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Abstract

One of the most vital molecules in multicellular organ-
isms is the carbohydrate, as it is structurally important
in the construction of such organisms. In fact, all cells in
nature carry carbohydrate sugar chains, or glycans, that
help modulate various cell-cell events for the development
of the organism. Unfortunately, informatics research on
glycans has been slow in comparison to DNA and pro-
teins, largely due to difficulties in the biological analysis
of glycan structures. Our work consists of data engineer-
ing approaches in order to glean some understanding of
the current glycan data that is publicly available. In par-
ticular, by modeling glycans as labeled unordered trees,
we have implemented a tree-matching algorithm for mea-
suring tree similarity. Our algorithm utilizes proven ef-
ficient methodologies in computer science that has been
extended and developed for glycan data. Moreover, since
glycans are recognized by various agents in multicellular
organisms, in order to capture the patterns that might
be recognized, we needed to somehow capture the depen-
dencies that seem to range beyond the directly connected
nodes in a tree. Therefore, by defining glycans as labeled
ordered trees, we were able to develop a new probabilistic
tree model such that sibling patterns across a tree could
be mined. We provide promising results from our method-
ologies that could prove useful for the future of glycome
informatics.

1 Introduction

Carbohydrate sugar chains, or glycans, have only re-
cently drawn some attention from those in informat-
ics/computer science. Glycans are involved in the
field of glycobiology, where the study of the struc-
ture, biosynthesis and biology of glycans take place,
the majority of which are located on the outer surface
of cellular macromolecules. They assist in crucial ac-
tivities for the development and function of complex,
multicellular organisms, including serving as regula-
tory switches [6, 24]. The understanding of glycans,
however, is far from complete. This is mainly due
to their complexity in that they cannot be as easily
studied as genes and proteins. For example, they can-
not be amplified as nucleic acids, they are non-linear
structures, and their behaviors vary relative to their
environment (i.e., in vivo vs. in vitro) [18].

From an informatics perspective, a closer look
at glycans reveals that their structures can easily be
modeled as labeled trees. As such, we have developed
some data engineering approaches to the analysis of
the tree structures of glycans. In this paper, we intro-
duce a tree matching algorithm for performing struc-
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tural queries on glycans, called KEGG Carbohydrate
Matcher (KCaM) [1], and a probabilistic sibling tree
Markov model (PSTMM) for the mining and predic-
tion of glycan tree structures [22, 2].

The release of a new database for glycan struc-
tures prompted the development of our tree match-
ing algorithm for glycan structures. We looked into
the various algorithms available for labeled unordered
tree matching, and we were able to develop our algo-
rithm based on methodologies known to be efficient
and accurate [11].

Another important issue was the mining of fre-
quent patterns in glycan tree structures. Considering
that these structures in general are in actuality la-
beled ordered tree structures, we could consider var-
ious mining approaches [3, 16, 25]. However, one of
the drawbacks of using any of these approaches for
glycans came from the fact that unlike XML, gly-
can data is noisy. That is, due to the newness of
glycan informatics research in general, not all of the
data has been completely verified, and we can expect
many errors in our data. Thus, a probabilistic ap-
proach would be more suited to the data at hand,
and so we developed a probabilistic model for mining
frequent patterns in labeled ordered trees as well as
a time-efficient learning algorithm for estimating the
parameters of our model.

We note here that our two applications presented
in this paper consider the glycan tree structures
differently. The matching algorithm assumes that its
input trees are labeled unordered trees, and the data
mining model explicitly considers labeled ordered
trees. Although the matching algorithm can easily
be applied to labeled ordered trees, because of (1) the
lack of data where many structures in the database
may not have order information and (2) the level of
importance of this ordering is not yet certain, we
have implemented KCaM for the more difficult case of
using labeled unordered trees. In contrast, in the case
of mining for frequent patterns in glycans, we have
successfully tackled the more difficult case of using
labeled ordered trees. We show thus in this paper
that glycans currently cannot be categorized as being
ordered or unordered; they have both characteristics,
and we have applied our methodologies accordingly.

2 Background

2.1 Carbohydrate sugar chains The difficulty
in working with glycans in terms of informatics is that
their structures are not simple like sequences; glycans
are branched tree structures with various types of
linkages. The basic component of glycans is the
monosaccharide unit, or sugar, of which a handful are
most common in higher animal oligosaccharides (see
Table 1). Each sugar is linked to different hydroxyl
groups on one or more other sugars by either an «
or 3 type linkage (i.e., anomer). Classes of glycans



are defined according to core sub-structures which
consistently exist in glycans within the same class.
Two major glycan classes are N- and O-glycans. The
boxed glycan in Figure 2 is an example of an O-glycan
found in both human gastric mucin as well as swine
trachea mucin. In this example, the sugar from which
this structure starts is the GalNAc at the far right,
and the rest of the structure extends from this sugar;
one Gal and one GlcNAc is each beta-linked to the
third and sixth hydroxyl group, respectively, of this
GalNAc. Successive linkages extend from these two
sugars.

Table 1: Common monosaccharide names, abbrevia-
tions and symbols.

Monosaccharide name Abbr. Sym.
Glucose Glc A
Galactose Gal o
Mannose Man O
N-acetyl neuraminic / sialic acid NeuNAc L 2
N-acetylglucosamine GlcNAc [ |
N-acetylgalactosamine GalNAc O
Fucose Fuc AN
Xylose Xyl \
Glucuronic acid GlcA &
Iduronic acid IdA @

2.2 KEGG GLYCAN The KEGG GLYCAN
database is the newest addition to the KEGG (Kyoto
Encyclopedia of Genes and Genomes) bioinformatics
resource. Not only are glycan structures maintained,
but corresponding annotation information are linked
to KEGG’s various other genomic data such as path-
way and enzymatic reaction information as well as
literary databases such as PubMed [15].

3 Methodologies

Our first project involving KEGG GLYCAN was the
development of a fast and efficient method for query-
ing this data. Considering that it would be inappro-
priate to require the user to specify every hydroxyl
group and linkage type of a glycan structure as a
query, not to mention the fact that biologically speak-
ing, many of these details are currently unknown for
many structures, we characterize glycans as labeled
unordered tree structures. This led us to the develop-
ment of a labeled unordered tree matching algorithm
that is known to be efficient based on proven results
from theoretical computer science [11]. We call this
algorithm KCaM, for KEGG Carbohydrate Matcher.

Another project developed based on KEGG
GLYCAN data was a data mining approach for find-
ing frequent patterns in glycans. Biologically, it
has been shown in the literature that lectins recog-
nize glycans via certain monosaccharide configura-
tions (patterns) on the outer-most portion of their
tree structures; it seems that recognition can be af-
fected by specific structural variations and modifi-

cations of certain monosaccharides, their linkage to
the underlying sugar chain, and the structure of
these chains [23]. Not only would an understand-
ing of structural patterns in glycans be used to fur-
ther support studies in sugar recognition, but such
work may be helpful in unraveling their biological
functions [5, 9]. As such, we could also character-
ize glycans as labeled ordered trees, thus prompting
the development of a sibling dependent probabilistic
model for labeled ordered trees. This new model,
called PSTMM for probabilistic sibling dependent
tree Markov model, has resulted in some interesting
and promising findings in glycobiology.

3.1 Terminology and Notation We first pro-
vide some preliminary definitions in this section be-
fore proceeding to describe our methodologies.

A tree is defined as an acyclic connected graph,
whose vertices we refer to as nodes. A rooted tree is a
tree having a specific node called the root, from which
the rest of the tree extends. Any node z on a unique
path from the root to a node y is called an ancestor
of y, in which case y is a descendant of x. Nodes
that extend from a node z by one edge are called the
children of x, and conversely, £ would be called the
parent of these children. Nodes that have the same
parent are siblings, and a node with no children is a
leaf. A subtree of tree T is a tree whose nodes and
edges are subsets of those of T', an ordered tree is a
rooted tree in which the children of each node are
ordered, and a labeled tree is a tree in which a label
is attached to each node. Also a common subtree of
a set of trees is a subtree that can be found in every
tree in the set. A forest is a set of trees. Note that
all trees in this paper are labeled and rooted trees.

We will also use the following notation. Let
T = {T1,..., Tt} be a set of labeled trees, where
Ty = (Vu, Eu) and Vy (={={,..., 2}y, }) and E, are
a set of nodes and a set of edges, respectively. Note
that T can be a set of labeled unordered trees or a set
of labeled ordered trees. Let x% be the root of tree
Tu, and |V| = max,, |V,|. Let ¢, (i) be a subtree of T,,
having z} as the root of ¢,(¢). Let tree ¢, = (v, ex)
denote a common subtree of T, and let t be a set of
all possible ¢, of T. Let Cy(p) C {1,...,|Cu(p)|} be
a set of children of z}; in a labeled unordered tree 7Y,
and let it denote a set of indices of children of z, in a
labeled ordered tree T,,. Let |C| = max,,|Cy(p)|-
Let z%* (p) and z (p) be the eldest and youngest
child, respectively, of node p. Each node z% has label

o} € ¥, where ¥ = {01,...,0/x|} is a set of labels on
nodes. For simplicity, we will often use node j instead
of 2%, if understood from the context. For a node j
in a labeled ordered tree, we will often indicate the
parent, immediately elder and younger siblings as p,
i and k, respectively.

3.2 Database Queries with KCaM The main-
tenance of a database usually includes the ability to
query the data. With the development of KEGG
GLYCAN, however, the tree structure of glycans dis-
allowed the use of straightforward matching or align-



ment algorithms as are often used for linear, sequence
databases. Therefore, we turned to computer science,
where work on tree similarity began in the 70s [21]
and was later applied to bioinformatics [17].

We also note the difference in scoring measures
between the fields of bioinformatics and computer sci-
ence, where the former often uses higher “similarity
scores,” and the latter lower “distance measures” to
indicate better matches between two structures. As
we are involving computer science techniques, it was
necessary for us to take such differences in scoring
techniques into consideration.

The problem of querying glycan tree structures
can be likened to finding the maximum common
subtree of two trees, which is defined as the following.

Input: T where |T| = 2.
Output: t. such that V¢; € t, |v.| > |v;].

Since this problem has been solved in polynomial
time in [11], we combined it with the dynamic pro-
gramming approach used for sequence alignment [20].
With the objective of finding an optimal match score
for two labeled unordered trees, we also incorporated
an appropriate scoring mechanism, thus resulting in
an accurate and efficient glycan tree matching algo-
rithm called KCaM.

We developed two variations of KCaM; one is
an approximate matching approach which compares
nodes with nodes and allows gaps in the alignment,
and the other is an exact matching approach where
edges are compared with edges and gaps are not al-
lowed. As both approaches are derived from sequence
alignment procedures, each can be performed locally
or globally.

The approximate matching algorithm can be
used for example when sub-structures separate from
one another are being queried. In this case, we
can enter the query with a single tree containing
two target substructures, and the gapped alignment
will return all similar trees, some with unmatched
portions in the intermediate section. However, it
may be the case that the user is only looking for
a single specific connected component with known
anomer and linkage information (i.e., a match with
no gaps), in which case the exact matching algorithm
would be more appropriate.

Approximate Matching The global dynamic
programming procedure for finding the maximum
common subtree of two trees T; and T, calculates
a similarity score Q[z;, 2] for the subtrees rooted at

every possible pair of nodes :1:11, and w;‘; For simplicity,
we refer to :c;) and :cg as p and ¢, respectively. Denot-
ing d(z};) as the cost for deleting z; (i.e. introducing

a gap), w(p,q) as the similarity! between p and g,
and Y (p,q) as the set of one-to-one mappings from
Ci(p) to Cy(q) (assuming without loss of generality
that |Cy(p)| < |C2(g)|), we calculate the following:

[p,0] = Zietl(p) d(i) and Q[0,q] = Zk€t2(q) d(k),

TDue to space limitations, details on the calculation of the

similarity function w(p,q) can be found in [1].

the scores for matching node p (resp. ¢) in Ty (resp.
T5) with no nodes in T> (resp. T1), in addition to

Qlp, k] + d(q)+ }
max o ) 7
ree (Q){Eq‘e%)\{k} Q[0, 4]
max;co {Q[’L,q]+d(p)+' }
1€C1(p) EjeCl(p)\{z'} Q[],O] ,
w(p,q) +
maXyEY(p,q) . .
{Ema@%NuMM+ }
¥ keCa(@\y(C1(p)) @O, K]

4

Q[p, g] = max;

Thus the score for the global optimal matching
Q[|T1],|T»|], and the resulting maximum common
subtree correlated with this score can be retrieved
by backtracking to find the matching nodes that
contributed to this score.

As in the global approximate matching pro-
cedure, the local procedure is similarly derived
from the local sequence alignment procedure. The
interested reader may refer to [1] for details.

Exact Matching Local exact matching adapts
the dynamic programming procedure for local ap-
proximate matching by letting p and ¢ represent
edges, and letting w(p, q) equal one (1) for a match
and zero (0) otherwise. As the exact matching al-
gorithm does not allow gaps, the gap penalty for a
mismatch is —oo, thus returning the single largest
maximum common connected subtree for T; and T5.

The global exact matching algorithm was imple-
mented such that all possible connected matches be-
tween 77 and T3 could be found; it recursively calls
the local exact matching procedure for all subtrees of
the two input trees that have not been matched. In
other words, after the first largest matching subtree
has been found, the resulting, unmatched portions of
both trees are then used as the input trees for another
round of the local exact matching algorithm. The re-
cursion ends when either no matches are found, or
one of the input trees has been matched in its en-
tirety to the other. Accordingly, the score returned
is the summation of the scores for each recursive call
to the local exact matching procedure, and the set
of matched subtrees returned make up the forest of
matching subtrees.

3.3 Mining with Probabilistic Sibling Tree
Markov Model (PSTMM) The problem of min-
ing for frequent patterns in glycan data is best solved
by a probabilistic model considering the noisiness of
the data set. A hidden Markov model [4] (HMM) is
often used for learning sequences of data, such as in
speech recognition [19] and biological sequence anal-
ysis [10]. HMM has been extended for mining labeled
trees [8, 14] by capturing statistical dependencies be-
tween each vertex and its parent; this model is known
as PTMM, or probabilistic Markov tree model. A
hierarchical HMM has also been developed for se-
quences [13] which appear to be similar to our model,
but is slightly different as it is used for sequence anal-
ysis. Thus, to take sibling relationships directly into
account in labeled ordered trees based on the inher-



ent sibling-dependent structure of glycans, we were
prompted to develop our probabilistic sibling tree
Markov model, or PSTMM.

Our model consists of states, which correspond to
nodes in a tree, and labels, each of which are attached
to each node and are generated depending on the
state of that node. We thus define S = {s1,...,s5}
as a set of states, and 2z}’ € S as a state for node j in
a tree. State z' then generates label o, and 6 is our

set of parameters.

The dependencies of PSTMM are modeled by set-
ting dependencies between the state of a node and
that of both its parent and its immediately elder
sibling. This results in a drastic improvement in
the performance for finding patterns in given labeled
ordered trees. Just as HMMs can capture distant
or long-range dependencies in a sequence indirectly
when such state transitions are defined, PSTMM ex-
tends the range of the dependencies that PTMM can
capture through the sibling-sibling relationships that
consequently extend indirectly down and across the
tree. Figure 1 illustrates the dependencies embedded
within a tree in PSTMM.

Figure 1: Dependencies in PSTMM. The white nodes
are states, and shaded nodes are labels.

PSTMM has three probability parameters, 7, a
and b. The initial state probability n[s;] (= P(2} =
s1;6)) is the probability that the state (z{*) of root
node z} is s;. The state transition probability
al{sg; 81}, 8m] (= P(2} = smlzy = 84,2{ = 5150)) is
defined as the conditional probability that the state of
anode is s, given that the states of its parent and the
immediately elder sibling are s, and s;, respectively.
The label output probability b[s;,on] (= P(o} =
onl2} = s1;0)) is the conditional probability that the
output label of a node is o, given that s; is the state
of this node?.

To describe the probabilistic structure of
PSTMM, we define forward, backward and upward
probabilities. The forward probability Fy(sq, si, %)
is the probability that for node j, all labels of the sub-
trees for each of the elder siblings are generated, the
state of j is s;, and the state of p is s,. The backward
probability B (sq, sm,z}) is the probability that for
7, all labels of the subtrees of each of the younger sib-
lings and j are generated, the state of j is s,,, and the
state of p is s;. The upward probability Uy (s,,z})
is the probability that all labels of subtree t,(p) are

ZHereafter, we use =[], a[{g,!},m] and b[l,01] for =[s],
al{sq,s1},sm] and b[s;,op], respectively. Also note that

Zm a‘[{sqa 81}, sm] =1.

generated and the state of node p is s,. These three
probabilities® are formulated as follows:

It "I‘.;L = xz(i(p) then U/[{q, —},l],
Fu(@:1,3) = 0.3~ Fulg, m, ))Uu(m, i)al{g, m}, 1].

If 2} =2 (p) then Uy(m,j),
Bu(g,m,J) =4 o.w. Uu(m,j)Za[{q,m},l]Bu(q,l,k).
1
If Cu(p) =0 then b[g,o}],
o.w. blg,0p] Z F,(q,m,j)Bu(q, m,j)

m

(s.t. j € Cu(p)).

Uu(g,p)=

We can compute U, B and F from the leaves
to the root using a bottom-up dynamic program-
ming procedure. The likelihood for a given tree,
L(Ty;0) = Y, «[l] Uyu(l,1), is obtained by using
U.(l,1), U at the root of the tree, and the likelihood
for a given set of trees, L(T;6) = [[, >, ] U.(,1),
is computed as a product of L(Ty;6) for all T, € T.

Estimating Parameters of PSTMM For es-
timating the probability parameters of PSTMM, we
use the maximum likelihood (ML) estimators, in
which parameters are estimated to maximize the
likelihood above for a given set of trees, and an
EM (Expectation-Maximization) algorithm [7] to ob-
tain the ML estimators.

In the EM procedure, in addition to F';, B and
U, we define a downward probability Dy (s;,z¥), the
probability that all labels of a tree except for those of
subtree t,(j) are generated and that for node Ty, s is

the state*. The downward probability at a node can
be computed using the downward probability at its
parent and the forward and backward probabilities at
its siblings, as follows®:

( If j is the root then 7[l],
else if j = 2% (p) then

> Du(a,p) blg, 0} Fu(g,1, ),
0.w.»_ Du(g,p) bla, 0} Fu(a,1,5)

Z a[{q, l}, m] Bu(l]; m, k)

\ m

Du(l,7) =

In calculating the values for all four probabilities
using dynamic programming, U, B and F' are calcu-
lated as before, and D is calculated top-down from
the root back to the leaves. Now using these four

3We use Fy(q,1,3) and By(q,m,j) and Uy(q,p), instead of
Fu(sq,sl,w}‘), Bu(sq,sm,w}‘) and Uy(sq, Ty ), respectively.

4For simplicity, we hereafter use Dy (l,5) for Dy (s;, z¥).

5We note that the likelihood for a tree can be calculated
using the upward and downward probabilities at any node i:

L(Ty;8) = > Uu(l,5) Dy(l,i).



probability parameters, we compute 7, ({sy, $m }, $1),
the expectation value that the state of a node is s;
and that the states of its parent and immediately
elder sibling are s, and s,,, respectively. Denoting
Yu({8g>Sm}s 81) by 7. ({g, m}, ) for simplicity, we can
use v, ({g,m},1) to recursively update the state tran-

sition probability
> nl{g,m} D)
a[{g,m},1] = =X

Y wlam}l)
u

We can similarly recursively update the values for
b[si,on] and 7[s;] using their respective expectation
values based on an EM procedure. Please refer
to [22, 2] for details.

3.4 Computation Time Because the degree of
each vertex is bounded (i.e., the maximum number
of hydroxyl groups for most sugars is constant), the
running times for all algorithms except the global
exact matching algorithm are on the order of O(|V4]-
[V2]). The global exact matching algorithm, runs in
O(|V1| - |Va| - min(|V4],|V2|)) due to the recursion of
the local exact matching algorithm.

Out of all the equations for calculating the ex-
pectation values and updating the parameters in our
learning algorithm, the most time-consuming is cal-
culating v, whose computation time with all possible
parameter values reaches O(|T| - |S|®-|V|-|C|) since
we must compute O(|V|-|C|) for each v and then re-
peat this O(]|S]?) times for all possible combinations
of states.

4 Results

Using the boxed glycan structure in Figure 2 as our
query, we ran the global approximate matching al-
gorithm, resulting in a listing of 91 entries, with the
maximum score being 1500 (matching itself). Fig-
ure 2 also lists a sampling of three glycans returned
from this query. The second most similar struc-
ture (a) scored 1300 as it contains one less sugar.
An O-Glycan (b) and a glycan in the Sphingolipid
class (¢) were returned with scores of 675 and 200,
respectively. Although the Sphingolipid may look
quite similar to the query at first glance, the lower
score seems accurate as it belongs to a different class.
Investigating this glycan further, we find that it is ac-
tually involved with an enzyme that is known to de-
grade certain intestinal mucin glycosphingolipids [12].
Interestingly, recalling that our query glycan is also
found in mucin, we can justify that the difference
in class should not exclude it from the result. For
other examples, the reader is encouraged to access
the KEGG GLYCAN web site, and documentation
on the access and usage (i.e., search, query process)
of KCaM is currently in preparation for publication.

The performance of PSTMM was evaluated by
comparing it with those of four other simpler prob-
abilistic models: label model (LM), mixture label
model (MLM), label pair model (LPM), and mix-
ture label pair model (MLPM). LM counts the la-
bels that appear in the given set of labeled ordered

o o
[ )

I
~

Sensitivity

0 02 04 06 08 1
False positive rate
Figure 3: The ROC curves for N-Glycan.

trees, and parameter estimation consists of one cal-
culation of the probability that some label is output
at some node from among the entire input tree set.
MLM is a mixture of LMs, where each LM is called
a component. Each component is applied a different
probability parameter value which is then estimated
and updated recursively by an EM procedure. LPM
is similar to LM except that it calculates the prob-
ability that a label o, is outputted at a node given
that label op: is outputted at its parent node. It
also has an additional parameter for the probabil-
ity that the root outputs a certain label. As in LM,
parameter estimation consists of one calculation of
these two parameters. Finally, MLPM is a mixture
of LPMs where each LPM is a component with a dif-
ferent probability parameter which is estimated and
updated recursively by EM.

We evaluated our model using both synthetic and
real biological data but for space concerns we only
present our results on glycan data here. We created
data sets of glycans from KEGG GLYCAN based
on two major classes, N- and O-Glycans, selecting
from each those structures that contained at least one
sibling pair. We performed a five-fold cross-validation
for each data set by dividing them into five blocks of
roughly equal size, and in each of five trials, selecting
a different block as the test set while training with
the rest. We repeated this process five times. The
results were then averaged over the 25 (= 5 x 5) runs.
Figure 3 shows the ROC curves of the five methods
tested for N-Glycan. We plotted sensitivity vs. false
positive rate. Sensitivity is the ratio of the number
of correctly predicted examples to the total number
of positive examples, and false positive rate is the
ratio of the number of false positives to the total
number of negative examples. For a certain false
positive rate, the higher the sensitivity, the better
the performance. Our plot clearly indicates that
PSTMM outperformed the other four methods by a
large margin. Our results imply that some complex
pattern exists in glycans that is not limited to parent-
child relationships.

5 Discussion

We have attempted to tackle glycans from an infor-
matics perspective by characterizing their structures
as labeled trees. Further characterization requires a
definition of the objective of the analysis. In our case,



Figure 2: Examples of glycans resulting from running KCaM using the boxed glycan. The matching sub-
structures are emphasized in bold linkages. Score for (a) 1300, (b) 675, and (c) 200.

we defined glycans differently in our algorithm for
matching glycans and in our probabilistic model for
mining glycans. In order to accomodate some lee-
way in matching glycan tree structures, we defined
our input as labeled unordered trees. On the other
hand, the recognition of glycans by lectins and other
biological agents led us to model sibling relationships
in PSTMM, which thus takes labeled ordered trees
as input. As a result, our work has shown promise
in two very different and yet meaningful areas of re-
search in the analysis of glycans. In our results, we
illustrated how the similarity scores corresponded to
actual structures queried by KCaM. We also statis-
tically demonstrated the effectiveness of PSTMM. It
is exciting to see these promising results as they rep-
resent preliminary proof of concept of our models.

In conclusion, our work represents groundwork
for many other possible future projects. Currently,
statistical analysis of KCaM, enabled by our sim-
ilarity scores, is underway. From this, it will be
possible to statistically calculate various aspects of
glycan structures. For example, score matrices can
be developed, relationships between various sugars
can be identified, and new classes may be discovered.
PSTMM can also be used not only for mining, but
for prediction as well. Such work shall surely benefit
glycobiologists and further encourage the progress of
this new field called glycome informatics.
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