
Advancements in SQL/XML

Andrew Eisenberg
IBM, Westford, MA 01886

andrew.eisenberg@us.ibm.com

Jim Melton
Oracle Corp., Sandy, UT 84093

jim.melton@acm.org

Introduction
Since we last wrote about SQL/XML in [2], the first
edition of that new part of the SQL standard has been
officially published as an international standard [1],
commonly called SQL/XML:2003. At the time of
that earlier column, SQL/XML was just entering its
first official ballot, meaning that (possibly
significant) changes to the text were expected in
response to ballot comments submitted by the various
participants in the SQL standardization process.

Since then, SQL/XML completed its ballot and
the resulting editing process, with those expected
changes incorporated, and has been published as an
international standard. The present column
summarizes the differences introduced in SQL/XML
during that editing process.

In addition, we discuss the new features being
added to SQL/XML for its second edition. As a
matter of fact, the first official ballot of the second
edition [3] is already under way (belying the popular
misconception that standards processes inherently
operate in geologic time). Publication of the second
edition of SQL/XML is anticipated in late 2005.

SQL/XML:2003 – The First
Edition
In our previous column addressing SQL/XML [2],
we identified the major areas addressed by the
document as it existed when its first formal ballot
was initiated.

Those areas included:
• Mapping SQL tables, schemas, and catalogs to

XML documents
• Generation of an XML schema corresponding to

an XML document generated from SQL data
• An XML data type to allow columns of SQL

tables to contain XML data
• Publishing functions that allow application

writers to create XML directly within SQL
queries, including such functions as
XMLELEMENT, XMLATTRIBUTES,
XMLFOREST, XMLCONCAT, XMLAGG, and
XMLGEN

In addition, we also speculated on areas in which
future work might be done:
• An operator to create an XML document
• An operator to parse an XML document

contained in a CHAR or CLOB (Character Large
Object) value, producing an XML value

• An operator to serialize an XML value,
producing a CHAR or CLOB value

• An operator that produces a table with scalar
columns from an XML value

• CAST to and from the XML data type
• Define the mapping of Structured UDTs to XML
• Predicates to test XML values (is this an

element, is this a document, does this contain
mixed content, etc.)

• An operator to check the validity of an element
or document according to an XML Schema

• An operator that executes an XPath or XQuery
expression using one or more XML values

As we expected, during the process of resolving
ballot comments, a number of changes were made to
the SQL/XML specifications, including changes that
addressed some of our “future work” items. Among
the most interesting of these changes were:
• Removal of the XMLGEN function from the

available publishing functions
• Addition of an XMLROOT function to represent

the root of an XML structure
• Full alignment of the SQL/XML (first edition)

data model with the Information Set, or Infoset,
defined by the W3C [4].

• Addition of significant additional power to
support the XML type, particularly including a
new XMLPARSE function that takes a serialized
XML document and converts it into an instance
of the XML type

• Addition of support for XML namespaces
(version 1.0) [5]

• Addition of a new predicate, DOCUMENT, used
to determine whether an XML value is or is not a
well-formed XML document

• Addition of a specification for serializing XML
values into character strings

SQL/XML:2003 is already implemented in large
part by the major SQL database vendors, suggesting
excellent prospects for long-term success.

Not all of the “future work” that we mentioned in
our earlier column was addressed in the final
publication of SQL:2003, so considerable work
remained to be done in the next edition.

The Second Edition In Progress
Even before SQL/XML:2003 was finalized in late
2003, the SQL standards community had begun work
on the second edition. In this section of this issue’s
column, we review the most important enhancements
and changes that have gone into this next edition of
SQL/XML—at the time that it went into its first
formal ballot.

XQuery 1.0 and XPath 2.0 Data Model
One of the most significant changes that was made to
SQL/XML between the publication of the 2003
standard and the emerging second edition is the
change in data mode.

In SQL/XML:2003, as we indicated above, the
SQL/XML data model was nothing more than the
W3C’s Infoset. That decision was made for very
pragmatic reasons: the XQuery 1.0 and XPath 2.0
Data Model [6] was not considered stable enough (at
that time) to base an international standard on it. By
contrast, the Infoset is well understood and has been
used as the foundation for several other W3C
specifications.

In the ensuing months, however, the XQuery
Data Model (as we’ll call it in this issue’s column)
has matured considerably, having reached the W3C’s
Last Call Working Draft status. Of course, changes
continue to be made, but the nature of those changes
is substantially less significant than only a year ago.

The change in data model from the Infoset to the
XQuery Data Model has had a number of important
effects on the SQL/XML specification, as well as
some effects on the nature of the language itself. We
doubt that our readers have as much interest in the
changes to the specification than they do in the
changes to the language, so we’ll focus on the
language aspects.

The XQuery Data Model is based to a large
degree on the Infoset, but uses many concepts—as
well as the definitions of various atomic types—that
are defined in XML Schema [7]. This provides a
significant benefit over the Infoset, in which only
three atomic types are acknowledged: Boolean,
double, and string. By contrast, XML Schema defines
a large selection of atomic types that can be used
within XML documents. (We discussed XML

Schema more extensively in another recent column
[8].)

As you’ll see later in this column, the XQuery
Data Model actually adds new types to those defined
by XML Schema. The two types used below
(xdt:untypedAny and xdt:untypedAtomic)
are among those new types.

The most visible change to the language is the
addition of several “parameters” to the XML type
and the syntax necessary to support that now-
parameterized type. In SQL/XML:2003, the XML
type was identified using only the keyword XML.

By contrast, in the second edition, one can
identify several variations: XML(SEQUENCE),
XML(ANY CONTENT), XML(UNTYPED
CONTENT), XML(ANY DOCUMENT), and
XML(UNTYPED DOCUMENT). We’ll discuss these
types in somewhat more detail later, under XML Type
Refinements.

Another highly visible change is the ability to
identify and use the types of atomic values to provide
SQL’s traditionally strong typing capabilities to
queries involving both SQL and XML. Most of these
atomic types, as we indicated a few paragraphs
above, are taken directly from XML Schema. These
include types such as xs:string, xs:float, and
xs:dateTime. (We’re using the namespace prefix
“xs:” to identify the XML Schema Part 2
namespace because of its familiarity to many XML
practitioners.)

The XQuery Data Model adds a few other new
atomic types (in addition to xdt:untyped-
Atomic, mentioned above). In particular, the XML
Schema type xs:duration causes a number of
problems in a data management situation, largely
because its values are not fully ordered (e.g., is the
value “1 month” greater than, less than, or equal to
the value “30 days”?). The XQuery Data Model adds
two new types derived from xs:duration:
xdt:yearMonthDuration and xdt:day-
TimeDuration that resolve the problem by
partitioning durations into two fully ordered derived
types.

XML Schema support
The second edition of SQL/XML provides support
for the association of XML values with XML
schemas. This support extends beyond the mere use
of the XML Schema [7] type system as part of the
XQuery Data Model.

Recall that XML Schema serves multiple
purposes. One purpose is to specify the details of a
number of atomic types, as we mentioned earlier in
this column. A second purpose is to provide a way

for applications to define complex types and assign
names to them.

The third (and, some might argue, most
significant) purpose is to provide a mechanism by
which XML documents can be validated—that is, can
be evaluated for proper alignment with a specific
XML schema. It is for this third purpose that XML
Schema support has been added to this edition of
SQL/XML.

SQL/XML now supports a VALID predicate that
allows an application to determine whether a given
XML value is or is not valid according to a specified
schema. The VALID predicate (whose syntax and
usage will be explored later in this column) depends
on the existence of registered XML Schemas.

As a part of the SQL standard, SQL/XML must
concern itself with data security. If the VALID
predicate allowed XML values to be evaluated
against arbitrary XML schemas, wherever they might
be found, a variety of security problems could arise,
including the possibility that unfriendly entities could
“reverse engineer” an organization’s metadata
through a variety of probing techniques.

To minimize such security problems, SQL/XML
requires that every XML schema used to validate
XML values must have been previously registered in
the SQL environment. Registration requires, at a
minimum, provision of a target namespace URI, a
schema location URI, a registered name (an ordinary
SQL three-part name), a list of the namespaces
(including the target namespace) defined by the
schema, and a corresponding list of the global
element declarations in those namespaces. How
schemas are registered (and “unregistered”) is left to
implementations.

SQL/XML defines three schemas to be
permanently registered: the XML Schema namespace
commonly referenced by the prefix xs:, the XML
Schema instance namespace known by the prefix
xsi:, and the SQL/XML namespace known by the
prefix sqlxml:.

Registered XML Schemas can be uniquely
identified by their target namespace URIs or by a
combination of their target namespace URIs and their
location URIs (the choice of which is left to the
implementation). They are also uniquely identified by
their registered names.

XML Type Refinements
As we told you during the data model discussion
above, changing the SQL/XML data model (from the
Infoset to the XQuery Data Model) made it possible
to parameterize the XML type into several subtypes,
without eliminating the existing unparameterized
XML type. Some of these parameterized types could

have been defined in the first edition, using the
Infoset as the data model, but the others depend
heavily on concepts defined in the XQuery Data
Model. Let’s look at the various “subtypes” of the
XML type defined in SQL/XML’s second edition.

Unlike many other types, XML values might be
instances of two or even more of these types, as
you’ll see from reading their descriptions.

XML(SEQUENCE)
The most basic of these XML type variations is
XML(SEQUENCE). Every XML value in SQL/XML
is either the (SQL) null value or an XQuery sequence
and thus is an instance of this type. Even though
every XML value is an instance of the type
XML(SEQUENCE), not all XML values are instances
of any of the other four parameterized types.

For example, SQL/XML supports XML values
that are sequences of any combination of XQuery
document nodes, ordinary element nodes, and atomic
values. A character string representation of such a
sequence might look something like this:

12, <emp id="12345" sal="65000">Joe
Goodguy</emp>, "It was the best of
times, it was the worst of times.",
1999-05-31T13:20:00-05:00, <?xml
version="1.0" encoding="UTF-8"?>
<library owner="Bob"><books>
<book ISBN="1-234-56789-0"><title>
Gone With My Dreams</title><author>
Johnny Farroute</author><book>
</library>, 0.314159E1

That sequence is an instance of no XML type
other than XML(SEQUENCE). Sure, it may involve
material that is not a well-formed XML value, but it
nonetheless represents an XML value that can be
managed internally by SQL/XML and XQuery.

XML(ANY CONTENT)
The second variation is XML(ANY CONTENT).
Every XML value that is either the null value or an
XQuery document node (including, of course, any
children of that document node) is an instance of this
type. Of course, every instance of this type is also an
instance of XML(SEQUENCE).

XML values that are instances of XML(ANY
CONTENT)are not limited to valid—or even well-
formed—documents. Such values might be
documents nodes that have several element children,
which violates the XML well-formedness rules. Such
values might be developed as intermediate results in
some query and later pruned to become well-formed
document nodes.

XML (UNTYPED CONTENT)
The third of these more specific XML types is
XML(UNTYPED CONTENT). Every XML value that
is an instance of this type is also an instance of
XML(ANY CONTENT), and thus also an instance of
XML(SEQUENCE).

However, to be an instance of XML(ANY
CONTENT), every XQuery element node that is
contained in the tree rooted at the document node has
the type xdt:untypedAny, and every attribute in
that tree has the type xdt:untypedAtomic.

In general, XML values that are instances of
XML(UNTYPED CONTENT) have not been
subjected to a Schema validation episode that could
be used to determine more precise type information
for the elements and attributes in the document.
(Even though values of XML(ANY CONTENT) or
XML(UNTYPED CONTENT) might not be well
formed, the element descendents of their document
nodes can be individually subjected to Schema
validation episodes using XQuery construction and
validation rules.)

If the XML values have undergone some form of
Schema validation, then it is likely that at least one
element descendent of the document node or at least
one attribute in the tree has gained a type annotation.
In this case, the value is an instance of XML(ANY
CONTENT), but not of XML(UNTYPED
CONTENT).

XML(ANY DOCUMENT)
Our fourth variant is XML(ANY DOCUMENT). The
difference between an instance of XML(ANY
DOCUMENT) and an instance of XML(ANY
CONTENT) is that instances of XML(ANY
DOCUMENT) are document nodes that have exactly
one element child (as well as possibly other children
that are permitted in document nodes, such as
comments and processing instructions).

As a consequence of this definition, all XML
values that are instances of XML(ANY DOCUMENT)
are also instances of XML(ANY CONTENT).

XML(UNTYPED DOCUMENT)
Finally, the fifth XML subtype is XML(UNTYPED
DOCUMENT). Every XML value that is either the
null value or an XQuery document node that has
exactly one element child (perhaps including those
other children permitted in document nodes, such as
comments and PIs) is an instance of this type.

All instances of XML(UNTYPED DOCUMENT)
are also instances of XML(UNTYPED CONTENT).
In addition, all instances of XML(UNTYPED

DOCUMENT) are also instances of XML(ANY
DOCUMENT). Consequentially, instances of
XML(UNTYPED DOCUMENT) share the restrictions
of both “supertypes”. In fact, instances of
XML(UNTYPED DOCUMENT) are instances of all
five of these specific variants of the XML type!

New Publishing Functions
As part of the development of the second edition of
SQL/XML, several new publishing functions were
added to the language.

Each of these new publishing functions allows
the return type to be explicitly specified as
RETURNING CONTENT or for the RETURNING
clause to be omitted entirely. In either case, the XML
type returned by this function is either XML(ANY
CONTENT) or XML(UNTYPED CONTENT) (the
choice being left to the implementation). If
RETURNING SEQUENCE is specified, then the
XML type returned is XML(SEQUENCE).

XMLCOMMENT
The simplest of the new publishing functions is
XMLCOMMENT, which allows the application to
create an XML comment. The syntax of this new
publishing function is:

XMLCOMMENT ('comment content'
 [RETURNING
 { CONTENT | SEQUENCE }])

The value of the character string literal ('comment
content', in this case) become the content of the
comment. In other words, this function creates an
XML comment that, if serialized, looks like this:

<!-- comment content -->

XMLPI
Another simple publishing function added is

XMLPI, allowing applications to create XML
processing instructions. It syntax is:

XMLPI (NAME target
 [, string-expression]
 [RETURNING
 { CONTENT | SEQUENCE }])

The target is an identifier specifying the target of
the created processing instruction. If specified, the
string-expression is the content of the PI; if it
is not specified, then the zero-length string ('') is
used as the content. In other words, this function
creates an XML comment that, if serialized, looks
like this:

<? target string-expression ?>

XMLQUERY
The third publishing function is XMLQUERY,

which is arguably the most important of the new
functions. The purpose of XMLQUERY is to
evaluate an XQuery expression and return the result
to the SQL application. The XQuery expression may
itself identify the XML value against which it is
evaluated using, perhaps, XQuery’s fn:doc()
function), or the XML value can be passed to the
XMLQUERY invocation as a parameter.

The syntax of XMLQUERY is:

XMLQUERY (XQuery-expression
 [PASSING { BY REF | BY VALUE }
 argument-list]
 RETURNING { CONTENT | SEQUENCE }
 { BY REF | BY VALUE })

The XQuery-expression is, as you might
expect, a character string literal containing an
XQuery expression. Note that, in this edition of
SQL/XML, it must be a literal and not a general
character string expression; a future edition might
relax this restriction.

The argument-list is, of course, a comma-
separated list of arguments. Each argument provides
a binding between an SQL value (possibly a value of
one of the XML subtypes!) and an XQuery global
variable that is declared in the XQuery-
expression. The syntax of each argument is:

value-expression AS identifier
 [BY REF | BY VALUE]

The value of the value-expression is the value
bound to the argument, which is identified by the
identifier. If BY REF is specified, then a
reference to the value is bound to the variable; if BY
VALUE is specified, then the value (more precisely,
a copy of the value) is bound directly to the variable.
The argument passing mechanism specified just
before the argument-list is applied to each
argument for which neither BY REF nor BY VALUE
is specified. If the value-expression’s type is
not an XML type, then the passing mechanism cannot
be specified (and the value is bound directly to the
variable).

There is one possible exception to the use of an
argument as a binding to an XQuery global variable:
At most one argument can be used to pass a context
item—the context against which the XQuery
expression is evaluated. A context item has the
syntax:

value-expression
 [BY REF | BY VALUE]

This syntax is very much like the syntax of any other
argument, except that no variable name is specified

through the use of AS identifier. As with other
arguments, the value of the value-expression
can be passed either by reference or by value—unless
the context item is not an XML value, in which case
it is always passed by value. The context item must
always be either the (SQL) null value or an instance
of XML(SEQUENCE) whose sequence length is one
item.

Unlike XMLCOMMENT and XMLPI, the value
returned from XMLQUERY can be returned as a
reference to a result or as (a copy of) the value of the
result itself. There is, however, an interaction
between the type of the returned value and the choice
of returning by reference or by value: If the return
type is XML(CONTENT), then the returning
mechanism is implicitly BY VALUE (but it cannot be
specified explicitly).

If RETURNING CONTENT is specified, then the
result is serialized before returning it (by value, of
course) to the SQL application.

Before we leave the XMLQUERY discussion,
here’s an example of its use:

SELECT top_price,
 XMLQUERY (
 'for $cost in
 /buyer/contract/item/amount
 where /buyer/name = $var1
 return $cost'
 PASSING BY VALUE
 'A.Eisenberg' AS var1,
 buying_agents
 RETURNING SEQUENCE BY VALUE)
FROM buyers

XMLCAST
The final item in this section, arguably a publishing
function, that has been added to SQL/XML’s second
edition is XMLCAST, which allows an application to
cast a value (either of an XML type or of some other
type) to one of the XML types discussed earlier, or to
cast a value of one of those XML types to either
another one of those XML types or to another type.

The syntax of XMLCAST is very similar to that
of the ordinary SQL CAST:

XMLCAST (value-expression AS type)

Only values of one of the XML types, or an SQL
null value, can be cast to XML(UNTYPED
DOCUMENT) or XML(ANY DOCUMENT). Neither
the type of the value-expression nor the
specified target type can be an SQL collection type,
row type, structured type, or reference type. At least
one of the types involved—the type of the value-

expression or the target type—must be an XML
type.

In all cases, the XMLCAST function is
syntactically transformed into an ordinary SQL
CAST. The reason for providing a separate keyword
is to ensure that the various restrictions are
sufficiently obvious to application authors that they
more easily remember the restrictions associated with
casting to and from XML types.

New Predicates
The second edition of SQL/XML provides several
new predicates for use by applications, and also
enhances an existing predicate.

DOCUMENT predicate
SQL/XML:2003 includes a predicate called the
DOCUMENT predicate. The purpose of that
predicate was to determine whether an XML value
was, in fact, an XML document.

That predicate has been modified slightly for the
second edition to align with the change to the
XQuery Data Model. Specifically, the DOCUMENT
predicate now tests an XML value to see if it is an
instance of XML(ANY DOCUMENT) or
XML(UNTYPED DOCUMENT). If so, the predicate
returns true; otherwise (except for null values, of
course), it returns false. The new syntax of this
predicate is:

XML-value IS [NOT]
 [ANY | UNTYPED] DOCUMENT

CONTENT predicate
Similarly, the new CONTENT predicate is used to
determine whether an XML value is an instance of
XML(ANY CONTENT) or XML(UNTYPED
CONTENT). Its syntax is:

XML-value IS [NOT]
 [ANY | UNTYPED] CONTENT

For both the DOCUMENT predicate and the
CONTENT predicate, failure to specify either ANY
or UNTYPED has the same result as if you had
specified ANY.

XMLEXISTS predicate
The XMLEXISTS predicate serves a somewhat more
complex requirement. Its syntax gives a good feel for
its purpose:

XMLEXISTS (XQuery-expression
 [argument-list])

When you use this predicate in a WHERE clause
(or, perhaps less likely, a HAVING clause) in your

SQL application, the XQuery expression is evaluated,
using the values provided in the argument list, just as
though you had invoked the XMLQUERY publishing
function. If the value queried by the XQuery
expression (perhaps passed as a context item
argument) is the SQL null value, then the predicate’s
result is unknown. If the XQuery evaluation returns
an empty XQuery sequence, then the predicate’s
result is false; otherwise, the result is true.

An important use of the XMLEXISTS predicate
is to determine whether an XML document contains
some particular content before using a portion of that
comment in an expression (in your SELECT list, for
example).

In the XMLQUERY example above, if it
happened that there is no buyer whose name is
“A.Eisenberg” in the document returned from the
buying_agents column of the buyers table, then the
XMLQuery expression would return the empty
sequence, which would be treated by SQL as the null
value, and thus the query expression as a whole
would return the null value.

Assuming that our application would prefer
never to get such null values, but only to return rows
with meaningful data in them, we could merely
append this WHERE clause to the query expression:

WHERE XMLEXISTS (
 XMLQUERY
 ('/buyer[count(name) = 0]'
 PASSING ...))

and those undesirable null values are not returned to
the application.

VALID predicate
As you saw earlier when we discussed XML Schema
support, there is one final new predicate in the second
edition of SQL/XML: the VALID predicate.

As we said above, this predicate is used to
evaluate an XML value for validity according to an
XML schema. The syntax for the VALID predicate is
somewhat more complex than the syntax for most
predicates. The complexity is due to the flexibility
required to make the predicate maximally useful to a
variety of application needs.

The high-level view of the syntax is:

xml-value IS [NOT] VALID
[identity-constraint-option]
[validity-target]

You will see from that syntax that the predicate is
used to determine the validity of an XML value
(specified as a value expression whose type is one of
those five XML types we discussed earlier), that the
validity assessment might depend on evaluation of
identity constraints (more on that in a moment), and

that an XML schema might be specified for use in the
validity assessment.

The identity-constraint-option
component of that syntax is one of the following
choices:
• WITHOUT IDENTITY CONSTRAINTS
• WITH IDENTITY CONSTRAINTS GLOBAL
• WITH IDENTITY CONSTRAINTS LOCAL
• DOCUMENT

If that syntax component is not specified, then
the effect is as though WITHOUT IDENTITY
CONSTRAINTS had been specified. If
DOCUMENT is specified, then the effect is as
though a combination of the DOCUMENT predicate
and a VALID predicate that specifies GLOBAL had
been specified.

WITH IDENTITY CONSTRAINTS GLOBAL
means that validity checking is done using the XML
rules for ID/IDREF relationships, as well as the XML
Schema rules for identity constraint validation.
WITH IDENTITY CONSTRAINTS LOCAL means
that all of the validity constraints defined in XML
Schema (both parts 1 and 2) must be satisfied, but
neither the XML ID/IDREF constraints nor the XML
Schema rules for identity constraints are evaluated.

It might be surprising to see that the XML
schema need not be specified in the predicate. That
doesn’t mean that the XML value being evaluated is
not analyzed with respect to a registered XML
schema; it only means that the specific XML schema
is selected based on the namespaces of the element
node(s) that are being evaluated. The schemas chosen
are those schemas whose target namespaces are
identical to the namespaces of those element nodes.

The syntax of validity-target allows the
application to specify whether the schema to be used
for validity assessment is identified by its target
namespace URI (possibly combined with its location
URI) or by its registered name, or whether no
namespace is used (NO NAMESPACE, possibly
combined with a location URI).

As with any SQL predicate, the result can be
true, false, or unknown. The result of unknown can
result from a couple of situations. One of these is
probably obvious: the XML value expression being
evaluated is the SQL null value. But validity
assessment can also result in an unknown result if no
registered XML schema can be found to validate a
particular element or attribute node in a particular
namespace.

SQL Tables From XML Values
SQL/XML:2003 focused on turning relational data
into XML data and on straightforward storage and

retrieval (and minimal processing) of XML
documents. In the second edition of this standard, the
complementary ability of transforming XML data
into relational data is being addressed as well.

The mechanism used to perform that
transformation is another pseudo-function, this one
named, logically enough, XMLTABLE.
XMLTABLE produces a virtual SQL table
containing data derived from XML values on which
the pseudo-function operates.

The syntax for this new function is:

XMLTABLE ([namespace-declaration ,]
 XQuery-expression
 [PASSING argument-list]
 COLUMNS XMLtbl-column-definitions)

The namespace-declaration is
unchanged from SQL/XML:2003; it is used to
declare namespaces that are used in the evaluation of
this pseudo-function. The XQuery-expression
is a character string literal representation of an
XQuery expression, exactly as specified in the
XMLQUERY pseudo-function we discussed earlier
in this column and the argument-list is nothing
other than the argument-list used in the
XMLQUERY pseudo-function, except that each
argument in the list is always passed by reference.

The XQuery-expression is used to identify
XML values that will be used to construct SQL rows
for the virtual table generated by XMLTABLE.

It is in the XMLtbl-column-definitions
that things get a bit more interesting. This bit of
syntax is a comma-separated list of column
definitions derived from the ordinary column
definitions used to define ordinary SQL tables.
However, this variation comes in two flavors: one
produces regular SQL columns, while allowing the
provision of another XQuery-expression that
specifies the data to be stored in the column being
defined; the other creates a special column, an
ordinality column, that can be used to capture the
ordinal position of an item in an XQuery sequence.

The syntax used to specify an ordinality column
is:

column-name FOR ORDINALITY

The column-name is the same column-
name that would be specified in a normal SQL
column definition. At most one ordinality column can
be defined in a given XMLTABLE invocation.

The syntax used to define a regular SQL column
is a bit more complex:

column-name data-type
 [BY REF | BY VALUE]
 [default-clause]
 [PATH XQuery-expression]

Again, the column-name is the same
column-name that would be specified in a normal
SQL column definition. If the data-type is
XML(SEQUENCE), then either BY REF or BY
VALUE must be specified, and the XQuery-
expression will return a value whose type is
XML(SEQUENCE) by reference or by value,
respectively. If the data-type is anything else,
then neither BY REF nor BY VALUE can be
specified, and the XQuery-expression returns
XML(ANY CONTENT) or XML(UNTYPED
CONTENT).

If the PATH clause is not specified, then the
column’s data comes from an element whose name is
the same as the column-name and that is an
immediate child of the XML value that forms the row
as a whole. If PATH is specified, then the XQuery-
expression is evaluated in the context of the
XML value that forms the row as a whole and the
result is stored into the column being defined.

The operation of XMLTABLE is very much
analogous to shredding, which is a mechanism for
“disassembling” XML for storage in relational tables.
There are many ways to shred XML for relational
storage and processing, and XMLTABLE provides a
great deal of flexibility to the application author in
defining just how that shredding is to be performed.

Once this shredding has taken place, the virtual
table can be inserted into a pre-existing SQL base
table using an ordinary SQL INSERT statement for
persistent storage, or it can just be used in another
SQL statement as a virtual table, even possibly in a
join expression. The following example illustrates
this possibility:

INSERT INTO EMPS (ID, NAME, SAL)
 SELECT EMPNO, NAME, SALARY
 FROM XMLTABLE (
 'fn:doc(".../emps.xml")//emp'
 PASSING :hv1 AS $dept BY VALUE
 COLUMNS EMPNO INTEGER
 PATH 'badge',
 NAME VARCHAR(50)
 PATH 'name',
 SALARY DECIMAL(8,2)
 PATH 'comp/salary')

Summary
The second edition of SQL/XML is a significant
enhancement over the first edition. The first formal
ballot (Final Committee Draft, or FCD) is under way

and there is every reason to believe that this new
edition will be published in late 2005. By then, work
should be fairly far along towards publishing the
third edition. It is too early in SQL/XML
development to know whether further editions will be
required, but we’ll definitely keep our readers
informed as things develop.

References
[1] ISO/IEC 9075-14:2003 Information technology –
Database languages – SQL – Part 14: XML-Related
Specifications, (SQL/XML)

[2] SQL/XML is Making Good Progress, Andrew
Eisenberg and Jim Melton, ACM SIGMOD Record,
Vol. 31, No. 2, June 2002
Available at: http://www.acm.org/sigmod/re-
cord/issues/0206/standard.pdf

[3] ISO/IEC FCD 9075-14, Information technology –
Database languages – SQL – Part 14: XML-Related
Specifications, (SQL/XML)
Available from your country’s standards body; in the
USA, that body is ANSI (http://www.ansi.org)

[4] XML Infoset, John Cowan and Richard Tobin
(eds.), 24 October 2001 (W3C Recommendation)
Available at: http://www.w3.org/TR/xml-infoset

[5] Namespaces in XML, Tim Bray, Dave Hollander,
and Andrew Layman (eds.), 14 January 1999 (W3C
Recommendation)
Available at: http://www.w3.org/TR/1999/REC-xml-
names-19990114

[6] XQuery 1.0 and XPath 2.0 Data Model, Mary
Fernández, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, and Norm Walsh (eds.), 14 November, 2004
(W3C Last Call Working Draft)
Available at: http://www.w3.org/TR/xpath-
datamodel/

[7] XML Schema Part 0: Primer, David Fallside
(ed.); XML Schema Part 1: Structures, Henry
Thompson, David Beech, Murray Maloney, and
Noah Mendelsohn (eds.); and XML Schema Part 2:
Datatypes, Paul Biron and Ashok Malhotra (eds.), all
2 May, 2001 (W3C Recommendation)
Available at: http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502/,
http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/, and http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/, respectively

[8] XML Schema, Charles E. Campbell, Andrew
Eisenberg and Jim Melton, ACM SIGMOD Record, Vol.
32, No. 2, June 2003
Available at: http://www.acm.org/sigmod/re-
cord/issues/0306/D7-Standard-JimMelton.pdf

http://www.acm.org/sigmod/re�cord/issues/0206/�standard.pdf
http://www.acm.org/sigmod/re�cord/issues/0206/�standard.pdf
http://www.ansi.org/
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.acm.org/sigmod/re�cord/issues/0306/D7-Standard-JimMelton.pdf
http://www.acm.org/sigmod/re�cord/issues/0306/D7-Standard-JimMelton.pdf

	Advancements in SQL/XML
	�
	Introduction
	SQL/XML:2003 – The First Edition
	The Second Edition In Progress
	XQuery 1.0 and XPath 2.0 Data Model
	XML Schema support
	XML Type Refinements
	XML(SEQUENCE)
	XML(ANY CONTENT)
	XML (UNTYPED CONTENT)
	XML(ANY DOCUMENT)
	XML(UNTYPED DOCUMENT)

	New Publishing Functions
	XMLCOMMENT
	XMLPI
	XMLQUERY
	XMLCAST

	New Predicates
	DOCUMENT predicate
	CONTENT predicate
	XMLEXISTS predicate
	VALID predicate

	SQL Tables From XML Values

	Summary
	References

