
Reconsidering Multi-Dimensional Schemas

Tim Martyn
Rensselaer at Hartford

martyn@rh.edu

Abstract
This paper challenges the currently popular
“Data Warehouse is a Special Animal”
philosophy and advocates that practitioners
adopt a more conservative “Data Warehouse =
Database” philosophy. The primary focus is the
relevancy of Multi-Dimensional logical schemas.
After enumerating the advantages of such
schemas, a number of caveats to the presumed
advantages are identified. The paper concludes
with guidelines and commentary on implications
for data warehouse design methodologies.

1. Introduction

Within the past decade, many scholarly and trade
publications have advocated the position that
data warehouse systems, designed to facilitate
Decision Support Systems in general, and On-
Line Analytic Processing (OLAP) in particular,
are "special animals" that require special design
methodologies to build special logical schemas.

"OLTP is profoundly different from dimensional
data warehousing. The users are different, the
data content is different, the hardware is
different, the software is different, the
management of the systems is different, and the
daily rhythms are different." Kimball [5]

"Designing a data warehouse requires
techniques completely different from those
adopted for operational systems."

 Golfarelli & Rizzi [2]

The primary purpose of this paper is to invite
practitioners to reconsider this predominant
"Data Warehouse = Special Animal" philosophy.
Instead, practitioners will be encouraged to adopt
a more fundamental, but apparently less popular,
"Data Warehouse = Database (DW=DB)"
philosophy. The essence of this philosophy is
captured in the following quotes.

"Data warehouses and data marts are nothing
more or less than SQL database systems."

Hellerstein, Stonebraker, and Caccia [3]

"The rules of logical design do not depend on the
intended use of the database - the same rules
apply, regardless of the kinds of applications
intended. In particular, therefore, it should make
no difference whether those applications are
operational (OLTP) or decision support
applications. Either way, the same design
procedure should be followed." C. J. Date [1]

This paper will argue the merits of the DW=DB
philosophy within the context of logical database
design for implementation using a conventional
relational DBMS. In particular, it will present a
number of caveats relevant to the presumed
advantages of Multi-Dimensional (MD) logical
schemas that have found great application within
the data warehouse environment.

Section 2 provides a brief overview of three
logical schemas applicable within a data
warehouse environment. Section 3 presents
design criteria for evaluating the schemas. These
criteria are applied in Section 4 to present
arguments in favor of MD schemas and in
Section 5 to present arguments against MD
schemas. Section 6 considers the impact of query
optimization on the design of logical schemas.
Section 7 concludes with pragmatic guidelines
and a few comments on design methodology.

2. Logical Schemas for Data
 Warehouse Applications

Two specialized logical database schemas have
been proposed for data warehouse applications.
These are the Star Schema and the Snowflake
Schema. The more generic term "Multi
Dimensional (MD) Schema" is used to
collectively refer to both schemas. Third Normal
Form (3NF) Schemas are also considered, even
though many authors contend that such schemas
are not appropriate for data warehouse
applications. Figure 1 illustrates each type
schema. Most data warehouse applications also
include some pre-computed summary tables
(materialized views), but we do not consider
such tables to be part of the core logical schema.

SIGMOD Record, Vol. 33, No. 1, March 2004 83

Figure 1A: Star Schema

PURCHASE (S#, P#, T#, PRICE) [fact]
TASK (T#, TNAME) [dimension]
PART (P#, PNAME, PWT) [dimension]
SUPPLIER (S#, SNAME, SZIP) [dimension]

Figure 1B: Snowflake Schema
PURCHASE (S#, P#, T#, PRICE)
DEPT (D#, DNAME, DBUDGET)
PROJ (PJ#, PJNAME)
TASK (T#, TNAME, D#, PJ#)
PART (P#, PNAME, PWT)
REGION (R#, RNAME)
SUPPLIER (S#, SNAME, SZIP, R#)

Figure 1C: 3NF Schema
Modify design for Figure 1.B. Include R# in DEPT.
DEPT (D#, DNAME, DBUDGET, R#)

PURCHASE

SUPPLIER PART

TASK

DEPT PROJ

PURCHASE

SUPPLIER PART

TASK

REGION

PURCHASE

SUPPLIER PART

TASK

REGION

DEPT PROJ

Figure 1: Three Possible Data Warehouse Schemas

Star Schema: Figure 1.A illustrates that a star
schema has a large "fact" table in the center, with
multiple "dimension" tables surrounding the fact
table. There is a one-to-many relationship
between each dimension table and the fact table.
The fact table usually represents business
transactions or events, or a snapshot summary of
the transactions/events. Because most real world
applications do not directly conform to a star
structure, some dimension tables may not be in
third normal form.

Snowflake Schema: Figure 1.B illustrates a
snowflake schema that may be interpreted as an
extension to a star schema. This figure illustrates
that a star is situated in the center of the
snowflake. The major extension is the presence
of "outer-level" dimension tables. A path of one-
to-many relationships from each outermost table
to the central fact table represents a dimensional
hierarchy. The presence of outer-level dimension
tables usually reduces, but does not necessarily
eliminate, the number of de-normalized tables.

3NF Schema: The term "3NF schema" refers to a
logical schema where (almost) all base-tables are
(at least) in third normal form. Figure 1.C
illustrates a 3NF schema that is usually derived
from a semantic data model such as an ER or
UML Model. Note that Figure 1.C illustrates an
explicit relationship between dimension tables
(DEPT and REGION). Such relationships are
not explicitly represented within MD schemas.

The schemas shown in Figure 1 are not
semantically equivalent. The 3NF schema
contains more information than the snowflake
schema, which in turn contains more information
than the star schema. However, in most cases, it
is possible to represent the semantics of any
application within any type of schema. For
example, Figure 2 illustrates a star schema with
de-normalized tables that represents the same
information embodied within the 3NF schema
shown in Figure 1.C.

Different kinds of schemas might be used for the
different kinds of data stores found within a data
warehouse environment. For example, it might
be reasonable to utilize (i) a star schema in a data
mart, (ii) a snowflake schema in a data
warehouse and (iii) a 3NF schema in an
operational data store. We emphasize that our
analysis of logical database schemas is relevant
regardless of the particular data store under
consideration.

84 SIGMOD Record, Vol. 33, No. 1, March 2004

3. Design Criteria

Any attempt to determine the "best" logical
database schema must be based on some criteria.
Three generic criteria, applicable to all
information systems, including data warehouse
systems, are proposed. The ideal system should
be (i) correct, (ii) fast, and (iii) friendly.

Correctness Criterion: Correctness is the most
important criterion because a friendly system
that efficiently generates incorrect information is
a failure. We include the notion of completeness
within correctness.

Efficiency Criterion: A database warehouse is
usually a very large database. Many queries will
access large amounts of data, and usually involve
multiple join operations. Hence, machine
efficiency becomes a major consideration.

Usability Criterion: Within a DSS, users
frequently formulate their own queries. Hence,
usability becomes a major consideration.

Advocates of MD schemas often reference the
"fast and friendly" criteria when they deprecate
3NF schemas that are directly derived from
semantic data models. Kimball is most explicit
on this matter.

"The normalized structures must be off-limits to
user queries because they defeat understand-
ability and performance.” [6]

Kimball would not accept an incorrect design.
His comments imply that, because the "fast and
friendly" criteria are so important, a correct MD
schema is preferred over a correct 3NF schema.
The following section elaborates on the rationale
for this position. The subsequent section
identifies some important caveats. The primary
objective of this paper is to invite practitioners to
reconsider MD logical schemas by presenting
both sides of the "3NF versus MD Logical
Schema" debate. In simple terms, this debate can
be summarized by two questions. Assuming that
your design methodology has (somehow)
produced a correct 3NF logical schema:

(i) Should you transform your 3NF schema into
a MD schema to promote machine efficiency?

(ii) Should you transform your 3NF schema into
a MD schema to promote human usability?

4. Arguments for MD Schemas

MD schemas can be defended with respect to all
three criteria. However, advocates of MD
schemas emphasize efficiency and usability.

4.1 Correctness

Correct semantics can be represented with a MD
schema even though some tables may not be in
third normal form. This is acceptable because a
data warehouse is generally a "read-only"
database. Potential update anomalies can be
addressed during the extract-transform-load
operations that populate the data warehouse.

4.2 Efficiency

Given the very large size of many data
warehouses, and the complexity of data
warehouse queries, many designers implement
MD schemas for performance reasons. Within
this context, we consider each schema.

3NF Schema: A 3NF design is considered to be
the least efficient design given the potential for a
large number of join operations. Furthermore,
some optimizers "stress out" when they
encounter a query with many join operations and
generate an inefficient query plan.

Star Schema: A star schema is generally
considered to be the most efficient design for
two reasons. First, a design with de-normalized
tables encounters fewer join operations. Second,
most optimizers are smart enough to recognize a
star schema and generate access plans that use
efficient "star join" operations. Kimball notes
that a "standard template” data warehouse query
directly maps to a star schema. [5].

Snowflake Schema: Sometimes a pure star
schema might suffer performance problems. This
can occur when a de-normalized dimension table
becomes very large and penalizes the star join
operation. Conversely, sometimes a small outer-

Figure 2: De-Normalized Star Schema

PURCHASE (S#, P#, T#, PRICE)
PART (P#, PNAME, PWT)
SUPPLIER (S#, SNAME, SZIP, R#, RNAME)
TASK (T#, TNAME, PJ#, PJNAME, D#,

 DNAME, DBUDGET, R#, RNAME)

SIGMOD Record, Vol. 33, No. 1, March 2004 85

level dimension table does not incur a significant
join cost because it can be permanently stored in
a memory buffer. Furthermore, because a star
structure exists at the center of a snowflake, an
efficient star join can be used to satisfy part of a
query. Finally, some queries will not access data
from outer-level dimension tables. These queries
effectively execute against a star schema that
contains smaller dimension tables. Therefore,
under some circumstances, a snowflake schema
is more efficient than a star schema.

4.3 Usability

Non-technical users frequently formulate their
own ad hoc queries against a data warehouse or
data mart. This situation may justify MD
schemas based on usability considerations. We
consider each schema from a usability
perspective.

3NF Schema: Figure 1.C clearly indicates that a
3NF schema is the most "complex" structure in
the sense that it has the greatest number of
rectangles and lines. Kimball's experience
indicates that users cannot understand such
complex designs.

"Normalized models, however, are too
complicated for data warehouse queries. Users
can’t understand, navigate, or remember
normalized models that resemble the Los
Angeles freeway system." [6]

Star Schema: A number of usability advantages
have been identified for star schemas.

• The star schema is the simplest structure in

the sense that it has the smallest number of
rectangles and lines.

• Because a star schema has the fewest tables,

users execute fewer join operations. This
makes it easier to formulate queries.

• The typical data warehouse query gracefully

maps to the star schema.

• The star schema could serve as a generic

logical schema for all data warehouses. If
users become comfortable with this schema,
their learning time for other star schemas
would be reduced.

• The star schema is a symmetric structure. As
such, the star schema is not biased toward
facilitating a particular query.

• The symmetric star schema allows the

designer to add new dimension tables with
less disruption to the user's view of the data.

Snowflake Schema: A snowflake schema may be
considered to be a compromise between a too-
complex 3NF schema and a too-simple star
schema. Compared to a 3NF schema, the
snowflake schema does not allow arbitrarily
complex relationships of any cardinality between
any two tables. Compared to a star schema, the
snowflake schema allows for the explicit
representation of dimensional hierarchies.

5. Arguments against MD Schemas

We now assume a more conservative "DW=DB"
philosophy and make observations that
effectively place strong qualifications on the
aforementioned advantages of MD schemas.
Practitioners should consider the following
caveats before committing to a MD schema.

5.1 Caveats Re. Correctness

Design correctness is the most important
requirement. Therefore, designers are invited to
review the advantages of a 3NF design and
recognize that they are most relevant within a
data warehouse environment.

Correct Semantics: A 3NF is "more correct"
than a MD schema because it directly reflects the
semantics of an application as represented within
a semantic model. Furthermore, a 3NF schema is
likely to be "more complete" because some
designers might implement an overly simplified
star schema, as illustrated in Figure 1.C, instead
of a more complete, but more complex star
schema, as illustrated in Figure 2.

Update Operations: Although a data warehouse
is usually a read-only database, some on-line
update operations may be executed. Zurek and
Sinnwell make this point in [9] where they
emphasize that the differences between real-
world data warehouses and operational systems
are not as “black and white” as some would
believe. Therefore, the well-known integrity
advantages of 3NF schemas apply to any
relational database, including a data warehouse.

86 SIGMOD Record, Vol. 33, No. 1, March 2004

Schema Evolution: Whenever the real world
changes, the semantic data model of the
corresponding application domain may also
change. This "Schema Evolution" problem is
eternal and applies to practically all databases,
including data warehouses. Because a 3NF
schema, directly derived from a semantic model,
is more stable than a non-3NF schema, schema
evolution (and related ETL operations) will be
more manageable with a 3NF schema.

5.2 Caveats Re. Efficiency

Machine efficiency pertains to physical database
design. The designer should utilize internal
DBMS facilities to support the important notion
of physical data independence. This ability to
improve performance by tuning internal access
methods without making changes to the logical
schema significantly reduces maintenance
problems and costs. C. J. Date observes that
advocates of star schemas appear to confuse
logical design with physical design.

“The problem is that there is really no concept of
logical design, as distinct from physical design,
in the star schema approach.” [1]

In principle, the DW=DB philosophy advocates
acquiring sufficient hardware resources, a robust
RDBMS, and then implementing an effective
physical design. Recent advances in storage
technology, parallel processing, data partitioning,
physical access methods, materialized views, and
query optimization make this possible for many
data warehouse applications. For some
applications, the additional cost to realize
performance objectives with a 3NF schema may
be less than the update processing and schema
evolution costs associated with a MD schema.

The DW=DB philosophy recognizes the
limitations of current technology. This
philosophy also acknowledges that economic
factors may prohibit acquisition of effective
technological resources. Long before data
warehousing became popular, practitioners
modified OLTP logical schemas in order to
enhance performance. Similar performance
enhancing schema modifications apply within
data warehouse systems. However, this fact does
not necessarily imply that designers should
explicitly target the construction of a MD
schema. Instead, the designer should ask if it is
possible to realize acceptable (not necessarily
optimal) performance with a 3NF schema. If and

only if this is not possible, then some effective
design methodology should be utilized to
produce an efficient near-3NF logical schema.

5.3 Caveats Re. Usability

The following questions should be considered
before committing to a MD logical schema for
reasons of usability.

1. Is a given 3NF schema really more complex
than an equivalent MD schema? If your real
world is inherently complex, then your logical
schema should represent this complexity, and
your users must understand this complexity in
order to accurately formulate their queries. An
overly simplified MD schema might increase,
not reduce, usability problems. Spencer and
Lewis observed that users of star schemas
became confused about the semantics of a
dimensional hierarchy that was stored within a
single de-normalized dimension table. They
concluded that the logical schema should be a
snowflake. [7] Likewise, there may exist
applications where a 3NF schema may indeed be
perceived by users to be more understandable
than a snowflake schema. Unfortunately, there
appears to be little formal research that compares
the usability of the three basic schemas.
Therefore, we contend that practitioners should
not necessarily reject a 3NF schema based on
usability.

2. Is usability a database design consideration?
The aforementioned usability advantages of MD
schemas may be scientifically verifiable.
However, these advantages might be realized by
using effective front-end query and reporting
tools. Therefore, given the availability of
effective front-end tools, usability concerns
alone would not justify transforming a 3NF
schema into a MD schema. Unfortunately, the
current consensus is that almost all tools have
limitations. Hence, some applications will
require designers to build friendly schemas.

3. Does usability apply to a logical schema? This
is the critical question. Similar to Date's
criticism that advocating a fast MD logical
schema confuses logical design with physical
design, we offer an additional parallel criticism.
Advocating a friendly logical schema confuses a
logical schema with an external schema. We
suggest that designers consider using views to
implement a virtual star on top of 3NF base
tables. (Figure 4 illustrates an example.)

SIGMOD Record, Vol. 33, No. 1, March 2004 87

6. Optimizer Considerations

A user might execute a query against view VSR
that does not reference a column from REGION.
The optimizer should (and some optimizers will)
transform the query into an equivalent query that
would not perform the unnecessary join with
REGION. Unfortunately, not all optimizers are
this smart. Designers should consider optimizer
deficiencies when analyzing popular queries. If
the performance penalty is significant, the
designer may have to give up on the virtual star
idea, or back away from the 3NF schema.

7. Conclusion

The DW=DB philosophy encourages
practitioners to consider usability and
performance when designing any database,
including a data warehouse. The following
guidelines apply to these issues.

Efficiency Guideline: Try to realize an
acceptable level of performance by using
powerful technology and effective physical
design techniques. If performance requirements
become so extreme, then some pragmatic
modification of the logical schema could become
necessary. As with OLTP systems, apply a few
well-chosen logical design modifications to
produce a near-3NF schema that directly reflects
the semantics of the application and also satisfies
performance objectives.

Usability Guideline: Some users may need to
see a potentially complex 3NF schema because
their application domain is inherently complex.
Transforming a 3NF schema into a MD schema
may actually obscure important semantic
information necessary to formulate accurate
queries. However, providing MD external
schemas may be helpful for many users. Try to
support MD schemas by using effective query
and reporting tools. If such tools are not
available, then use views to build virtual stars or
snowflakes. Also, verify that your optimizer is

smart enough to avoid the kind of problem
described in Section 6.

The DW=DB philosophy requires that designers
initially formulate a 3NF schema and then “back
away” from the 3NF schema if and only if the
payoff is significant. Making special case design
modifications to a 3NF schema is much less
radical than adopting a specialized design
methodology that specifically targets a MD
schema. Therefore, the DW=DB philosophy is
more compatible with a methodology that builds
a 3NF schema and subsequently generates a
near-3NF schema, or even a MD schema. The
development of a 3NF schema, even as an
intermediate result, ensures that the design is
built on a solid foundation. Furthermore, staying
within the context of traditional database design
will eliminate potential organizational problems,
and training costs, associated with adopting a
novel or specialized design methodology.

References

[1] Date, C. J., An Introduction to Database

Systems (7th), Addison-Wesley, 2000.
[2] Golfarelli, M., and Rizzi, S., "A

Methodological Framework for Data
Warehouse Design," DOLAP, 1998.

[3] Hellerstein,, Stonebraker, and Caccia,
"Independent, Open Enterprise Data
Integration," Bulletin of IEEE
Committee on Data Engineering, 1999.

[4] Jarke, M., Lenzerini, M., and Vassiliou,
Y, Fundamentals of Data Warehousing
(2nd ed.), Springer-Verlag, 2002.

[5] Kimball, R., The Data Warehouse
Toolkit, Wiley, 1996.

[6] Kimball and Ross, The Data Warehouse
Toolkit (2nd ed.), Wiley, 2002.

[7] Spencer, T. and Loukas, T., "From Star
to Snowflake to ERD: Comparing Data
Warehouse Design Approaches,"
Enterprise Systems Journal, 10/99.

[8] Vassiliadis P, and Sellis, T. “A Survey
of Logical Models for OLAP
Databases,” SIGMOD Record, 12/99.

[9] Zurek, T., and Sinnwell, M., "Data
Warehousing Has More Colours Than
Just Black & White," Proc. 25th VLDB
Conference, 1999.

[10] A longer version of this paper, with a
short case study, can be obtained at
www.rh.edu/~martyn/warehouse.

Figure 4: Views Support a Virtual Star

CREATE VIEW VSR (S#, SNAME, SZIP,

 R#, RNAME) AS
 SELECT S#, SNAME, SZIP, R.R#, RNAME
 FROM SUPPLIER S, REGION R
 WHERE S.R# = R.R#

88 SIGMOD Record, Vol. 33, No. 1, March 2004

