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Abstract

Sensor devices are promising to revolutionize our in-
teraction with the physical world by allowing con-
tinuous monitoring and reaction to natural and ar-
tificial processes at an unprecedented level of spatial
and temporal resolution. As sensors become smaller,
cheaper and more configurable, systems incorporat-
ing large numbers of them become feasible. Besides
the technological aspects of sensor design, a critical
factor enabling future sensor-driven applications will
be the availability of an integrated infrastructure tak-
ing care of the onus of data management. Ideally,
accessing sensor data should be no difficult or incon-
venient than using simple SQL.

In this paper we investigate some of the issues that
such an infrastructure must address. Unlike conven-
tional distributed database systems, a sensor data ar-
chitecture must handle extremely high data genera-
tion rates from a large number of small autonomous
components. And, unlike the emerging paradigm of
data streams, it is infeasible to think that all this
data can be streamed into the query processing site,
due to severe bandwidth and energy constraints of
battery-operated wireless sensors. Thus, sensing data
architectures must become quality-aware, regulating
the quality of data at all levels of the distributed
system, and supporting user applications’ quality re-
quirements in the most efficient manner possible.

1 Introduction

With the advances in computational, communication,
and sensing capabilities, large scale sensor-based dis-
tributed environments are becoming a reality. These
will allow us to continuously monitor and record the
state of the physical world which can be used for a
variety of purposes. It can be used to gain a better
understanding of the physical world - e.g., data from
embedded loop sensors on highways can be analyzed
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to understand the emergent traffic patterns. It can
also be used to dynamically optimize the process that
drives the physical world — e.g., real-time traffic con-
ditions can be used to control the traffic flow. Sensor
enriched communication and information infrastruc-
tures have the potential to revolutionize almost every
aspect of human life benefiting application domains
such as transportation, medicine, surveillance, secu-
rity, defense, science and engineering. An integral
component of such an infrastructure is a data man-
agement system that allows seamless access to data
dispersed across a hierarchy of storage, communica-
tion, and processing units — from sensor devices where
data originates to large databases where the data gen-
erated is stored and/or analyzed.

Designing a scalable data management solution to
drive distributed sensor applications poses many sig-
nificant challenges. Given the limited computational,
communication, and storage resources at the sen-
sors, a traditional distributed database approach in
which sensors function as nodes in a distributed sys-
tem might not be a feasible option. In order to fa-
cilitate complex query processing and analysis, data
might need to be migrated to repositories that re-
side at (more powerful) servers. An alternative solu-
tion, where sensor data is continuously collected at
a (logically) centralized database, as in the emerg-
ing data streams model [2] might also be infeasible
due to the dynamic nature of sensor environments.
More specifically, sensor readings may change very
frequently/continuously; blindly transmitting sensor
updates to the server constitutes a major source of
power drain [1] in battery-operated sensors. In addi-
tion to the high energy cost, the frequent communi-
cation imposes severe network/storage overheads.

The problem of effective data collection in highly
dynamic environments has recently been studied in
[8, 13, 5, 4]. The key observation is that a large
number of sensor applications can tolerate a certain
degree of error in data. Consequently, the commu-
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nication overhead between the data producers (sen-
sors) and the server can be alleviated by exploiting
the applications’ error tolerance. Data imprecision,
of course, impacts application quality. For example,
in an application such as target tracking in a sensor
network, error in sensor intensity readings may result
in error in localizing the target. Similarly, the result
of a query for average temperature in a given region
may be imprecise due to data error.

In our work, we use the notion of application er-
ror tolerance to enhance overall system performance
while guaranteeing desired levels of application qual-
ity in sensor environments. This paper discusses some
of the challenges and open problems that must be
addressed to enable quality-aware sensor data archi-
tectures. It summarizes and expands on our work in
the QUASAR (Quality-Aware Sensing Architecture)
project at UC Irvine [11] whose long-term goal is to
integrate various ideas at the sensor, middleware and
application levels into a unified system which will be
easily customized to individual sensing applications,
but will be generic and modular enough to be useful
to a large class of such applications.

2 Application Taxonomy

The first step towards building a general purpose
sensing architecture is to differentiate between dif-
ferent application types that will use this architec-
ture to access sensor-generated data. Often, sensor-
based systems are built with narrow application goals
in mind. Consider, e.g., a simple application using
chemical sensors to track pollutants in water streams
and reporting these periodically. We anticipate that
as sensor network infrastructures become more so-
phisticated, they will have to accommodate several
concurrent applications, some of whose requirements
may conflict in terms of timeliness, reliability and
data accuracy. It is important for future sensing ar-
chitectures (a) to accommodate alternative applica-
tion types, and (b) to ensure that their conflicting
requirements mesh with each other gracefully.

To assist in identifying the needs of future sensor
networks, we have developed a taxonomy of poten-
tial application classes. The first division relates to
the temporal aspect of sensor data. In particular,
a generic taxonomy must subsume applications that
focus on historical (past) data, e.g., in order to de-
tect patterns over time and build time-varying mod-
els. Real-time data collection is not critical here, but
high-quality and reliable archival of sensor-generated
data is. Other applications are interested in current
sensor values. This is especially true for monitor-

ing applications (e.g., intrusion detection systems) or
those that use sensor inputs to actuate control inter-
ventions. Finally, there are applications that are in-
terested in forecasting future sensor values, where hu-
man operators involved in decision making processes
can avail of information about trends in sensor val-
ues. An example of this is route selection in intel-
ligent transportation applications, where techniques
to predict traffic conditions (estimated from traffic
monitoring devices) among various route candidates
can help in reducing travel times and latencies.

A second division of applications relates to the pat-
tern of access to the sensor data. In some cases, e.g.
pollutant tracking, the target application is known
before sensor data is collected. Thus, one can set up
the data collection framework in a manner that is op-
timal for the particular application. In particular, if
multiple such applications co-exist, as in e.g., multi-
ple continuous queries [7] then one could exploit the
overlap in applications’ data needs to optimize the
amount of data communication. In other cases, the
application type (e.g., requests for aggregate pollu-
tant levels over spatial grids) is known, but not the
query instances, which are unknown and arrive in an
ad-hoc manner. Finally, there is the case where the
specific application type may not be known before-
hand. For example, one might instrument a network
of traffic monitoring sensors for the purpose of mon-
itoring speed levels in different segments of the road
network. However, sensors in such an infrastructure
may potentially be used in the future for very dif-
ferent applications: e.g., to control traffic signals, or
disseminate optimal routes in real-time to drivers.

3 Architectural Issues

In this section we first examine the capabilities and
limitations of modern sensors. Then we show how
imprecise replication is essential for sensor-based sys-
tems to scale gracefully. This involves maintaining
information in multiple locations, at different levels
of quality especially using data compression and pre-
diction techniques, but also in-network processing of
both queries and data.

3.1 Modeling Sensors

At the most basic level, a sensor is nothing more than
a device which monitors a physical process (e.g., the
fluctuations of temperature), converts the sampled
value into an appropriate digital format and forwards
it to wherever this information can be utilized. Mod-
ern sensors, however, are much more complex.
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Most importantly, the addition of a programmable
CPU and memory on-board sensors has meant that
unlike earlier “dumb” devices, these can now store
and process data, both autonomously, and in concert
with their peers and the data infrastructure at large.
For example, as we will see, sensors can pool their
resources to achieve application goals, such as track-
ing mobile objects, or apply intelligent algorithms to
the sampled data to minimize transmission costs and
improve system performance.

The main problem that sensor-based data archi-
tectures face is that sensors have finite energy re-
serves and these are expended during normal oper-
ation. Levels of energy drain are not uniform during
various sensor operating modes. Table 1 shows the
representative power consumption of a typical sensor
(Berkeley mote) at different radio modes, where the
transmission range is set to approximately 20m and
provides a transmission rate of 19.2 Kbps [9].

radio mode | power consumption(mW)
Tx 14.88
Rx 12.50
Idle 12.36
Oft 0.016

Table 1: Sensor power consumption

Transmission (Tx) and reception (Rx), or idle lis-
tening (Idle) cannot happen simultaneously on a sin-
gle radio, e.g., as in the one utilized by Mica Mote
[9]. Other proposed sensors, like the pAMPS node
[10] have dual radios, hence they can do both at the
same time. We can accommodate both sensor types
in our architecture. Dual radios ensure that neither
incoming or outgoing messages are delayed due to
competition for the radio channel, but this happens
at the cost of increased sensor complexity and roughly
double energy drain when both radios are turned on.
Sensors of both kinds also have the option of power-
ing down their radio(s) completely, going to the Off
mode. In the Off mode, sensors continue monitoring
their environment regularly, but don’t communicate:
this delays incoming messages to the sensor, but out-
going messages are not necessarily affected, since the
sensor can decide to enter Tx mode whenever it has
data to transmit.

3.2 Imprecise Replication

It is anticipated that sensor networks will be widely
distributed geographically and based on unreliable
wireless links. Hence, applications requesting data
must incur a high cost in terms of response time if
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they have to initiate direct communication with the
sensors. This is intractable when (i) multiple data
items need to be retrieved, and derivative information
be generated by combining sensor values, (ii) multi-
ple queries seek to access the same sensors simulta-
neously. Moreover, while sensors can carry on some
computation, they might not be able to accommodate
the load associated with expensive data-centric oper-
ations, like the evaluation of complex operators (e.g.,
joins), data mining tasks (clustering), or other expen-
sive analytical operations that are best achieved with
powerful machines.

Thus, the “no-server” model, whereby sensors
achieve application objectives mostly on their own,
without a hierarchical superstructure involving more
powerful machines, is not feasible.!

For this reason, we stress the importance of impre-
cise data replication which allows data to be cached
at different locations of the system, including pow-
erful machines, at various degrees of quality. Note
that imprecision is itself a feature of the sensing pro-
cess itself, since sensing itself introduces uncertainty:
it captures the underlying process only inasmuch as
sensing technology allows. Additional imprecision is
introduced due to the loss or corruption of informa-
tion during transmission. Imprecision can also be a
choice though, as it has the benefit of keeping system
performance in acceptable levels: by intentionally im-
precise replication, communication and its resultant
ills (bandwidth/energy consumption) are addressed.

3.3 Compression and Prediction

In previous work [5] we showed how time series gen-
erated by sensors can be reflected at a remote query
processing site in approximate form. We noted the
importance of the problem of data archival where we
want to capture a version of a time series of pre-
specified quality for future reference. To minimize
network load, the self-correlation of time series val-
ues can be exploited using a compression algorithm.
An optimal instance optimal online algorithm is pro-
posed which generates the least number of segments
under a bound on the L., metric.

Unfortunately, implementing such a policy blindly
may minimize network data transfer, but works
against applications that require prompt data migra-
tion [5] from the sensors to the central site when this

I Exploiting such a model is still important though, since it
might be necessary in situations where such a superstructure
could not be deployed, e.g., in enemy territory, or could not be
depended upon, e.g., the system must still be functional even if
all centralized components go off-line during a terrorist attack
or natural disaster.
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acts not only as a data archive but as a query process-
ing center. To ensure that such applications are not
penalized, sensors can additionally model the behav-
ior of the underlying time series and transmit predic-
tive models to the query processing site. For example,
one might detect an increasing trend in ambient tem-
perature and report a model consisting of the tem-
perature’s rate of increase. This will allow queries
to estimate temperature without direct communica-
tion with the sensor and the associated introduced
latency. The sensor will have to promise to update its
predictive model whenever the underlying process de-
viates from the prediction. At the other end, queries
can decide whether they are willing to tolerate the
provided quality guarantees, or whether they need to
communicate (“probe”) the sensor(s) directly.

This framework both utilizes sensors’ processing
capacities in that they now perform useful compu-
tation for compression and model building that can
be used by queries running at the query processing
site. This, however does not occur at the expense of
the sensors themselves who rather benefit from it as
this effort is used to help reduce the volume of trans-
mitted data, and thus, as we have noted previously
prolong their battery life.

3.4 In-Network Processing

In the previous section we hinted at how sensors can
compress and model the data that they generate so as
to preserve their energy resources while at the same
time avoiding flooding the system with data which
it cannot realistically sustain at the rates in which it
is generated. Sometimes, the network, which in this
case might consist of other sensors acting as interme-
diaries or even wired components does not need to be
passive. Rather, it can act both to achieve applica-
tion goals, and to enhance performance.

E.g.,, consider the task of tracking a moving object
using acoustic sensors [13]. Sensors cannot individ-
ually track objects, since sound intensity at a given
location is insufficient information for localizing it.
However, a number of sensors working together in
concert could achieve this goal. Thus, the application
objective can be achieved in-network via sensor-to-
sensor interactions. Secondly we have considered the
problem of in-network evaluation of continuous ag-
gregation queries [12], where we proposed algorithms
that (i) combine sensors into an approximate aggre-
gation tree (AAT), with the goal of maintaining ag-
gregate information at various levels of quality so that
(ii) queries can be answered without communicat-
ing with all individual sensors but rather with those

nodes of the AAT which suffice for their requested
quality tolerance, finally (iii) quality levels are adap-
tively adjusted as query/data patterns change.

3.5 Fault Tolerance and Timeliness

Imprecise replication presents an important seman-
tic problem. We have said that sensors, sitting at
the bottom of the data replication hierarchy are re-
sponsible for ensuring the validity of the cached repli-
cas of information across the system. Sensors, how-
ever, break down, starve for energy, or lose network
connectivity. Messages get lost or corrupted in tran-
sit. Hence, applications must be able to distinguish
whether the cached replicas have not been refreshed
because they remain valid representations of the real
world, or whether because a fault has occurred.

Fortunately, this fits rather well with the predic-
tive framework used to generate cached replicas. The
quality of these decays at rates which can be esti-
mated either by the sensors themselves during model
generation or by the central site, e.g., by noting
the frequency with which these tend to become in-
valid. Subsequently, probabilistic estimates of their
expected time until invalidation can be achieved. If
these are surpassed then a fault may have occurred
which can then be treated in a number of different
ways, e.g., by tagging suspect values as such, or by
initiating communication with sensors to determine
whether a fault has indeed occurred, or whether the
delay in communication is normal.

Additionally, even when sensors are always func-
tional and messages don’t get lost, there is no a priori
guarantee that messages will be delivered in a timely
manner. Without such a guarantee, the absence of
a message represents the same semantic quagmire as
before. To address this, a real-time, deadline-driven
scheduling algorithm was proposed [4] which ensures
timely data delivery.

4 Complex Queries and Quality
Specification

Previously, we showed how data collection proto-
cols ensure the propagation of sensor-generated data
efficiently via the network to centralized locations.
Queries that run at these locations must (a) specify
their answer quality requirements, which allow them
to be answered without communicating with all sen-
sor units that they reference, (b) be evaluated effi-
ciently without violating these requirements. Here
are three examples of the kinds of queries that we
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might want to ask in a hypothetical database hosting
sensor-generated information.

e Q1: “Which sensors in spatial grid R have tem-
perature values above critical threshold z?”

e (Q2: “What is the average temperature reported
by sensors within 100m of sensors reporting val-
ues above z?”

e Q3: “What are the pressure values of sensors
that are in grid R whose temperature values are
above x?7”

Q1 is a normal selection, both on non-sensor (spa-
tial location) and sensor (temperature) data. It could
be used to detect e.g., fires in a heavily forested area
soon after they get started, allowing for a rapid re-
sponse. Q2 is an aggregation over sensor-generated
information, with a selection condition also on sensor-
generated information. Imagine that it could be used
to detect false alarms: if a sensor reports a very high
temperature value but it’s neighbors don’t, then this
might indicate a broken sensor and not a fire. Q3
asks for sensor-generated data (pressure) based on a
selection that involves both non-sensor and sensor-
generated (temperature) information.

It is easy to specify what answer quality means for
aggregation queries such as Q2. If we knew the pre-
cise sensor values, we would be able to answer Q2
precisely, e.g., 34°C". The query writer can simply
indicate that e.g., he wants the given answer to be
within +1°C of the exact answer. Thus, e.g., approx-
imate answer 34.3°C would satisfy this requirement.

Things get more difficult as queries become more
complex, especially if their answers are in the form
of sets. Judging the quality of such results is more
difficult. E.g., for Q3, uncertainty is introduced both
with respect to the selection condition (e.g., “is sen-
sor XYZ really above x?”) and with respect to the
values that appear in the output (e.g., pressure values
that are returned are themselves imprecise). We thus
break up answer quality into two components [6]:

e Set-based Quality— This involves our uncer-
tainty in determining whether a tuple belongs
in the output or not

e Value-based Quality— This involves our uncer-
tainty in determining the precise values of tuples
that are returned

Queries can now easily specify their quality re-
quirements. Such queries are termed Quality-Aware
Queries, or QaQs. For example, we might re-write
Q3 as a QaQ as follows: “Report the pressure values
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(within +£5mbar) of at least 50% of the sensors that
are in grid R and whose temperature value is above
x, ensuring that at least 95% of the returned results
meet this condition.” Such a query could be answered
satisfactorily if: (i) all returned tuples were guaran-
teed to have their pressure attribute within £5mbar,
(ii) if in reality there were e.g., 1,200 such sensors,
then at least 600 of these should be returned, (iii)
if e.g., 1,000 are returned in total, then 950 of these
should in fact meet the selection condition.

4.1 Joint Data Access and Probing

Optimization

As we have seen, queries will now be posed as QaQs,
with quality requirements, and the system must work
towards meeting these requirements in the most ef-
ficient manner possible. In other words, it should
return an approximate result that matches the qual-
ity specification with minimal cost. This differs from
traditional database management where efficiency is
again the issue, but there is no ambiguity in the result
that ought to be returned to the user.

A second difference is that of probing, which we de-
fine informally as requesting higher-precision versions
of imprecise objects stored in the database. Prob-
ing entails network communication, which as we have
stressed continuously is expensive in the case of sen-
sors. Hence, one is tempted to try to minimize the
cost of probing, which usually boils down to issuing
the minimum number of probes in order to achieve a
certain level of answer quality.

But, such an approach is narrow-sighted, ignoring
the fact that probing is not the only cost that gets
paid during query evaluation. Traditional data ac-
cess operations (table and index scans, evaluation of
operators) are also important. It is rather the com-
bined cost of data access? and probing that needs to
be optimized. Ignoring this could have catastrophic
results. Here is an example of an extreme case: imag-
ine that your query is a join of two tables, R <o S.
If the join condition C is on some imprecisely repre-
sented attributes, then in the worst case it might be
that |R x C| might be “candidate” answers for this
query. For example, if |R| = |S| = 1000 then as many
as 10% answers might need to be tested. This is the
strategy that we would be tempted to follow if we
wanted to minimize probing, since it would allow us
to order candidate answers and probe those that have

2The issue of data access itself is not straightforward, since
it might be possible to approximate query results during the
data access process itself, either by sampling or by using a
specialized data structure, e.g., MRA-Tree [?].
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a high chance of being valid answers. But, think of References

the alternative strategy of probing all tuples in the
two relations, i.e., 2,000 probes. This would result
in outputting only the pairs which do indeed match
according to condition C. These may be quite fewer,
e.g., 0.5-10%. In other words, the second plan would
save the cost of outputting and testing 500,000 tu-
ples for a cost of 2,000 probes. It is not entirely clear
which of the two plans would be more efficient, or if
indeed a mixture of the two strategies would be more
efficient than both.

5 Current Work

Currently, we are working to further explore certain
aspects of our architecture. We list some of the more
important directions here: (i) to further investigate
sensor operation modalities, especially in the context
of a real testbed as opposed to simulation,? (ii) to
further investigate the issues involved in in-network
processing, both in order to achieve application goals
(as in tracking), but also as a means of performance
enhancement (as in devising smart ways to shift data
around) that achieves the same distribution of data
quality across the system but with minimal cost, (iii)
to add probabilistic quality guarantees (as in e.g., [3])
to our architecture in addition to our present deter-
ministic ones, (iv) to generalize our work on QaQ
optimization in the presence of multiple access meth-
ods, and for a general class of queries, eventually of
SQL-level of complexity.

6 Conclusions

We have identified some key concerns that must be
addressed in next-generation sensor-based data archi-
tectures. These revolve around four main axes: (i)
the need to utilize sensors’ increased capabilities, (ii)
to accommodate sensors’ energy and bandwidth limi-
tations, (iii) to provide to applications a way of inter-
acting with sensor-generated data that is as simple as
SQL, and (iv) to handle the flow of data of varying
quality in a way that allows application requirements
to be achieved efficiently.

3Experimentation with real sensors is rewarding, however it
is not always the optimal course when trying to study issues of
scale since very large sensors deployment projects (in the order
of millions of devices) are still not frequent and are beyond the
means of an academic project.
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