self-Adaptive,
Concurrent Implementation of an Object-Oriented Database Management System",
ACM Transactions on Database Systems, Vol.14, No.3, Sept. 1989, pp. 291-321.
(Ibrahim. 2004) Mohamed T Ibrahim, Ric Telford, Petre Dini, Pascal Lorenz,
Nino Vidovic, and Richard Anthony, “Self Adaptability and the Man-in-the-Loop:
A Dilema in Automatic Computing Systems”, DEXA 2004, Sept. 2004, .pp. 722-
729,.
(Kim, 1990) W. Kim, J. F. Garza, N. Ballou and D. Woelk, “Architecture of the
ORION next-generation database system”, IEEE Transaction on Knowledge and
Data Engineering, Vol. 2, No. 1, 1990.
 (McCormick, 1972) McCormick, W. T. Schweitzer P. J., and White T. W.,
“Problem decomposition and data reorganization by a clustering technique”, Oper.
Res. 20, 5, September 1972, pp 993-1009.
(McIver, 1994) William J. McIver, Jr. and Roger King, "Self-Adaptive, On-Line
Reclustering of Complex Object Data", SIGMOD 94.
(Navathe, 1984) Shamkant Navathe, Stefano Ceri, Gio Wierhold, and Jingle Dou,
“Vertical Partitioning Algorithms for Database Design”, ACM Transactions on
Database Systems, Vol. 9, No. 4, December 1984, pages 680-710.
 (Navathe, 1989) Shankant B. Navathe and Minyoung Ra, “Vertical Partitioning
for Database Design: A Graphical Algorithm”, ACM SIGMOD International
Conference on Management of Data, 1989, .pp. 44-450,
(Omiecinski, 1990) Edward Omiecinski and Peter Sheuermann, "A Parallel
Algorithm for Record Clustering", ACM Transactions on Database Systems, Vol.
15, No. 4, December 1990, pp. 599-624.
(Pasquier, 1999) Nicolas Pasquier, Yves Bastidem Rafik Taouil, and Lofti Lakhal,
"Efficient Mining of Association Rules Using Closed Itemset Lattices",
Information Systems, Vol. 24, No. 1, pp. 25-46, 1999.
(SAACS, 2004) 2nd International Workshop on Self-Adaptable and Automatic
Computing Systems, DEXA 2004.
 (Silberschatz, 2002) Avi Silberschatz, Henry Korth, and S. Sudarshan,
“Database System Concepts”, 4th edition, McGraw Hill, 2002.
(Yu, 1985) C. T. Yu, Cheing-Mei Suen, K. Lam, and K. Siu, “Adaptive Record
Clustering”, ACM Transactions on Database Systems, Vol. 10, No. 2, June 1985,
pp. 180-204.
(Zaman, 2004) Mujiba Zaman, Jyotsna Surabattula, and Le Gruenwald, “An Auto-
Indexing Technique for Databases Based on Clustering”, DEXA, Sept. 2004, pp.
776-780,.
 (Zhang, 1996) Tian Zhang, Raghu Ramakrishnan, and Miron Livny, “BIRCH: An
Efficient Data Clustering Method for Very Large Databases”, ACM SIGMOD
International Conference on Management of Data, pages 103--114, 1996.

 38 SIGMOD Record, Vol. 34, No. 1, March 2005

