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Abstract 
In a distributed sensor network, large number of sensors 
deployed which communicate among themselves to self-
organize a wireless ad hoc network. We propose an energy-
efficient level-based hierarchical system. We compromise 
between the energy consumption and shortest path route by 
utilizing number of neighbors (NBR) of a sensor and its 
level in the hierarchical clustering. In addition, we design a 
Secure Routing Protocol for Sensor Networks (SRPSN) to 
safeguard the data packet passing on the sensor networks 
under different types of attacks. We build the secure route 
from the source node to sink node. The sink node is 
guaranteed to receive correct information using our SRPSN. 
We also propose a group key management scheme, which 
contains group communication policies, group membership 
requirements and an algorithm for generating a distributed 
group key for secure communication.  
 
1. Introduction 
Sensor networks are the new paradigm for the future 
communication. Sensor networks consist of tiny sensor 
nodes [1, 2, 3,  4] that collaborate among themselves to 
establish a sensing network and provide access to 
information anytime, anywhere by collecting, processing, 
analyzing, and disseminating data. In sensor networks, 
researchers are focused on improving three main aspects: 
energy-efficiency, fault-tolerance and secure routing. This 
concern is due to the fact that sensor nodes are vulnerable 
to energy depletion [5, 6, 7], intrusions and attacks [5, 8] 
and node and link failures [1, 3].  

Security is one of the most important aspects in ad-hoc 
sensor networks. Intrusion and attack have become 
common threats to distributed sensor networks. A wireless 
sensor network uses radio frequency (RF) channel [5], 
which is not a secure channel. Attack can be active or 
passive. Active attacks involve some mo dification of the 
data stream or the creation of a false stream. Passive attacks 
are in the nature of eavesdropping on transmissions.  

In this paper, we design an overview of a secure 
hierarchical model for sensor networks. In the self-
organization process [1, 3], we divide the sensor nodes into 
different levels. The lower-level sensor nodes only sense 
and disseminate data, whereas the higher-level sensors find 
the shortest path to the sink node and aggregate data in 
addition to forwarding it. Since communication over radio 
is the most energy-consuming function performed by sensor 
devices, we need to minimize communications overhead 
[6]. By using hierarchical architecture we can decrease the 

number of messages, which lowers the communication 
overhead. 
We propose an energy-efficient level-based hierarchical 
routing protocol by enabling a sensor node to choose its 
next neighbor hop according to its children’s level and 
number of neighbors it has. Hence, only this chosen 
neighbor broadcasts the message. At the end, the shortest 
reliable energy-efficient route is chosen.  

We next propose an extended hierarchical routing 
protocol to make it secure. We do not use source routing 
since it contains large size routing packets. In source 
routing, the identities of the traversed intermediate nodes 
are accumulated in the route request packet [9]. This is not 
feasible in sensor networks since usually there are 
thousands of sensors in the networks [6]. Our routing 
packet size is very small and we do not aggregate the 
intermediate nodes’ data. We only use the routing table in 
the intermediate nodes to create the route. The cluster head 
aggregates the data, then sends the data to sink node along 
the route. Thus, it can save the energy involved in 
communication with large messages. Our secure routing 
protocol guarantees that the secure route reaches the sink 
node even if malicious nodes exist in the path. In addition, 
it also guarantees that the data is originated from 
authenticated source node and is not tampered.  

In addition, we propose a group key management scheme 
for a hierarchical sensor network. In this scheme, every 
sensor node in a group contributes its partial key for 
computing the group key. The partial key can be a unique 
random number. Two entities are important; they are 
initiator and the leader. The key computation starts by the 
contribution of partial key from the initiator node. Every 
node contributes its partial key. One of the sensor nodes 
will act as a leader. It will compute the final group key 
using all the partial keys. There is no fixed rule for selecting 
the group initiator or leader. We have considered two 
important concepts for group key management; they are 1) 
Key trees 2) Diffie -Hellman [10] key exchange protocol. 
Key tree is used for updating group keys, and Diffie -
Hellman protocol is used for computing group key.  

The rest of the paper is organized as follows. A 
hierarchical architecture is given in Section 2. In Section 3, 
we present a secure routing protocol. In Section 4, we 
develop a key management protocol. We conclude the 
paper in Section 5. 
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2. Hierarchical Architecture  
We build an energy-efficient hierarchical routing protocol, 
where sensors have different levels of responsibilities. At 
higher-levels, sensors take decisions supported by lower-
level sensors in the hierarchy. We will discuss the level 
approach in the next section.  
 
2.1 Characteristics  

We consider an environment where thousands of sensor 
nodes are embedded in the targeted area. These sensors 
communicate and collaborate among themselves in an ad 
hoc manner to build a self-organizing sensor network.  
These sensors can provide access to information anytime, 
anywhere by collecting, processing, analyzing and 
disseminating data [1, 3]. We assume that sensors are not 
mobile; every broadcast is heard by neighbors within 
acceptable radius, and sensors are embedded with timer and 
GPS.  

The sensor network in Figure 1 shows a one-to-many 
relationship between the sink node (a powerful node that 
creates and sends queries, and gathers all the information of 
the system) and the sources (objects to be sensed). The 
sensors act as an interface between the sink and the sources. 
These sensors collaborate among themselves to either 
disseminate data from the sink to targeted location, where 
sources are expected to be, or retrieve information from 
sensors near the source to send to the sink node. 
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Figure 1 Level-Based Hierarchical Routing Protocol 

 
2.2 Self-Organizing Sensors  
Here, we discuss how sensors communicate among 
themselves to create hierarchical levels of communication. 
Sensors in the field form clusters to reduce the consumption 
of the energy in the network [7, 11]. Later these clusters 
merge to form hierarchical clusters [2].  
 
Neighborhood Formation 
First task in building a hierarchical routing is broadcasting 
sensors’ IDs on a specific day and time set before 
embedding themselves into the targeted area. After 
broadcasting its ID, a sensor listens to its neighbors, adds 
their IDs in its routing table, and calculates the number of 
messages it receives to find the number of neighbors (NBR) 
it can reach. Later these connected neighbors build their 

own group or cluster. To determine the cluster head, 
sensors broadcast their IDs and NBRs. Every sensor keeps a 
list of all its neighbors’ NBRs. A sensor becomes a cluster 
head if it has the highest NBR. That is, the node that is 
connected to the highest number of nodes becomes the 
cluster head. We choose this approach because cluster 
heads receive more messages than other nodes. In general, 
cluster heads aggregate, filter, and disseminate data. The 
cluster head with its connected neighbors form the cluster 
or the group. We call the cluster head’s neighbors its 
children. Hence, the cluster head and its children have 
parent-child relationship in the tree-based network.  

For a node to join a neighborhood it needs two 
broadcasts. Energy is consumed when broadcasting the 
sensor’s ID and then when broadcasting again its ID and its 
NBR. The energy consumed for sensor i is: 

Eng(si) = Eng [Brdcst(id)] + Eng [Brdcst (id, NBR)] 
For a node to become a cluster head at a higher-level it 

needs to consume more energy by broadcasting its level. 
Eng (si) = Eng [Brdcst (id)] + Eng [Brdcst (id, NBR)] + 

Eng [Brdcst (id, level)] 
 

Level-Based Routing Protocol 
In our hierarchical routing algorithm, the lower-level 
sensors only disseminate data, whereas higher-level sensors 
aggregate and forward the data. In addition, cluster heads 
determine the appropriate child (i.e., next hop) to forward 
the packet. We will explain this later. Sensors are initiated 
at level 0 when embedded in the network. The incremental 
level depends on a sensor’s reliability and its energy 
consumption. Although, sensors connected to more 
neighbors tend to deplete energy faster than a sensor with 
fewer neighbors, these sensors are more fault-tolerant 
because they have more connected links. On the other hand, 
the higher-level nodes can degrade their level and pass the 
responsibility to one of its neighbors when its energy 
reaches a threshold. When a sensor finds its neighbors it 
upgrades itself to level 1 and then to level 2 if it becomes a 
cluster head. Our hierarchical clustering can be extended to 
N levels. A sensor connected to two or more cluster heads 
upgrades itself to level 3 (we call this node the root). Level 
3 node merges two or more groups together. The root 
receives only filtered and accurate data from level 2 nodes 
(i.e., the cluster heads). The existence of the hierarchical 
clustering not only robust the sensor networks, but also, it 
overcomes many problems that face the cluster heads. N 
level hierarchical clustering advantages over the 2-level 
(i.e., using cluster heads only) are as follows: 
1) Root nodes receive information from a wider radius 

than the cluster heads. Hence, increasing the circle of 
knowledge. 

2) Information maintained by root nodes is more accurate 
and meaningful than in the cluster heads. This is 
because this information is processed and filtered by 
the cluster heads before they forward it to their parents 
(i.e., root nodes). 
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3) Root nodes are less congested than the cluster heads 
because they receive less number of messages.  

4) Power efficiency at the higher-level nodes exceeds that 
in the cluster heads because they receive fewer 
messages than the cluster heads. 

As we mentioned earlier, sensors at higher-levels have 
different degrees of responsibilities. Hence, when a sensor 
becomes a cluster head it activates its GPS to locate its 
position. Cluster head then broadcasts its id, level, and pos. 
This step allows its children (i.e., neighbors) to know their 
locations. Sensors in one group are physically close to each 
other. Hence, the locations of sensors in one group are not 
noticeably diverse. For the aforementioned reason and to 
save sensor’s power not all sensors activate their GPS. Only 
sensors at higher-levels activate their GPS. In general, only 
one sensor activates its GPS in a group. 

When receiving a data packet, a sensor decides if it needs 
to forward, aggregate, or drop the packet depending on 
number of criteria. The sensor drops the data packet if it has 
the same data or query in its cache, or if the position of the 
node getting farther from the destination. If the received 
data is new then it caches the data and broadcasts it to its 
neighbors. Because higher-level sensors have usually more 
neighbors, they receive more messages from their 
neighbors. Hence, these sensors need to aggregate and filter 
the data they receive from different neighbors. Aggregating 
data helps in reducing the number of messages transferred.  
 
Routing Path Behavior 
Our hierarchical routing is level-oriented. Every node stores 
its neighbors’ id, NBR, and level. Hence, when a sensor 
receives a packet it checks the sender’s level. If it has the 
same level as itself it drops the packet, otherwise it 
forwards it. Because no two low-level routing is allowed, 
this strategy ensures a shortest path. As cluster heads 
activate their GPS, they can decide the appropriate child to 
forward the packet depending on the destination of the sink 
or targeted source. Figure 1 depicts a level-based 
hierarchical routing sensor network. The numbers shown 
beside the sensors are their unique ids. Darker the sensor is 
the higher is its level and its importance. Sensors start with 
level 0 when embedded into the targeted location and start 
to increase their levels according to their importance among 
neighbors. Next, we discuss the routing path of the data 
from the sink to the sensors and vice versa. 
1) Flooding Queries from Sink to Sensors 
For simplicity of the explanation, we consider one sink 
node in our network architecture. The sink node creates the 
queries and broadcasts them to the sensor nodes. In case the 
application is designed to detect mobile sources, the queries 
should be flooded into all the sensor nodes in the network. 
This is because the sink does not know the location of the 
mobile source. On the other hand, if the object to be sensed 
is fixed and the sink knows the source’s location, no need to 
flood the network with the query. In the later case, the 
query is broadcasted to some of the sensors. 

2) Disseminating Data from Sensors to Sink 
To explain how the data is disseminated from the sensors to 
the sink, we give the following example. The sink node 
broadcasts a query to detect any moving object within the 
network field. After receiving the query all the sensors 
become ready to detect a moving object within their 
radiuses. In Figure 1, sensor 15 detects a moving object 
within its radius, so it broadcasts what it had seen to its 
neighbors.  

In our routing protocol, we choose to broadcast to the 
node with highest NBR in a group. This is because nodes 
with higher NBRs are connected to more nodes and hence, 
the possibility that they can reach their destination much 
faster.  

Table 1 shows the routing table of sensor 15. Node 15 
broadcasts its message to its neighbors with an emphasis 
that only one of its neighbors rebroadcast the message. In 
this case, it is node 14 as it has the highest NBR and a 
different level than the sender (i.e., sensor 15). Node 14 
then broadcasts to node 11, etc.  
 

ID LEVEL NBR 
15 2 3 

13 14 16 1 3 1 3 4 3 
Table 1 Routing Table for Sensor 15 

 
In case a node has neighbors at same level and same NBR 

it chooses all of them. In Figure 1, node 11 chooses node 8 
and 9 but not 14 because it is the sender. 
 
Criteria for choosing the next hop 
Assigning a level to each sensor makes it easier for the 
node to choose its next hop. A sensor selects its next 
broadcast neighbor destination by comparing the attributes 
of its neighbors from its routing table (see Table 1). 
Following are these attributes:  
•GPS – location attribute has the highest priority. If a level 

3 node has two cluster head children then it chooses 
one that is nearest to the destination. 

•Level – the level difference helps the sensors to determine 
the next hop to broadcast the data packet.  

•NBR – a sensor chooses a neighbor with the highest NBR.  
The above three attributes limit the data dissemination 

routes to the minimum instead of flooding the network and 
causing data congestion and energy depletion.  
 
3. Secure Routing Protocol 
In the Secure Routing Protocol for Sensor Networks 
(SRPSN) Proposed here, every node has a unique ID 
(Identity). Source node is a normal sensor node with 
resource constraints. Sink node is a super node, which has 
more power and memory. Sink node stores a table 
containing (ID, Key) pairs for all sensor nodes. After self-
organization, sink node knows the topology of the sensor 
network. It sends the encrypted cluster group key to sensor 
nodes using the shared key between the sensor node and 
sink node. 

SIGMOD Record, Vol. 33, No. 1, March 2004                                                                                9



 

 

Using SRPSN, we guarantee that a packet reaches the 
sink node even if malicious nodes exist. It guarantees that 
the message is originated from the authenticated source 
node and is not tampered on the route. Our SRPSN has the 
following three features: 
1) We use the cache to store the routing table. We do not 
use source routing containing large size routing packets  [9]. 
It is not feasible in sensor networks since usually there are 
thousands of sensors in sensor networks [6].  
2) Our protocol uses the hierarchical architecture. The 
cluster head aggregates the data, then sends the data to sink 
node along the route. In this way, we can greatly decrease 
the number of messages to communicate, therefore can 
lower the communication overhead. 
3) We only use high efficient symmetric cryptographic 
operations to secure messages. We do not use asymmetric 
operations (such as digital signatures) for cryptography and 
authentication since it needs large computation and 
communication overhead [6, 12]. 
 
3.1. Secure Route  Discovery 
In our route discovery, source node initiates the route 
discovery and sends route request (RREQ) to sink node. 
When sink node receives RREQ, it creates route reply 
(RREP) to source node. After route discovery, every node 
on the route has created the routing table, which stores only 
previous and next hops on the route. 
 
Secure Route Request (RREQ) 
Source node initiates the route discovery by broadcasting 
RREQ to its neighbors. RREQ includes the IDs of source 
node and sink node, IDRREQ (a random number), encrypted 
nonce (the nonce is a random number), and MAC (Message 
Authentication Code) [13]. The MAC is generated by a 
keyed hash algorithm [13]. The inputs are the IDs of the 
source node and sink node, IDRREQ , encrypted nonce and the 
key of source node. RREQ is constructed as follows: 













)),(,,,(

),(,,,

sin

sin

KeynonceEIDIDIDMAC

nonceEIDIDID

keyRREQksource

keyRREQksource
 

When the intermediate node receives the RREQ, it creates 
the routing table with the ID of the previous two hops. If it  
receives RREQ directly from source node, it adds its ID on 
RREQ. If it receives the RREQ from other nodes, it replaces 
IDthis, IDpre embedded in RREQ with the IDs of its previous 
node and its own ID. Finally, it broadcasts the updated 
RREQ. The updated RREQ is constructed as follows: 
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When sink node receives the RREQ, it checks the (ID, 
Key) pair table to get the key of source node. Then, it uses 
the key to calculate MAC and verify MAC . Sink node only 
accepts RREQ, which is the first to reach sink node with 
valid MAC for the same source node and same IDRREQ . Sink 
node drops other RREQs with same IDRREQ. 

Secure Route Reply (RREP) 
When sink node accepts RREQ, it constructs RREP. The 
RREP is composed of IDs of source node, sink node, 
current node, and predecessor node, IDRREQ , and MAC. The 
MAC is calculated using IDs of source node and sink node, 
IDRREQ , nonce, and the key of source node. Then sink node 
broadcasts RREP. RREP  is constructed as follows: 
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The intermediate node, which receives the RREP, checks 
the IDs embedded in the RREP. If the ID of previous node 
embedded in the RREP is the ID of current node, it updates  
IDthis, IDpre embedded in the RREP with its current ID and 
the ID of its previous node. Then, it broadcasts the updated 
RREP. Otherwise, it drops it. It also updates its routing 
table to add ID of next hop towards sink node. 

Source node receives the RREP and verifies MAC to 
make sure that it’s from sink node. If the RREP has not 
been tampered, source node inserts the ID of the next hop 
on the route to its routing table.  
 
Secure Route maintenance 
If one sensor node wants to send data to sink node and there 
is no route in its routing table to sink node, it initiates the 
route discovery to sink node. If source node gets the error 
message after it sends data or routing packet, it triggers the 
route discovery. 
 
3.2. Secure Data Forwarding 
In the hierarchical network architecture, the sensor node 
sends the data to the cluster head. The cluster head 
aggregates the data and sends the information to sink node. 
In the cluster communication, we secure the messages using 
the group key. Among the clusters’ communication, we use 
the preloaded key to secure the information. We use these 
two mechanisms to send data to the sink node securely. 
 
3.2.1 Secure Data Forwarding in the Cluster 
If a sensor node sends the data to the cluster head, it 
constructs the data packet as follows: 

{ }]),(,[)],(,[ GKdataEIDMACdataEID GKGK  
Here, ID is the ID of the cluster head, GK is the group 

key of the cluster.  
The sensor node broadcasts the data packet. Any node 

receives the packet, which checks the ID embedded. If the 
ID embedded in the packet matches the ID it holds, it 
verifies the authentication and integrity of the data packet 
through MAC. Otherwise, the packet is dropped by the 
node.  
 
3.2.2 Secure Data Forwarding among the Clusters 
The source cluster head checks its routing table. If there is a 
route to sink node, it constructs the following packet for 
data dissemination: 
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Where IDthis  is the ID of the current node that broadcasts 
the message, and IDnext is the ID of next hop in the current 
node’s routing table, IDsource is the ID of source node, QID is 
a random number, key is preloaded key of the source node, 
and MAC is generated by a keyed hash algorithm [13].  

The intermediate node receives the packet, and checks the 
ID embedded. If the ID embedded in the packet matches the 
ID it holds, it updates the ID of the next hop embedded in 
the packet and broadcasts it. Otherwise, the packet is 
dropped by the node.  

If the source node can not get the packet again that the 
next hop rebroadcasts, it triggers a new route discovery to 
the sink node. After the new route is created, the source 
node broadcasts the data. If the intermediate node can’t get 
the packet broadcasted by the next hop within a certain 
time, it reports the error message to source node.  

After sink node receives the packet, it checks the ID of 
source node and checks the {ID, Key) pair table to get the 
key of source node. Then, it verifies the authentication and 
integrity of the packet through MAC. If the authentication 
and integrity is guaranteed, sink node gets the correct query 
result from the source node.  

 
3.3 Security Analysis  
If the intermediate node is a malicious node, it can perform 
the following three actions: broadcast, drop or modify.  
 
3.3.1 Intermediate Node Broadcasts Messages  
In a route discovery, the malicious node may have two 
choices to attack the RREQ process. Case 1, it updates 
RREQ packet by inserting wrong ID of current node; Case 
2, it creates the routing table with wrong information. 

Case 1: The next hop records the wrong ID of the 
previous node in its routing table. When the RREP packet 
reaches this hop, RREP is updated using the tampered ID of 
the previous node. Other nodes can not accept this node 
since no ID matches the tampered ID. The next hop adds 
the malicious node into the malicious node table since it 
cannot get acknowledgement. In this case, source node 
cannot receive the RREP packet, and it triggers another 
route discovery.  

Case 2: When RREP packet reaches the malicious node, 
the node broadcasts it with a wrong ID of previous node 
since it has incorrect information in the routing table. The 
next hop gets the RREP from the malicious node, and 
checks its own routing table. It can detect the tampered 
RREP broadcasted by the malicious node since its routing 
table stores two previous hops. The next hop blocks the 
malicious node. Since source node can not receive the 
RREP in this case, it  triggers another route discovery. 

In RREP  process, a malicious node broadcasts a tampered 
ID of previous node or current node. This is the same as 

case 2 RREQ process. The next hop of the malicious node 
can detect it.   
 
3.3.2 Intermediate Node Drops Messages  
In a route discovery, if a malicious node drops the RREQ 
packets, it just blocks itself fro m routing. If a malicious 
node drops the RREP packet, the next hop can detect it 
since it cannot receive the packet again. Source node cannot 
get the RREP packet, and it triggers another route 
discovery. 

In a data forwarding process, if a malicious node drops 
the data packet, the former node can detect it since it can 
not get acknowledgement from the next hop. The former 
node forwards the error message to source node. 
 
3.3.3 Intermediate Node Modifies Messages  
In a route discovery, if a malicious node modifies the 
RREQ core content, such as  IDsource, IDsink, IDRREQ, or 
Ekey(nonce) , sink node can detect it from verifying MAC. If 
a malicious node modifies the RREP core content, source 
node can detect it through MAC. In data forwarding, we 
have the same solution as modified RREQ  core content. 
 
4. Key Management 
In this section, we design a key computation technique for 
hierarchical sensor networks. It is a two levels group key 
management scheme. One group key is computed for a 
group of sensors, and the other group key is for a group of 
cluster heads. Each group has a different group key for 
encryption and decryption of messages. The key is 
computed by considering one of the sensor nodes as the 
initiator and one as the leader. The initiator starts the 
computation of the group key by providing its partial key, 
and the leader computes the final group key by using all the 
partial keys. Every sensor node contributes its partial key 
for computation of the group key. Likewise, another group 
key is computed for cluster heads to secure communication 
among cluster heads.  
 
4.1 Hierarchical Key Management Model    
There are two types of sensor groups in our tree-structure 
hierarchical sensor network. One is a group of general 
sensor nodes led by a cluster head, while other is a group of 
cluster heads with one cluster head as head of that group. 
Two different types of nodes have been used here. These 
nodes are cluster heads, and general sensor nodes. Under 
each cluster head there is a group of general sensor nodes. 
The cluster heads are responsible for collecting data on 
behalf of a group and communicate with other cluster 
heads.  

We are assuming that each group of sensor nodes has one 
cluster head and it processes more data than general sensor 
nodes. A cluster head can communicates with cluster heads 
of other groups. It is self-reconfigurable sensor network [2] 
and able to handle failure of nodes and can reconfigure the 
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architecture according to the requirement for sensing 
coverage. It is a multi-hop network. 

For example, consider a military sensor hierarchical 
architecture where there is a group of sensor nodes say A 
collecting data from geographical area say A. There is 
another group of sensor nodes say B in region B. Sensors of 
group B can get information from B, but not from A. The 
cluster head in-charge of group A and B will be able to 
collect information from both the groups, and broadcasts 
decision to both the regions.  
 
4.2 Group Key Computation 
We have modified the multi-party Diffie-Hellman protocol 
[10] to accommodate it in sensor hierarchical network 
architecture. To do so, one of the group members is chosen 
as initiator, and another member as leader. The leaf nodes 
work as initiator and cluster head as leader. Starting from 
the initiator sensor node, every sensor node contributes its 
partial key for computing the group key. Partial key can be 
a random number generated locally. The leader node 
accumulates all the partial keys for computation of the 
group key. This is a bottom up approach, as partial keys are 
accumulated fro m leaf nodes to the parent nodes. 
 
4.2.1 Group Key Computation without Blind Factor 
For group key computation without using blinding factor 
[5] we use the following approach. Since the leaf nodes 
work as initiator, they first broadcast their partial keys. The 
parent sensor nodes of the leaf nodes get the partial keys 
and add their contribution of partial keys. As it is a bottom 
up approach, the nodes above leaf nodes broadcast their 
partial keys along with the leaf levels’ partial keys. The 
nodes above that level get the part ial keys and add their 
partial keys. Finally, the cluster head will have all the 
partial keys, and it will calculate the group key using its 
partial key contribution. After that, the cluster head 
broadcasts the group key.  

A symmetric key is used to encrypt and decrypt the 
partial keys. This is to make sure that unauthentic nodes 
cannot decrypt the partial keys. The identification of the 
nodes is used with the encrypted partial keys. The sensor 
nodes check the identification before decrypting the partial 
keys, as the parent nodes need the partial keys of their 
children and they do not need the partial keys of other 
sensor nodes. The other group members cannot compute the 
group key because they cannot get the partial key of the 
cluster head since the cluster head do not broadcast its 
partial key. 

In Figure 2, the leaf nodes are M1, M2, …, M9.  M1, the 
initiator sensor, computes the partial key gS1 and broadcasts 
it. The parent node M10 of M1 gets the partial keys from its 
children. Here, g is a generator of the multiplicative group 
ZP* (i.e. the set {1, 2… p-1}, p is the prime) [10] and S1 is 
a randomly chosen secret number for member M1. 
Likewise, the member M2 computes gS2 and broadcasts it, 
and the parent M10 gets the partial key. In this way, the 

member M10 receives g S1S2S3, and raises power by S10 to get 
the intermediate key (IK). Here gS10 is the partial key 
contribution of M10.  

Next , we discuss two types of group keys; the intra-
cluster and the inter-cluster. The intra-cluster group key is 
used by group of sensor nodes led by a cluster head, and 
inter-cluster group key is used by a group of cluster heads. 

 

Cluster head General sensor nodes
M1 M2 M3 M4 M5 M6 M7 M8 M9

M10 M11 M12

gs2 gs3 gs4 gs5 gs6 gs7

gs8 gs9

gs1s2s3s10

gs1

gs4s5s6s11 gs7s8s9s12

gs1s2 ... s12s13

 
Figure 2 Intra-Cluster Key Computations 

 
The intermediate keys in M10, M11, and M12 are               

IK1 = g S1 S2 S3 S10, IK2 = g S4 S5 S6 S11, and IK3 = g S7 S8 S9 S12 
respectively . The intermediate keys are encrypted using a 
symmetric key. All the sensor nodes in a group have the 
symmetric key. The cluster head calculates the group key 
K, using IK1, IK2, and IK3 and its contribution g s13.  

K = g S1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13   [Intra-cluster group key]  
Then it encrypts the group key using the symmetric key. 
The authentic nodes, which have the symmetric key, can 
decrypt the group key. The cluster head broadcasts the 
group key to its group, so that every sensor node in that 
group gets  the group key. This group key is called intra- 
cluster group key, and is used for encryption/decryption 
inside the group of sensor nodes.  

For inter-cluster encryption/decryption, a different group 
key is computed. The inter-cluster group key is unknown to 
the general sensor nodes. Figure 3 shows the computation 
of inter-cluster group key. The intermediate key in C7, C8, 
C9 are IK1intra = g C1C7  , IK2intra = g C2C3C8  , IK3intra = g 
C4C5C6C9   
The head of the cluster heads (HCH) computes the inter-
cluster group key C using intermediate keys IK1inter, IK2inter, 
IK3inter, and its contribution gc10 

C = g C1C7 C2C3C8 C4C5C6C9c10  [Inter-cluster group key]  
The HCH broadcasts the intra-cluster group key to the 
cluster heads. The cluster heads use this group key for 
encryption/decryption of messages among the cluster heads. 
 
4.2.2 Group Key Computation Using Blind Factor 
We can compute the group key using blinding factor [8]. 
The advantage using blinding factor is that an attacker will 
not be able to get the group key when cluster head 
broadcasts the group key. In Figure 2, we show that 
intermediate keys are IK1 = g S1 S2 S3 S10 , IK2 = g S4 S5 S6 S11 

and IK3 = g S7 S8 S9 S12. After computation of IK1, IK2, IK3 
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the parent nodes M10, M11, M12 broadcast the intermediate 
keys. The children of M10, M11, M12 are interested in those 
keys, as they need to remove their contribution from the IK. 
Then they insert randomly chosen blinding factor B. The 
keys after inserting blinding factor are as follows. 
IKB1 = g B1 S2 S3 S10 , IKB2 = g S1 B2 S3 S10 , and               IKB9 
= g S7 S8 B9 S12. The cluster head gets the broadcasted keys 
IKB1,…, IKB9. The cluster head computes the group key 
K, using IKB1…IKB9 and its contribution g s13. 
K = g  B1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13 

 

C1 C2 C3 C4 C5 C6

C7 C8 C9

gc2gc1 gc3 gc4
gc5 gc6

gc1c7
gc2c3c8 gc4c5c6c9

gc4 ... c9c10
C10

Cluster head
 

              Figure 3 Inter-Cluster Key Computations 
 
After the group key computation, the cluster head 

broadcasts the group key with a blind factor. Now the 
authentic sensor node can recognize its blind factor. Each 
member unblinds [5] its blinding factor that it receives from 
cluster head. It reinserts its original contribution Si (i = 
1...n) for getting the group key. Same method is used to 
compute the inter-cluster group key. A symmetric key is 
used for encryption and decryption of partial keys. Cluster 
head uses the same symmetric key for encryption of the 
group key. 
 
5. Conclusion 
In this paper, we discussed a secure hierarchical sensor 
network model. We propose a new routing protocol 
algorithm that depends on the number of neighbors and 
their levels to disseminate the queries and data. The level-
based hierarchical routing protocol compromises between 
shortest path and energy consumption. We propose a secure 
routing protocol in sensor networks (SRPSN). SRPSN  
guarantees that the sink node gets the correct query results 
from the sensor network. In our secure routing protocol, we 
use high efficient symmetric key and use hierarchical 
architecture, which greatly lowers the computation and 
communication overhead. In addition, we propose a group 
key management scheme. In this scheme, every sensor node 
contributes its partial key for computing the group key.  
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