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Abstract 
A data stream is a massive unbounded sequence of data elements 
continuously generated at a rapid rate. Due to this reason, most 
algorithms for data streams sacrifice the correctness of their 
results for fast processing time. The processing time is greatly 
influenced by the amount of information that should be 
maintained. This paper proposes a statistical grid-based approach 
to clustering data elements of a data stream. Initially, the multi-
dimensional data space of a data stream is partitioned into a set of 
mutually exclusive equal-size initial cells. When the support of a 
cell becomes high enough, the cell is dynamically divided into 
two mutually exclusive intermediate cells based on its distribution 
statistics. Three different ways of partitioning a dense cell are 
introduced. Eventually, a dense region of each initial cell is 
recursively partitioned until it becomes the smallest cell called a 
unit cell. A cluster of a data stream is a group of adjacent dense 
unit cells. In order to minimize the number of cells, a sparse 
intermediate or unit cell is pruned if its support becomes much 
less than a minimum support. Furthermore, in order to confine the 
usage of memory space, the size of a unit cell is dynamically 
minimized such that the result of clustering becomes as accurate 
as possible. The proposed algorithm is analyzed by a series of 
experiments to identify its various characteristics. 

1. Introduction 
  Recently, several data mining methods[1,2] for a data 
stream are actively introduced. Researches on a data stream 
are motivated by emerging applications involving massive 
data sets such as customer click streams, telephone records, 
multimedia data, and sets of retail chain transactions can be 
modeled as data streams. Accordingly, a data stream is 
defined as a massive unbounded sequence of data elements 
continuously generated at a rapid rate. Due to this reason, it 
is impossible to maintain all elements of a data stream. 
Consequently, data stream processing should satisfy the 
following requirements[3]. First, each data element should 
be examined at most once to analyze a data stream. Second, 
memory usage for data stream analysis should be confined 
finitely although new data elements are continuously 
generated in a data stream. Third, newly generated data 
elements should be processed as fast as possible to produce 
the up-to-date analysis result of a data stream, so that it can 
be instantly utilized upon request. To satisfy these 
requirements, data stream processing sacrifices the 
correctness of its analysis result by allowing some errors.  
  Clustering is the process of finding groups of similar 
data elements which are defined by a given similarity 
measure. Most conventional clustering algorithms[4,5,6] 
assume a data set is fixed and focus on how to minimize 

processing time or memory usage algorithmically. 
Clustering has been widely studied across several 
disciplines but only a few of its techniques can effectively 
support a very large data set. When a data set is enlarged 
incrementally, it is more efficient to use one of incremental 
clustering algorithms [7]. They mainly focus on how to 
utilize the previously identified clusters of data elements in 
a data set in finding the up-to-date clusters of the data set 
including a set of newly added data elements efficiently 
such that only necessary data elements in the previous data 
set are examined. However, all the data elements of the 
previous data set should be maintained physically since all 
of them can be potentially examined in the future. In [8], a 
partitioning clustering algorithm for a data stream is 
proposed. It uses an O(1)-approximate k-medoid method 
for each sub-set of a data stream. In order to overcome the 
iterative evaluation of the conventional k-medoid 
algorithm[4], its objective is to maintain only the 
consistently good set of k approximate data elements ,i.e., 
medoids each of which represents the center of a cluster for 
the data elements observed so far in a data stream.  
  This paper proposes a grid-based clustering algorithm for 
clustering the data elements of a data stream. To find 
clusters of similar data elements over a data stream, the 
distribution statistics of data elements in the data space of a 
data stream are carefully maintained. By keeping only the 
distribution statistics of data elements in a dynamically 
partitioned grid-cell, the clusters of a data stream can be 
effectively found without maintaining the data elements 
physically. Initially, the multi-dimensional data space of a 
data stream is partitioned into a set of mutually exclusive 
equal-size initial cells. As a new data element is generated 
continuously, each initial cell monitors the distribution 
statistics of data elements within its range. When the 
support of an initial cell becomes high enough, one of the 
dimensions of the data space is chosen as a dividing 
dimension based on the distribution statistics of data 
elements in the cell. The range of the cell is dynamically 
divided into two mutually exclusive smaller cells, called 
intermediate cells, with respect to the selected dividing 
dimension. In addition, the distribution statistics of the cell 
are used to estimate those of each divided cell. Similarly, 
when an intermediate cell itself becomes dense, it is 
partitioned by the same way. Eventually, a dense region of 
each initial cell is recursively partitioned until it becomes 
the smallest cell called a unit cell.  
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  The range of a dense cell can be partitioned by three 
different methods: µ-partition, σ-partition and hybrid-
partition. The µ-partition method divides it based on the 
average value µ of the data elements of the cell in its 
dividing dimension while the σ-partition method divides it 
based on the standard deviation σ of the data elements of 
the cell in its dividing dimension. The hybrid-partition 
method chooses the more effective one of the two partition 
methods. A cluster of a data stream is a group of adjacent 
dense unit cells. As the size of a unit cell is set to be smaller, 
the resulting set of clusters is more accurately identified 
while the number of cells is increased. In order to minimize 
the number of cells, a sparse intermediate or unit cell is 
pruned if its support becomes low enough. Furthermore, the 
size of a unit cell is dynamically adjusted to confine the 
usage of memory space. 
  The rest of this paper is organized as follows: Section 2 
presents related works. In Section 3, a statistical grid-based 
clustering algorithm is proposed. In Section 4, several 
experimental results are comparatively analyzed to 
illustrate the various characteristics of the proposed 
algorithm. Finally, Section 5 presents conclusions. 

2. Statistical grid-based clustering Algorithm 
 2.1 Grid Cells and Distribution Statistics 
  Given a data stream D of d-dimensional data space 
N=N1× N2× …× Nd, a data element generated at the jth

 turn 
is denoted by ej=<e1

j,e2
j,…,ed

j>, ei
j∈Ni, 1≤ i≤ d. When a 

new data element et is generated at the tth turn in a data 
stream D, all the data elements that have ever been 
generated so far are denoted by the current data stream Dt 
={e1,e2,…,et}. The total number of data elements generated 
in the current data stream Dt is denoted by |D t |. Finding a 
cluster of similar data elements in the current data stream 
Dt is identifying a region whose current density of data 
elements is high enough. In order to define the similarity 
between two data elements, a cell whose length in each 
dimension is less than a predefined distance value λ  is 
defined as a unit cell. The current support of a cell is the 
ratio of the number of those data elements that are inside 
the range of the cell over the total number of data elements 
in Dt. Therefore, a cluster at Dt is a group of adjacent dense 
unit cells whose current supports are greater than or equal 
to a predefined minimum support Smin respectively. 
  The range of each dimension Ni is initially partitioned by 
p number of mutually exclusive equal-size intervals Ii

 j = [si
j, 

fi
j) 1≤ j≤ p where si

j and fi
j denote the start and end values in 

the jth interval of the ith dimension. Consequently, pd number 
of initial cells are formed in N and each initial cell g is 
defined by a set of d intervals {I1,I2,…,Id} Ii⊆ Ni 1≤ i≤ d. 
The initial range R(g) of an initial cell g is a rectangular 
space rs=I1× …× Id. However, the rectangular space of an 
initial cell becomes a set of rectangular spaces 
RS={rs1,rs2,…,rsq} as a series of cell partitioning is 

performed subsequently. When the rectangular spaces of a 
cell g are projected to the ith dimension, the intervals of the 
ith dimension of the cell can be found and they are denoted 
by ISi(g)={Ii

1,Ii
2,…,Ii

q}. The sum of these intervals is 
defined as the interval size of the ith dimension of the cell g. 
The range of the cell g is the united spaces of all the 

rectangular spaces rs1,…,rsq, i.e., R(g)= U
q

i
irs

1=
. Each cell 

keeps the current distribution statistics of those data 
elements that are within its range as defined in Definition 1. 

Definition 1. Distribution Statistics of a grid-cell g(RS,c,µ,σ) 
For the current data stream Dt, a term g(RS, ct, µt, σt) is 
used to denote the distribution statistics of a cell g whose 
range is defined by a set of rectangular spaces RS. Let Dg

t 
denote those data elements that are in the range of the cell g, 
i.e.,Dg

t={ e| e∈Dt and e ∈R(g) }. The distribution 
statistics of the cell g in Dt are defined as follows: 
   i)  ct : the number of data elements in Dg

t 

   ii) µt=<µ1
t,…,µd

t > : µi
t denotes the average of the ith 

dimensional values of the data elements in Dg
t. 

               µi
t= ∑

=

tc

j

tj
i ce

1
/ , 1≤ i≤ d 

   iii) σt=<σ1
t,…,σd

t > : σi
t denotes the standard deviation 

of the ith dimensional values of the data elements in 
Dg

t. 

                σi
t= tc

ij

t
i

j
i ce

t

/)(∑ −
=

2µ , 1≤ i≤ d       □ 

  When a new data element et is generated in the current 
data stream Dt, its corresponding initial cell g among the pd 
initial cells is identified based on the initial partitions of the 
data space N. If the distribution statistics of the cell g was 
updated most recently at the insertion of the vth data 
element (v≤ t), its statistics remain the same as g(RS, 
cv,µv,σv) and they are updated to g(RS, ct,µt,σt) as follow:  
  ct=cv+1,                                      
  for∀i, 1≤ i≤ d, 

  µi
t
=

t

t
i

vv
i

c
ecµ +× , σi

t= 2
22
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  For the current data stream Dt, the current support of an 
initial cell g(RS, ct, µt, σt) is defined by the ratio of its count 
over the total number of data elements generated so far ,i.e. 
ct/|Dt|. When the current support of the cell becomes greater 
than or equal to a predefined split support Ssplt(Ssplt<Smin), 
two intermediate cells g1 and g2 are created as the children 
of the initial cell. The ranges and distribution statistics of 
these intermediate cells are determined by a partition 
method that is used to divide the initial cell. In Section 3.2, 
three different partition methods are presented in detail.  
In case an initial cell corresponding to a newly generated 
data element is already partitioned, among the children 
cells of the initial cell, the one whose range includes the 
new data element et is searched. After the target cell g is 
found, its distribution statistics are updated by the same 
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  Fig. 1. µ-partition and σ-partition methods 

way as described for an initial cell. If the cell g is an 
intermediate cell and its updated support becomes greater 
than or equal to Ssplt, the cell g is divided into two smaller 
cells. However, unlike an initial cell, the intermediate cell g 
is replaced by the two divided cells. Consequently, the 
parent initial cell of the intermediate cell g becomes the 
parent of each divided cell. 

 2.2 Cell Partition methods 
  There are three different ways of partitioning a dense 
initial or intermediate cell, namely µ-partition, σ-partition 
and hybrid-partition. Among the dimensions of the data 
space N for a data stream, a dividing dimension is chosen 
based on the distribution statistics of a dense cell to be 
partitioned. Subsequently, the range of the cell in the 
multidimensional data space N is split into two sub-ranges 
with respect to the selected dividing dimension.  
  When a dense cell g is split into two cells g1 and g2 at the 
current data stream Dt by the µ-partition method, among the 
dimensions whose interval sizes are larger than λ, the one 
with the largest standard deviation, say σk

t(1≤ k≤ d), is 
chosen as a dividing dimension. The standard deviation of 
each dimension in the distribution statistics of a cell 
represents how the data elements of the cell are distributed 
with respect to the dimension. When the standard deviation 
of a dimension is large, the corresponding dimensional 
values of most data elements in the cell are far from the 
average of the dimension. Therefore, the dividing dimension 
selected by the µ-partition method is the one in which the 
data elements can be evenly partitioned into two groups as 
clearly as possible. The rectangular spaces of the cell g are 
split into two mutually exclusive sets with respect to the 

average µk
t of the dividing dimension k. One contains those 

rectangular spaces whose intervals in the dividing dimension 
are less than µk

t and the other contains those rectangular 
spaces whose intervals are greater than or equal to µk

t. If an 
interval of the dividing dimension k of the cell g includes µk

t, 
the interval is actually divided. Figure 1-(a) illustrates how 
to split the rectangular spaces of a dense cell g(RS,c,µ,σ) in 
a two-dimensional data space by the µ-partition method. The 
two sets of the rectangular spaces are assigned to the ranges 
of the two divided cells g1 and g2 respectively.  
  By assuming the distribution of data elements in a dense 
cell g is a normal distribution, the distribution statistics of its 
two divided cells g1( RS1, c1t, µ1t, σ1t) and g2( RS2 , c2t, µ2t, 
σ2t) in the current data stream Dt are initialized. The count 
of the cell g is evenly distributed into the two divided cells 

g1 and g2 i.e., c1t=c2t=ct/2. Let 2

2

2

2
1 )(

)(

)(
t

tx

t ex σ
µ

σπ
ϕ

−
−

=  be the 

normal distribution function of the data elements in the 
range of the cell g. The remaining distribution statistics of 
the two divided cells can be estimated respectively as 
follows.  

  µ1t= µ2t =µt   except  µ1k
t and µ2k

t, 

                       µ1k
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where sk(gw) and fk(gw) denote the smallest start and largest 
end value of the intervals of the dividing dimension k for the 
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divided cell gw, w=1 or 2. If the dense cell g is an initial cell, 
its distribution statistics are cleared as ct=0 and µi

t=σi
t=0 for 

∀i, 1≤ i≤ d since they are carried to those of g1 and g2.  
  In the σ-partition method, among the dimensions whose 
interval sizes of a cell g to be partitioned are larger than λ, 
the one with the smallest standard deviation, say 
σl

t(1≤ l≤ d), is chosen as a dividing dimension. When the 
standard deviation of a dimension in the distribution 
statistics of a cell is small, the corresponding dimensional 
values of most data elements in the cell are adjacent to the 
average of the dimension. Since the one with the smallest 
standard deviation is selected as a dividing dimension, the 
data elements of the cell are most closely distributed to the 
average of the dividing dimension. Based on the standard 
deviation σl

t of the data elements in the selected dividing 
dimension l, the rectangular spaces of the cell are split into 
two mutually exclusive sets. One contains those rectangular 
spaces whose intervals in the dividing dimension are within 
[µl-σl, µl+σl). In this set, the 68 percentage of data elements 
in the cell g is assumed to be distributed according to a 
normal distribution. The other contains the remaining 
rectangular spaces. As in the µ-partition method, if an 
interval of the dividing dimension l includes either µl-σl or 
µl+σl, the interval is actually divided. As a result, the σ-
partition method makes the range of one of the two divided 
cells be as small as possible. In other words, it makes one of 
them be as dense as possible. Figure 1-(b) illustrates how to 
divide the rectangular spaces of a dense cell g (RS,c,µ,σ) in 
a two-dimensional data space by the σ-partition method. 
  When a cell g(RS, ct, µt, σt) is partitioned by the σ-
partition method into two cells g1( RS1, c1t, µ1t, σ1t) and 
g2( RS2 , c2t, µ2t, σ2t), the counts of these cells g1 and g2 are 
initialized respectively by the normal distribution 
function )(xϕ of the cell g as follows: 

c1t=ct
∫×
+

−

t
k

t
k

t
k

t
k

σµ

σµ
dxx)(ϕ ,  c2t=ct-c1t 

  The distribution statistics µ1k
t, µ2k

t, σ1k
t and σ2k

t of the 
dividing dimension k for the divided cells are estimated 
similarly as follows: 

µ1k
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  if sk(g2)< µ1k
t <fk(g2),     
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The distribution statistics of the other dimensions remain the 
same as in the µ-partition method. 

  The hybrid-partition method selects the more effective 
method of the two partition methods whenever a specific 
dense cell needs to be divided. Creating unit cells quickly is 
an important property to improve the accuracy of the 
proposed algorithm. It can be accomplished by minimizing 
the overall number of cell partition steps to produce a unit 
cell. Applying the more effective one of the two methods for 
a specific dense cell can reduce the overall number of cell 
partition steps. Let σe

i denote the standard deviation of the ith 
dimensional values of data elements in a cell g when the 
data elements are uniformly distributed over the intervals of 
the ith dimension of the cell. The relative effectiveness rate 
βk(g) of dividing a dense cell g by a partition method with a 
dividing dimension k is defined as follows:  

βk(g) = |σe
k - σt

k|,  where  σe
k = ∫ −

−

)(

)(

)(
)()(

gkf

gks

t
kµdxx

gksgkf
221  

  It is the absolute difference of the two standard deviations 
σk

t and σk
e. It can be used to measure the relative congestion 

rate of data elements in the cell g. Given a dense cell g to be 
partitioned, let k1 denote the dividing dimension selected by 
the µ-partition method and let k2 denote the dividing 
dimension selected by the σ-partition method. In other 
words, the standard deviation of the dimension k1 is the 
largest and that of the dimension k2 is the smallest. Since 
both effectiveness rates βk1(g) and βk2(g) are measured 
relatively to σk

e, the partition method with the larger rate 
divides the cell g more effectively. If βk1(g) > βk2(g), the 
congestion rate of data elements in the cell g on their 
average t

1kµ  in the dimension k1 is larger than the evenly 

separated rate of the data elements from their average t
2kµ  

in the dimension k2. As a result, the cell g is partitioned in 
terms of k1 by the µ-partition method. On the other hand, if 
βk1(g) < βk2(g), the σ-partition method is applied to the 
dividing dimension k2. If βk1(g) = βk2(g), either of the two 
partition methods can be applied. By selecting an 
appropriate partition method, the number of cell partition 
steps as well as the number of cells can be minimized.  
 
2.3 Cell Pruning 
  When the current support of an intermediate or unit cell g 
becomes less than a predefined pruning support Sprn ,i.e., 
ct/|D t| ≤ Sprn, the probability of finding a cluster in the range 
of the cell in the near future is very low. Consequently, the 
cell is removed and its distribution statistics g(RS, ct,µt,σt) 
are returned back to its parent initial cell gp. Suppose the 
distribution statistics of the parent cell gp were updated lastly 
at the vth element(v≤ t) and they are denoted by gp(RSp, 
cpv,µpv,σpv) where µpv =<µp1

v, µp2
v ,…, µpd

v > and σpv 
=<σp1

v, σp2
v ,…, σpd

v >. After the cell g is pruned, the 
statistics gp(RSp, cpt,µpt,σpt) of the parent cell at Dt are 
updated as follows: 
   cpt = cpv+ct ,  
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  A sparse intermediate or unit cell can be pruned whenever 
a data element in the range of the cell is newly generated. 
However, a considerable number of such sparse cells may 
not be pruned since the possibility of encountering a data 
element in the range of a sparse cell is very low. All sparse 
intermediate or unit cells can be forced to be pruned together 
by examining their current supports. This mechanism is 
called as a force-pruning operation. Since the distribution 
statistics of all intermediate or unit cells should be examined, 
the processing time of a force-pruning operation takes 
relatively long. Due to this reason, it can be performed 
periodically or when the current usage of memory space 
reaches a predefined threshold value.  
  Since available memory space is confined, the memory 
usage of the proposed algorithm is adjusted adaptively by 
resizing the size λ of a unit cell dynamically. Given the value 
of λ, if the confined memory space is full, all unit cells are 
pruned and their distribution statistics are added to their 
parent initial cells respectively. Similarly, those intermediate 
cells whose interval size in at least one dimension is less 
than 2λ  are pruned by the same way. Subsequently, the 
value of λ is doubled and the normal operations of the 
proposed algorithm are resumed. Since the value of λ is 
doubled, the memory requirement of the proposed method is 
reduced while its clustering accuracy is degraded. On the 
other hand, if the amount of unused memory space stays to 
be larger than the two-fold of the total size of all unit cells, 
the value of λ is dynamically adjusted to be the half of its 
value. 
 
3. Experimental Results 
  In order to analyze the performance of the proposed 
algorithm, a data set containing one million 10-dimensional 
data elements is generated by the data generator used in 
ENCLUS [9]. Most of data elements are concentrated on 
randomly chosen 100 distinct data regions whose sizes in 
each dimension are also randomly varied from 10 to 20 
respectively. Although the proposed algorithm is based on 
grid-based clustering, the accuracy of the proposed 
algorithm is compared with that of DBSCAN since, unlike 
conventional grid-based approaches, a grid cell is 
dynamically created. The values of a pruning support Sprn 
and a split support Ssplt are assigned relatively to a predefined 
minimum support Smin. The multidimensional data space of 
the data set is divided into 4 initial cells. In all experiments, 
data elements are looked up one by one in sequence to 
simulate the environment of a data stream. 
  Figure 2 shows the variation of clustering accuracy by 
each partition method. The accuracy of the proposed 
algorithm is measured by the ratio of the number of 

correctly clustered elements by a specific partition method 
of the proposed algorithm over the total number of data 
elements clustered by DBSCAN. In DBSCAN, the value of 
MinPts is set to Smin× |Dt| and the value of Eps is set to the 
half of λ. The sequence of generated data elements is 
divided into 5 intervals each of which consists of 200,000 
elements. The average accuracy of each interval is shown in 
this figure. The force-pruning operation is performed 
whenever 1,000 new elements are processed(f=1000). The 
clustering accuracy of the first interval is relatively lower 
than those of the other intervals. This is because the support 
of each intermediate cell is too sensitively varied in the first 
interval. As a result, a lot of cell partition operations are 
performed in the first interval to produce a set of meaningful 
unit cells. After the first interval, the accuracy of the 
proposed algorithm is stabilized regardless of which 
partition method is used. The hybrid-partition method 
provides the most accurate result in the first interval. This is 
because it applies the most appropriate partition method to 
divide a dense cell. Consequently, meaningful dense unit 
cells are generated quickly via less number of cell partition 
operations. 
  Figure 3 shows the variation of memory usage in this 
experiment. After most of dense unit cells are generated, i.e. 
the proposed algorithm is stabilized, its memory usage can 
also be decreased by setting the value of Sprn adequately. 
When Sprn is set to 0.3× Smin, the memory usage is the largest. 
The reason is that most of divided intermediate cells are 
pruned too quickly and their initial cells are repeatedly 
partitioned again. On the contrary, when the value of Sprn is 
set to 0.1× Smin, the memory usage is minimized since dense 
intermediate cells are successfully divided into dense unit 
cells while sparse ones are pruned properly. The pruning 
support can be effectively used to minimize the usage of 
memory space with small loss of accuracy.  
  Figure 4 shows the variation of clustering accuracy by 
varying the value of λ. The predefined size λ of a unit cell 
determines the resolution of clustering. As λ is set to be 
smaller, the boundary of a cluster is more precisely 
identified. By varying the value of λ, Figure 5 shows the 
variation of memory usage. As the value of λ is increased, 
the memory usage is decreased enormously. 
  Figure 6 shows the memory space adaptability of the 
proposed algorithm when available memory space is 
confined to 30KB. Two different schemes of the proposed 
algorithm, namely adjusted and fixed schemes, are compared. 
The value of λ is dynamically adjusted in the adjusted 
scheme while it is statically set in the fixed scheme. All the 
previous experiments are based on the fixed scheme. 
Initially, the value of λ is set to 16. In the first interval, the 
two schemes use the same amount of memory space. 
However, the memory usage of the fixed scheme is dropped 
rapidly in the second interval since lots of sparse cells are 
pruned. It is stabilized in the third interval. On the contrary, 
in the second interval of the adjusted scheme, the value of λ 
is adjusted to its half, i.e., λ=8 since a considerable amount  
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         Fig. 5. Memory usage by varying λ     Fig. 6. Memory space adaptability       Fig. 7. Adjusted clustering accuracy 

of unused memory space is left. Subsequently, the memory 
usage of the adjusted scheme is increased in the second 
interval. When the memory usage reaches the limit in the 
third interval, the value of λ is doubled ,i.e., λ=16. After 
sparse cells are pruned in the third interval, its value is 
readjusted to be the half again, i.e., λ=8. Ultimately, the 
memory usage of the adjusted scheme is stabilized to the 
confined memory space. Figure 7 shows the clustering 
accuracy of this experiment. Before the memory usage of 
the adjusted scheme is stabilized, its accuracy is lower than 
that of the fixed scheme. This is because all unit cells and 
some of intermediate cells are compulsorily pruned when 
the value of λ is dynamically increased. 
 
4. Conclusion 
  In this paper, a grid-based statistical clustering algorithm 
for a data stream is proposed. The multi-dimensional data 
space of a data stream is dynamically divided into a set of 
cells with different sizes. By maintaining only the 
distribution statistics of data elements in each cell, its 
current support is precisely monitored. A dense region of a 
data space is partitioned repeatedly until it becomes a dense 
unit cell. Three different partition methods are proposed in 
this paper. The µ-partition and σ-partition methods are 
intended to split every cell in a fixed way while the hybrid-
partition method is designed to use the more effective one 
of the two methods for the distribution statistics of a 
specific dense cell. Two thresholds Ssplt and Sprn are 
proposed to control the performance of the proposed 
algorithm in a data stream. A split support Ssplt is used to 
determine how fast dense unit cells are created. A pruning 
support Sprn is used to remove meaningless sparse 
intermediate or unit cells. Furthermore, in order to confine 
the memory usage of the proposed algorithm, the size of a 
unit cell can be dynamically adjusted based on the current 
usage of memory space. As a result, it is possible to 
maximize the accuracy of clustering for the available 

amount of memory space. 
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