
Statistical Grid-based Clustering over Data Streams
Nam Hun Park Won Suk Lee

Department of Computer Science, Yonsei University
134 Shinchon-dong Seodaemun-gu Seoul, 120-749, Korea

+82-2-2123-2716

{ zyonix, leewo }@amadeus.yonsei.ac.kr

Abstract
A data stream is a massive unbounded sequence of data elements
continuously generated at a rapid rate. Due to this reason, most
algorithms for data streams sacrifice the correctness of their
results for fast processing time. The processing time is greatly
influenced by the amount of information that should be
maintained. This paper proposes a statistical grid-based approach
to clustering data elements of a data stream. Initially, the multi-
dimensional data space of a data stream is partitioned into a set of
mutually exclusive equal-size initial cells. When the support of a
cell becomes high enough, the cell is dynamically divided into
two mutually exclusive intermediate cells based on its distribution
statistics. Three different ways of partitioning a dense cell are
introduced. Eventually, a dense region of each initial cell is
recursively partitioned until it becomes the smallest cell called a
unit cell. A cluster of a data stream is a group of adjacent dense
unit cells. In order to minimize the number of cells, a sparse
intermediate or unit cell is pruned if its support becomes much
less than a minimum support. Furthermore, in order to confine the
usage of memory space, the size of a unit cell is dynamically
minimized such that the result of clustering becomes as accurate
as possible. The proposed algorithm is analyzed by a series of
experiments to identify its various characteristics.

1. Introduction
 Recently, several data mining methods[1,2] for a data
stream are actively introduced. Researches on a data stream
are motivated by emerging applications involving massive
data sets such as customer click streams, telephone records,
multimedia data, and sets of retail chain transactions can be
modeled as data streams. Accordingly, a data stream is
defined as a massive unbounded sequence of data elements
continuously generated at a rapid rate. Due to this reason, it
is impossible to maintain all elements of a data stream.
Consequently, data stream processing should satisfy the
following requirements[3]. First, each data element should
be examined at most once to analyze a data stream. Second,
memory usage for data stream analysis should be confined
finitely although new data elements are continuously
generated in a data stream. Third, newly generated data
elements should be processed as fast as possible to produce
the up-to-date analysis result of a data stream, so that it can
be instantly utilized upon request. To satisfy these
requirements, data stream processing sacrifices the
correctness of its analysis result by allowing some errors.
 Clustering is the process of finding groups of similar
data elements which are defined by a given similarity
measure. Most conventional clustering algorithms[4,5,6]
assume a data set is fixed and focus on how to minimize

processing time or memory usage algorithmically.
Clustering has been widely studied across several
disciplines but only a few of its techniques can effectively
support a very large data set. When a data set is enlarged
incrementally, it is more efficient to use one of incremental
clustering algorithms [7]. They mainly focus on how to
utilize the previously identified clusters of data elements in
a data set in finding the up-to-date clusters of the data set
including a set of newly added data elements efficiently
such that only necessary data elements in the previous data
set are examined. However, all the data elements of the
previous data set should be maintained physically since all
of them can be potentially examined in the future. In [8], a
partitioning clustering algorithm for a data stream is
proposed. It uses an O(1)-approximate k-medoid method
for each sub-set of a data stream. In order to overcome the
iterative evaluation of the conventional k-medoid
algorithm[4], its objective is to maintain only the
consistently good set of k approximate data elements ,i.e.,
medoids each of which represents the center of a cluster for
the data elements observed so far in a data stream.
 This paper proposes a grid-based clustering algorithm for
clustering the data elements of a data stream. To find
clusters of similar data elements over a data stream, the
distribution statistics of data elements in the data space of a
data stream are carefully maintained. By keeping only the
distribution statistics of data elements in a dynamically
partitioned grid-cell, the clusters of a data stream can be
effectively found without maintaining the data elements
physically. Initially, the multi-dimensional data space of a
data stream is partitioned into a set of mutually exclusive
equal-size initial cells. As a new data element is generated
continuously, each initial cell monitors the distribution
statistics of data elements within its range. When the
support of an initial cell becomes high enough, one of the
dimensions of the data space is chosen as a dividing
dimension based on the distribution statistics of data
elements in the cell. The range of the cell is dynamically
divided into two mutually exclusive smaller cells, called
intermediate cells, with respect to the selected dividing
dimension. In addition, the distribution statistics of the cell
are used to estimate those of each divided cell. Similarly,
when an intermediate cell itself becomes dense, it is
partitioned by the same way. Eventually, a dense region of
each initial cell is recursively partitioned until it becomes
the smallest cell called a unit cell.

SIGMOD Record, Vol. 33, No. 1, March 2004 32

 The range of a dense cell can be partitioned by three
different methods: µ-partition, σ-partition and hybrid-
partition. The µ-partition method divides it based on the
average value µ of the data elements of the cell in its
dividing dimension while the σ-partition method divides it
based on the standard deviation σ of the data elements of
the cell in its dividing dimension. The hybrid-partition
method chooses the more effective one of the two partition
methods. A cluster of a data stream is a group of adjacent
dense unit cells. As the size of a unit cell is set to be smaller,
the resulting set of clusters is more accurately identified
while the number of cells is increased. In order to minimize
the number of cells, a sparse intermediate or unit cell is
pruned if its support becomes low enough. Furthermore, the
size of a unit cell is dynamically adjusted to confine the
usage of memory space.
 The rest of this paper is organized as follows: Section 2
presents related works. In Section 3, a statistical grid-based
clustering algorithm is proposed. In Section 4, several
experimental results are comparatively analyzed to
illustrate the various characteristics of the proposed
algorithm. Finally, Section 5 presents conclusions.

2. Statistical grid-based clustering Algorithm
 2.1 Grid Cells and Distribution Statistics
 Given a data stream D of d-dimensional data space
N=N1× N2× …× Nd, a data element generated at the jth

 turn
is denoted by ej=<e1

j,e2
j,…,ed

j>, ei
j∈Ni, 1≤ i≤ d. When a

new data element et is generated at the tth turn in a data
stream D, all the data elements that have ever been
generated so far are denoted by the current data stream Dt
={e1,e2,…,et}. The total number of data elements generated
in the current data stream Dt is denoted by |D t |. Finding a
cluster of similar data elements in the current data stream
Dt is identifying a region whose current density of data
elements is high enough. In order to define the similarity
between two data elements, a cell whose length in each
dimension is less than a predefined distance value λ is
defined as a unit cell. The current support of a cell is the
ratio of the number of those data elements that are inside
the range of the cell over the total number of data elements
in Dt. Therefore, a cluster at Dt is a group of adjacent dense
unit cells whose current supports are greater than or equal
to a predefined minimum support Smin respectively.
 The range of each dimension Ni is initially partitioned by
p number of mutually exclusive equal-size intervals Ii

 j = [si
j,

fi
j) 1≤ j≤ p where si

j and fi
j denote the start and end values in

the jth interval of the ith dimension. Consequently, pd number
of initial cells are formed in N and each initial cell g is
defined by a set of d intervals {I1,I2,…,Id} Ii⊆ Ni 1≤ i≤ d.
The initial range R(g) of an initial cell g is a rectangular
space rs=I1× …× Id. However, the rectangular space of an
initial cell becomes a set of rectangular spaces
RS={rs1,rs2,…,rsq} as a series of cell partitioning is

performed subsequently. When the rectangular spaces of a
cell g are projected to the ith dimension, the intervals of the
ith dimension of the cell can be found and they are denoted
by ISi(g)={Ii

1,Ii
2,…,Ii

q}. The sum of these intervals is
defined as the interval size of the ith dimension of the cell g.
The range of the cell g is the united spaces of all the

rectangular spaces rs1,…,rsq, i.e., R(g)= U
q

i
irs

1=
. Each cell

keeps the current distribution statistics of those data
elements that are within its range as defined in Definition 1.

Definition 1. Distribution Statistics of a grid-cell g(RS,c,µ,σ)
For the current data stream Dt, a term g(RS, ct, µt, σt) is
used to denote the distribution statistics of a cell g whose
range is defined by a set of rectangular spaces RS. Let Dg

t
denote those data elements that are in the range of the cell g,
i.e.,Dg

t={ e| e∈Dt and e ∈R(g) }. The distribution
statistics of the cell g in Dt are defined as follows:
 i) ct : the number of data elements in Dg

t

 ii) µt=<µ1
t,…,µd

t > : µi
t denotes the average of the ith

dimensional values of the data elements in Dg
t.

 µi
t= ∑

=

tc

j

tj
i ce

1
/ , 1≤ i≤ d

 iii) σt=<σ1
t,…,σd

t > : σi
t denotes the standard deviation

of the ith dimensional values of the data elements in
Dg

t.

 σi
t= tc

ij

t
i

j
i ce

t

/)(∑ −
=

2µ , 1≤ i≤ d □

 When a new data element et is generated in the current
data stream Dt, its corresponding initial cell g among the pd
initial cells is identified based on the initial partitions of the
data space N. If the distribution statistics of the cell g was
updated most recently at the insertion of the vth data
element (v≤ t), its statistics remain the same as g(RS,
cv,µv,σv) and they are updated to g(RS, ct,µt,σt) as follow:
 ct=cv+1,
 for∀i, 1≤ i≤ d,

 µi
t
=

t

t
i

vv
i

c
ecµ +× , σi

t= 2
22

2)()()()(t
it

t
i

v
iv

it

v
µ

c
eµσ

c
c

−
+

+×

 For the current data stream Dt, the current support of an
initial cell g(RS, ct, µt, σt) is defined by the ratio of its count
over the total number of data elements generated so far ,i.e.
ct/|Dt|. When the current support of the cell becomes greater
than or equal to a predefined split support Ssplt(Ssplt<Smin),
two intermediate cells g1 and g2 are created as the children
of the initial cell. The ranges and distribution statistics of
these intermediate cells are determined by a partition
method that is used to divide the initial cell. In Section 3.2,
three different partition methods are presented in detail.
In case an initial cell corresponding to a newly generated
data element is already partitioned, among the children
cells of the initial cell, the one whose range includes the
new data element et is searched. After the target cell g is
found, its distribution statistics are updated by the same

33 SIGMOD Record, Vol. 33, No. 1, March 2004

 Fig. 1. µ-partition and σ-partition methods

way as described for an initial cell. If the cell g is an
intermediate cell and its updated support becomes greater
than or equal to Ssplt, the cell g is divided into two smaller
cells. However, unlike an initial cell, the intermediate cell g
is replaced by the two divided cells. Consequently, the
parent initial cell of the intermediate cell g becomes the
parent of each divided cell.

 2.2 Cell Partition methods
 There are three different ways of partitioning a dense
initial or intermediate cell, namely µ-partition, σ-partition
and hybrid-partition. Among the dimensions of the data
space N for a data stream, a dividing dimension is chosen
based on the distribution statistics of a dense cell to be
partitioned. Subsequently, the range of the cell in the
multidimensional data space N is split into two sub-ranges
with respect to the selected dividing dimension.
 When a dense cell g is split into two cells g1 and g2 at the
current data stream Dt by the µ-partition method, among the
dimensions whose interval sizes are larger than λ, the one
with the largest standard deviation, say σk

t(1≤ k≤ d), is
chosen as a dividing dimension. The standard deviation of
each dimension in the distribution statistics of a cell
represents how the data elements of the cell are distributed
with respect to the dimension. When the standard deviation
of a dimension is large, the corresponding dimensional
values of most data elements in the cell are far from the
average of the dimension. Therefore, the dividing dimension
selected by the µ-partition method is the one in which the
data elements can be evenly partitioned into two groups as
clearly as possible. The rectangular spaces of the cell g are
split into two mutually exclusive sets with respect to the

average µk
t of the dividing dimension k. One contains those

rectangular spaces whose intervals in the dividing dimension
are less than µk

t and the other contains those rectangular
spaces whose intervals are greater than or equal to µk

t. If an
interval of the dividing dimension k of the cell g includes µk

t,
the interval is actually divided. Figure 1-(a) illustrates how
to split the rectangular spaces of a dense cell g(RS,c,µ,σ) in
a two-dimensional data space by the µ-partition method. The
two sets of the rectangular spaces are assigned to the ranges
of the two divided cells g1 and g2 respectively.
 By assuming the distribution of data elements in a dense
cell g is a normal distribution, the distribution statistics of its
two divided cells g1(RS1, c1t, µ1t, σ1t) and g2(RS2 , c2t, µ2t,
σ2t) in the current data stream Dt are initialized. The count
of the cell g is evenly distributed into the two divided cells

g1 and g2 i.e., c1t=c2t=ct/2. Let 2

2

2

2
1)(

)(

)(
t

tx

t ex σ
µ

σπ
ϕ

−
−

= be the

normal distribution function of the data elements in the
range of the cell g. The remaining distribution statistics of
the two divided cells can be estimated respectively as
follows.

 µ1t= µ2t =µt except µ1k
t and µ2k

t,

 µ1k
t= ∫

)(

)(
)(

1

1

gf

gs

k

k

dxxxϕ µ2k
t= ∫

)(

)(
)(

2

2

gf

gs

k

k

dxxxϕ

 σ1t= σ2t = σt except σ1k
t

 and σ2k
t,

σ1k
t=

2
2 1

1

1







−∫

t
k

gf

gs
µdxxx

k

k

)(

)(
)(ϕ σ2k

t=
2

2 2
2

2







−∫

t
k

gf

gs
µdxxx

k

k

)(

)(
)(ϕ

where sk(gw) and fk(gw) denote the smallest start and largest
end value of the intervals of the dividing dimension k for the

SIGMOD Record, Vol. 33, No. 1, March 2004 34

divided cell gw, w=1 or 2. If the dense cell g is an initial cell,
its distribution statistics are cleared as ct=0 and µi

t=σi
t=0 for

∀i, 1≤ i≤ d since they are carried to those of g1 and g2.
 In the σ-partition method, among the dimensions whose
interval sizes of a cell g to be partitioned are larger than λ,
the one with the smallest standard deviation, say
σl

t(1≤ l≤ d), is chosen as a dividing dimension. When the
standard deviation of a dimension in the distribution
statistics of a cell is small, the corresponding dimensional
values of most data elements in the cell are adjacent to the
average of the dimension. Since the one with the smallest
standard deviation is selected as a dividing dimension, the
data elements of the cell are most closely distributed to the
average of the dividing dimension. Based on the standard
deviation σl

t of the data elements in the selected dividing
dimension l, the rectangular spaces of the cell are split into
two mutually exclusive sets. One contains those rectangular
spaces whose intervals in the dividing dimension are within
[µl-σl, µl+σl). In this set, the 68 percentage of data elements
in the cell g is assumed to be distributed according to a
normal distribution. The other contains the remaining
rectangular spaces. As in the µ-partition method, if an
interval of the dividing dimension l includes either µl-σl or
µl+σl, the interval is actually divided. As a result, the σ-
partition method makes the range of one of the two divided
cells be as small as possible. In other words, it makes one of
them be as dense as possible. Figure 1-(b) illustrates how to
divide the rectangular spaces of a dense cell g (RS,c,µ,σ) in
a two-dimensional data space by the σ-partition method.
 When a cell g(RS, ct, µt, σt) is partitioned by the σ-
partition method into two cells g1(RS1, c1t, µ1t, σ1t) and
g2(RS2 , c2t, µ2t, σ2t), the counts of these cells g1 and g2 are
initialized respectively by the normal distribution
function)(xϕ of the cell g as follows:

c1t=ct
∫×
+

−

t
k

t
k

t
k

t
k

σµ

σµ
dxx)(ϕ , c2t=ct-c1t

 The distribution statistics µ1k
t, µ2k

t, σ1k
t and σ2k

t of the
dividing dimension k for the divided cells are estimated
similarly as follows:

µ1k
t= ∫

)(

)(
)(

1

1

gf

gs

k

k

dxxxϕ and σ1k
t=

2
2 1

1

1







−∫

t
k

gf

gs
µdxxx

k

k

)(

)(
)(ϕ

 if sk(g2)< µ1k
t <fk(g2),

 µ2k
t= ∫

)(

)(
)(

2

2

gf

gs

k

k

dxxxϕ - µ1k
t , and

 σ2k
t=

2
22 2

1

1

2

2







−∫−∫

t
k

gf

gs

gf

gs
µdxxxdxxx

k

k

k

k

)(

)(

)(

)(
)()(ϕϕ

 else µ2k
t= ∫

)(

)(
)(

2

2

gf

gs

k

k

dxxxϕ and

 σ2k
t= 2

2 2
2

2








−∫
t

k

gf

gs
µdxxx

k

k

)(

)(
)(ϕ .

The distribution statistics of the other dimensions remain the
same as in the µ-partition method.

 The hybrid-partition method selects the more effective
method of the two partition methods whenever a specific
dense cell needs to be divided. Creating unit cells quickly is
an important property to improve the accuracy of the
proposed algorithm. It can be accomplished by minimizing
the overall number of cell partition steps to produce a unit
cell. Applying the more effective one of the two methods for
a specific dense cell can reduce the overall number of cell
partition steps. Let σe

i denote the standard deviation of the ith
dimensional values of data elements in a cell g when the
data elements are uniformly distributed over the intervals of
the ith dimension of the cell. The relative effectiveness rate
βk(g) of dividing a dense cell g by a partition method with a
dividing dimension k is defined as follows:

βk(g) = |σe
k - σt

k|, where σe
k = ∫ −

−

)(

)(

)(
)()(

gkf

gks

t
kµdxx

gksgkf
221

 It is the absolute difference of the two standard deviations
σk

t and σk
e. It can be used to measure the relative congestion

rate of data elements in the cell g. Given a dense cell g to be
partitioned, let k1 denote the dividing dimension selected by
the µ-partition method and let k2 denote the dividing
dimension selected by the σ-partition method. In other
words, the standard deviation of the dimension k1 is the
largest and that of the dimension k2 is the smallest. Since
both effectiveness rates βk1(g) and βk2(g) are measured
relatively to σk

e, the partition method with the larger rate
divides the cell g more effectively. If βk1(g) > βk2(g), the
congestion rate of data elements in the cell g on their
average t

1kµ in the dimension k1 is larger than the evenly

separated rate of the data elements from their average t
2kµ

in the dimension k2. As a result, the cell g is partitioned in
terms of k1 by the µ-partition method. On the other hand, if
βk1(g) < βk2(g), the σ-partition method is applied to the
dividing dimension k2. If βk1(g) = βk2(g), either of the two
partition methods can be applied. By selecting an
appropriate partition method, the number of cell partition
steps as well as the number of cells can be minimized.

2.3 Cell Pruning
 When the current support of an intermediate or unit cell g
becomes less than a predefined pruning support Sprn ,i.e.,
ct/|D t| ≤ Sprn, the probability of finding a cluster in the range
of the cell in the near future is very low. Consequently, the
cell is removed and its distribution statistics g(RS, ct,µt,σt)
are returned back to its parent initial cell gp. Suppose the
distribution statistics of the parent cell gp were updated lastly
at the vth element(v≤ t) and they are denoted by gp(RSp,
cpv,µpv,σpv) where µpv =<µp1

v, µp2
v ,…, µpd

v > and σpv
=<σp1

v, σp2
v ,…, σpd

v >. After the cell g is pruned, the
statistics gp(RSp, cpt,µpt,σpt) of the parent cell at Dt are
updated as follows:
 cpt = cpv+ct ,

35 SIGMOD Record, Vol. 33, No. 1, March 2004

 µpi
t=

t

tt
i

vv
i

cp
cµcµp ×+× and for all dimensions i (1≤ i≤ d)

 σpi
t= 2

2222
)()()()()(t

it

t
i

v
i

t

t
i

tv
i

v
µp

cp
µµp

cp
σcσpcp

−
+

+
×+×

 A sparse intermediate or unit cell can be pruned whenever
a data element in the range of the cell is newly generated.
However, a considerable number of such sparse cells may
not be pruned since the possibility of encountering a data
element in the range of a sparse cell is very low. All sparse
intermediate or unit cells can be forced to be pruned together
by examining their current supports. This mechanism is
called as a force-pruning operation. Since the distribution
statistics of all intermediate or unit cells should be examined,
the processing time of a force-pruning operation takes
relatively long. Due to this reason, it can be performed
periodically or when the current usage of memory space
reaches a predefined threshold value.
 Since available memory space is confined, the memory
usage of the proposed algorithm is adjusted adaptively by
resizing the size λ of a unit cell dynamically. Given the value
of λ, if the confined memory space is full, all unit cells are
pruned and their distribution statistics are added to their
parent initial cells respectively. Similarly, those intermediate
cells whose interval size in at least one dimension is less
than 2λ are pruned by the same way. Subsequently, the
value of λ is doubled and the normal operations of the
proposed algorithm are resumed. Since the value of λ is
doubled, the memory requirement of the proposed method is
reduced while its clustering accuracy is degraded. On the
other hand, if the amount of unused memory space stays to
be larger than the two-fold of the total size of all unit cells,
the value of λ is dynamically adjusted to be the half of its
value.

3. Experimental Results
 In order to analyze the performance of the proposed
algorithm, a data set containing one million 10-dimensional
data elements is generated by the data generator used in
ENCLUS [9]. Most of data elements are concentrated on
randomly chosen 100 distinct data regions whose sizes in
each dimension are also randomly varied from 10 to 20
respectively. Although the proposed algorithm is based on
grid-based clustering, the accuracy of the proposed
algorithm is compared with that of DBSCAN since, unlike
conventional grid-based approaches, a grid cell is
dynamically created. The values of a pruning support Sprn
and a split support Ssplt are assigned relatively to a predefined
minimum support Smin. The multidimensional data space of
the data set is divided into 4 initial cells. In all experiments,
data elements are looked up one by one in sequence to
simulate the environment of a data stream.
 Figure 2 shows the variation of clustering accuracy by
each partition method. The accuracy of the proposed
algorithm is measured by the ratio of the number of

correctly clustered elements by a specific partition method
of the proposed algorithm over the total number of data
elements clustered by DBSCAN. In DBSCAN, the value of
MinPts is set to Smin× |Dt| and the value of Eps is set to the
half of λ. The sequence of generated data elements is
divided into 5 intervals each of which consists of 200,000
elements. The average accuracy of each interval is shown in
this figure. The force-pruning operation is performed
whenever 1,000 new elements are processed(f=1000). The
clustering accuracy of the first interval is relatively lower
than those of the other intervals. This is because the support
of each intermediate cell is too sensitively varied in the first
interval. As a result, a lot of cell partition operations are
performed in the first interval to produce a set of meaningful
unit cells. After the first interval, the accuracy of the
proposed algorithm is stabilized regardless of which
partition method is used. The hybrid-partition method
provides the most accurate result in the first interval. This is
because it applies the most appropriate partition method to
divide a dense cell. Consequently, meaningful dense unit
cells are generated quickly via less number of cell partition
operations.
 Figure 3 shows the variation of memory usage in this
experiment. After most of dense unit cells are generated, i.e.
the proposed algorithm is stabilized, its memory usage can
also be decreased by setting the value of Sprn adequately.
When Sprn is set to 0.3× Smin, the memory usage is the largest.
The reason is that most of divided intermediate cells are
pruned too quickly and their initial cells are repeatedly
partitioned again. On the contrary, when the value of Sprn is
set to 0.1× Smin, the memory usage is minimized since dense
intermediate cells are successfully divided into dense unit
cells while sparse ones are pruned properly. The pruning
support can be effectively used to minimize the usage of
memory space with small loss of accuracy.
 Figure 4 shows the variation of clustering accuracy by
varying the value of λ. The predefined size λ of a unit cell
determines the resolution of clustering. As λ is set to be
smaller, the boundary of a cluster is more precisely
identified. By varying the value of λ, Figure 5 shows the
variation of memory usage. As the value of λ is increased,
the memory usage is decreased enormously.
 Figure 6 shows the memory space adaptability of the
proposed algorithm when available memory space is
confined to 30KB. Two different schemes of the proposed
algorithm, namely adjusted and fixed schemes, are compared.
The value of λ is dynamically adjusted in the adjusted
scheme while it is statically set in the fixed scheme. All the
previous experiments are based on the fixed scheme.
Initially, the value of λ is set to 16. In the first interval, the
two schemes use the same amount of memory space.
However, the memory usage of the fixed scheme is dropped
rapidly in the second interval since lots of sparse cells are
pruned. It is stabilized in the third interval. On the contrary,
in the second interval of the adjusted scheme, the value of λ
is adjusted to its half, i.e., λ=8 since a considerable amount

SIGMOD Record, Vol. 33, No. 1, March 2004 36

50%

60%

70%

80%

90%

100%

0 ~200000 ~400000 ~600000 ~800000 ~1000000

number of elements

A
c
c
u
ra

c
y(
%

)

μ-partition

σ-partition

hybrid-partition

Smin=0.01

Ssplt=0.8xSmin

λ=8

Sprn=0.1xSmin

f=1000

0

20

40

60

80

100

0 ~200000 ~400000 ~600000 ~800000 ~1000000

number of elements

M
e
m
o
ry
 u
s
a
g
e
(K

B
)

Sprn=0 x Smin Sprn=0.1 x Smin

Sprn=0.2 x Smin Sprn=0.3 x Smin

Smin=0.01 Ssplt=0.8xSmin

λ=8 hybrid-partition

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 ~200000 ~400000 ~600000 ~800000 ~1000000

number of elements

A
c
c
u
ra
c
y(
%
)

λ=4

λ=8

λ=12

λ=16

Smin=0.01

Ssplt=0.8xSmin

hybrid-partition

Sprn=0.1xSmin

f=1000

 Fig. 2. Clustering accuracy Fig. 3. Memory usage by varying Sprn Fig. 4. Clustering accuracy by varying λ

0

20

40

60

80

100

120

140

0 ~200000 ~400000 ~600000 ~800000 ~1000000

number of elements

M
e
m

o
ry
 u
s
a
g
e
(K

B
)

λ=4

λ=8

λ=12

λ=16

Smin=0.01

Ssplt=0.8xSmin

hybrid partition

Sprn=0.1xSmin

f=1000

0

5

10

15

20

25

30

35

0 ~200000 ~400000 ~600000 ~800000 ~1000000

number of elements

M
e
m

o
ry
 U

s
a
g
e
(K

B
)

adjust

not-adjust

Smin=0.01 Sprn=0.1xSmin

Ssplt=0.8xSmin hybrid-partition

f=1000 λ=16

60%

80%

100%

0 ~200000 ~400000 ~600000 ~800000 ~1000000

number of elements

A
c
c
u
ra

c
y(
%

)

adjust

not-adjust

Smin=0.01 Sprn=0.1xSmin

Ssplt=0.8xSmin hybrid-partition

f=1000 λ=16

 Fig. 5. Memory usage by varying λ Fig. 6. Memory space adaptability Fig. 7. Adjusted clustering accuracy

of unused memory space is left. Subsequently, the memory
usage of the adjusted scheme is increased in the second
interval. When the memory usage reaches the limit in the
third interval, the value of λ is doubled ,i.e., λ=16. After
sparse cells are pruned in the third interval, its value is
readjusted to be the half again, i.e., λ=8. Ultimately, the
memory usage of the adjusted scheme is stabilized to the
confined memory space. Figure 7 shows the clustering
accuracy of this experiment. Before the memory usage of
the adjusted scheme is stabilized, its accuracy is lower than
that of the fixed scheme. This is because all unit cells and
some of intermediate cells are compulsorily pruned when
the value of λ is dynamically increased.

4. Conclusion
 In this paper, a grid-based statistical clustering algorithm
for a data stream is proposed. The multi-dimensional data
space of a data stream is dynamically divided into a set of
cells with different sizes. By maintaining only the
distribution statistics of data elements in each cell, its
current support is precisely monitored. A dense region of a
data space is partitioned repeatedly until it becomes a dense
unit cell. Three different partition methods are proposed in
this paper. The µ-partition and σ-partition methods are
intended to split every cell in a fixed way while the hybrid-
partition method is designed to use the more effective one
of the two methods for the distribution statistics of a
specific dense cell. Two thresholds Ssplt and Sprn are
proposed to control the performance of the proposed
algorithm in a data stream. A split support Ssplt is used to
determine how fast dense unit cells are created. A pruning
support Sprn is used to remove meaningless sparse
intermediate or unit cells. Furthermore, in order to confine
the memory usage of the proposed algorithm, the size of a
unit cell can be dynamically adjusted based on the current
usage of memory space. As a result, it is possible to
maximize the accuracy of clustering for the available

amount of memory space.

References
1. M. Datar, A. Gionis, P. Indyk and R. Motwani.

Maintaining stream statistics over sliding windows. In
Proc. Of the 13th Annual ACM-SIAM Symp. on Discrete
Algorithms, Jan. 2002

2. G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. Of the 28th Int’l
Conference on Very Large Databases, Hong Kong,
China, Aug. 2002.

3. M. Garofalakis, J. Gehrke and R. Rastogi. Querying
and mining data streams: you only get one look. In the
tutorial notes of the 28th Int’l Conference on Very Large
Databases, Hong Kong, China, Aug. 2002.

4. L. Kaufman and P.J. Rousseeuw. Finding Groups in
Data. An Introduction to Cluster Analysis. Wiley, New
York, 1990.

5. S. Guha, R.Rastogi, and K. Shim. CURE: An efficient
clustering algorithm for large databases. In Proc.
SIGMOD, pages 73-84, 1998

6. M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases, 1996.

7. M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X.
Xu. Incremental clustering for mining in a data
warehousing environment, In Proc. VLDB 24th, New
York, 1998

8. Liadan O'Callaghan, Nina Mishra, Adam Meyerson,
Sudipto Guha, and Rajeev Motwani. STREAM-data
algorithms for high-quality clustering. In Proc. of IEEE
International Conference on Data Engineering, March
2002.

9. Cheng, C., Fu, A., and Zhang, Y. Entropy-based
subspace clustering for mining numerical data. KDD-
99, 84-93, San Diego, August 1999.

37 SIGMOD Record, Vol. 33, No. 1, March 2004

