

A Secure Hierarchical Model for Sensor Network

Malik Tubaishat, Jian Yin, Biswajit Panja, Sanjay Madria
Department of Computer Science, University of Missouri-Rolla, MO 65401, USA

{mma882, jian, bptfc, madrias@umr.edu}

Abstract
In a distributed sensor network, large number of sensors
deployed which communicate among themselves to self-
organize a wireless ad hoc network. We propose an energy-
efficient level-based hierarchical system. We compromise
between the energy consumption and shortest path route by
utilizing number of neighbors (NBR) of a sensor and its
level in the hierarchical clustering. In addition, we design a
Secure Routing Protocol for Sensor Networks (SRPSN) to
safeguard the data packet passing on the sensor networks
under different types of attacks. We build the secure route
from the source node to sink node. The sink node is
guaranteed to receive correct information using our SRPSN.
We also propose a group key management scheme, which
contains group communication policies, group membership
requirements and an algorithm for generating a distributed
group key for secure communication.

1. Introduction
Sensor networks are the new paradigm for the future
communication. Sensor networks consist of tiny sensor
nodes [1, 2, 3, 4] that collaborate among themselves to
establish a sensing network and provide access to
information anytime, anywhere by collecting, processing,
analyzing, and disseminating data. In sensor networks,
researchers are focused on improving three main aspects:
energy-efficiency, fault-tolerance and secure routing. This
concern is due to the fact that sensor nodes are vulnerable
to energy depletion [5, 6, 7], intrusions and attacks [5, 8]
and node and link failures [1, 3].

Security is one of the most important aspects in ad-hoc
sensor networks. Intrusion and attack have become
common threats to distributed sensor networks. A wireless
sensor network uses radio frequency (RF) channel [5],
which is not a secure channel. Attack can be active or
passive. Active attacks involve some mo dification of the
data stream or the creation of a false stream. Passive attacks
are in the nature of eavesdropping on transmissions.

In this paper, we design an overview of a secure
hierarchical model for sensor networks. In the self-
organization process [1, 3], we divide the sensor nodes into
different levels. The lower-level sensor nodes only sense
and disseminate data, whereas the higher-level sensors find
the shortest path to the sink node and aggregate data in
addition to forwarding it. Since communication over radio
is the most energy-consuming function performed by sensor
devices, we need to minimize communications overhead
[6]. By using hierarchical architecture we can decrease the

number of messages, which lowers the communication
overhead.
We propose an energy-efficient level-based hierarchical
routing protocol by enabling a sensor node to choose its
next neighbor hop according to its children’s level and
number of neighbors it has. Hence, only this chosen
neighbor broadcasts the message. At the end, the shortest
reliable energy-efficient route is chosen.

We next propose an extended hierarchical routing
protocol to make it secure. We do not use source routing
since it contains large size routing packets. In source
routing, the identities of the traversed intermediate nodes
are accumulated in the route request packet [9]. This is not
feasible in sensor networks since usually there are
thousands of sensors in the networks [6]. Our routing
packet size is very small and we do not aggregate the
intermediate nodes’ data. We only use the routing table in
the intermediate nodes to create the route. The cluster head
aggregates the data, then sends the data to sink node along
the route. Thus, it can save the energy involved in
communication with large messages. Our secure routing
protocol guarantees that the secure route reaches the sink
node even if malicious nodes exist in the path. In addition,
it also guarantees that the data is originated from
authenticated source node and is not tampered.

In addition, we propose a group key management scheme
for a hierarchical sensor network. In this scheme, every
sensor node in a group contributes its partial key for
computing the group key. The partial key can be a unique
random number. Two entities are important; they are
initiator and the leader. The key computation starts by the
contribution of partial key from the initiator node. Every
node contributes its partial key. One of the sensor nodes
will act as a leader. It will compute the final group key
using all the partial keys. There is no fixed rule for selecting
the group initiator or leader. We have considered two
important concepts for group key management; they are 1)
Key trees 2) Diffie -Hellman [10] key exchange protocol.
Key tree is used for updating group keys, and Diffie -
Hellman protocol is used for computing group key.

The rest of the paper is organized as follows. A
hierarchical architecture is given in Section 2. In Section 3,
we present a secure routing protocol. In Section 4, we
develop a key management protocol. We conclude the
paper in Section 5.

SIGMOD Record, Vol. 33, No. 1, March 2004 7

2. Hierarchical Architecture
We build an energy-efficient hierarchical routing protocol,
where sensors have different levels of responsibilities. At
higher-levels, sensors take decisions supported by lower-
level sensors in the hierarchy. We will discuss the level
approach in the next section.

2.1 Characteristics

We consider an environment where thousands of sensor
nodes are embedded in the targeted area. These sensors
communicate and collaborate among themselves in an ad
hoc manner to build a self-organizing sensor network.
These sensors can provide access to information anytime,
anywhere by collecting, processing, analyzing and
disseminating data [1, 3]. We assume that sensors are not
mobile; every broadcast is heard by neighbors within
acceptable radius, and sensors are embedded with timer and
GPS.

The sensor network in Figure 1 shows a one-to-many
relationship between the sink node (a powerful node that
creates and sends queries, and gathers all the information of
the system) and the sources (objects to be sensed). The
sensors act as an interface between the sink and the sources.
These sensors collaborate among themselves to either
disseminate data from the sink to targeted location, where
sources are expected to be, or retrieve information from
sensors near the source to send to the sink node.

Sink SensorSource

0

9

15

16

14

13

11

12

10

83

6
4

75

2

1

Figure 1 Level-Based Hierarchical Routing Protocol

2.2 Self-Organizing Sensors
Here, we discuss how sensors communicate among
themselves to create hierarchical levels of communication.
Sensors in the field form clusters to reduce the consumption
of the energy in the network [7, 11]. Later these clusters
merge to form hierarchical clusters [2].

Neighborhood Formation
First task in building a hierarchical routing is broadcasting
sensors’ IDs on a specific day and time set before
embedding themselves into the targeted area. After
broadcasting its ID, a sensor listens to its neighbors, adds
their IDs in its routing table, and calculates the number of
messages it receives to find the number of neighbors (NBR)
it can reach. Later these connected neighbors build their

own group or cluster. To determine the cluster head,
sensors broadcast their IDs and NBRs. Every sensor keeps a
list of all its neighbors’ NBRs. A sensor becomes a cluster
head if it has the highest NBR. That is, the node that is
connected to the highest number of nodes becomes the
cluster head. We choose this approach because cluster
heads receive more messages than other nodes. In general,
cluster heads aggregate, filter, and disseminate data. The
cluster head with its connected neighbors form the cluster
or the group. We call the cluster head’s neighbors its
children. Hence, the cluster head and its children have
parent-child relationship in the tree-based network.

For a node to join a neighborhood it needs two
broadcasts. Energy is consumed when broadcasting the
sensor’s ID and then when broadcasting again its ID and its
NBR. The energy consumed for sensor i is:

Eng(si) = Eng [Brdcst(id)] + Eng [Brdcst (id, NBR)]
For a node to become a cluster head at a higher-level it

needs to consume more energy by broadcasting its level.
Eng (si) = Eng [Brdcst (id)] + Eng [Brdcst (id, NBR)] +

Eng [Brdcst (id, level)]

Level-Based Routing Protocol
In our hierarchical routing algorithm, the lower-level
sensors only disseminate data, whereas higher-level sensors
aggregate and forward the data. In addition, cluster heads
determine the appropriate child (i.e., next hop) to forward
the packet. We will explain this later. Sensors are initiated
at level 0 when embedded in the network. The incremental
level depends on a sensor’s reliability and its energy
consumption. Although, sensors connected to more
neighbors tend to deplete energy faster than a sensor with
fewer neighbors, these sensors are more fault-tolerant
because they have more connected links. On the other hand,
the higher-level nodes can degrade their level and pass the
responsibility to one of its neighbors when its energy
reaches a threshold. When a sensor finds its neighbors it
upgrades itself to level 1 and then to level 2 if it becomes a
cluster head. Our hierarchical clustering can be extended to
N levels. A sensor connected to two or more cluster heads
upgrades itself to level 3 (we call this node the root). Level
3 node merges two or more groups together. The root
receives only filtered and accurate data from level 2 nodes
(i.e., the cluster heads). The existence of the hierarchical
clustering not only robust the sensor networks, but also, it
overcomes many problems that face the cluster heads. N
level hierarchical clustering advantages over the 2-level
(i.e., using cluster heads only) are as follows:
1) Root nodes receive information from a wider radius

than the cluster heads. Hence, increasing the circle of
knowledge.

2) Information maintained by root nodes is more accurate
and meaningful than in the cluster heads. This is
because this information is processed and filtered by
the cluster heads before they forward it to their parents
(i.e., root nodes).

8 SIGMOD Record, Vol. 33, No. 1, March 2004

3) Root nodes are less congested than the cluster heads
because they receive less number of messages.

4) Power efficiency at the higher-level nodes exceeds that
in the cluster heads because they receive fewer
messages than the cluster heads.

As we mentioned earlier, sensors at higher-levels have
different degrees of responsibilities. Hence, when a sensor
becomes a cluster head it activates its GPS to locate its
position. Cluster head then broadcasts its id, level, and pos.
This step allows its children (i.e., neighbors) to know their
locations. Sensors in one group are physically close to each
other. Hence, the locations of sensors in one group are not
noticeably diverse. For the aforementioned reason and to
save sensor’s power not all sensors activate their GPS. Only
sensors at higher-levels activate their GPS. In general, only
one sensor activates its GPS in a group.

When receiving a data packet, a sensor decides if it needs
to forward, aggregate, or drop the packet depending on
number of criteria. The sensor drops the data packet if it has
the same data or query in its cache, or if the position of the
node getting farther from the destination. If the received
data is new then it caches the data and broadcasts it to its
neighbors. Because higher-level sensors have usually more
neighbors, they receive more messages from their
neighbors. Hence, these sensors need to aggregate and filter
the data they receive from different neighbors. Aggregating
data helps in reducing the number of messages transferred.

Routing Path Behavior
Our hierarchical routing is level-oriented. Every node stores
its neighbors’ id, NBR, and level. Hence, when a sensor
receives a packet it checks the sender’s level. If it has the
same level as itself it drops the packet, otherwise it
forwards it. Because no two low-level routing is allowed,
this strategy ensures a shortest path. As cluster heads
activate their GPS, they can decide the appropriate child to
forward the packet depending on the destination of the sink
or targeted source. Figure 1 depicts a level-based
hierarchical routing sensor network. The numbers shown
beside the sensors are their unique ids. Darker the sensor is
the higher is its level and its importance. Sensors start with
level 0 when embedded into the targeted location and start
to increase their levels according to their importance among
neighbors. Next, we discuss the routing path of the data
from the sink to the sensors and vice versa.
1) Flooding Queries from Sink to Sensors
For simplicity of the explanation, we consider one sink
node in our network architecture. The sink node creates the
queries and broadcasts them to the sensor nodes. In case the
application is designed to detect mobile sources, the queries
should be flooded into all the sensor nodes in the network.
This is because the sink does not know the location of the
mobile source. On the other hand, if the object to be sensed
is fixed and the sink knows the source’s location, no need to
flood the network with the query. In the later case, the
query is broadcasted to some of the sensors.

2) Disseminating Data from Sensors to Sink
To explain how the data is disseminated from the sensors to
the sink, we give the following example. The sink node
broadcasts a query to detect any moving object within the
network field. After receiving the query all the sensors
become ready to detect a moving object within their
radiuses. In Figure 1, sensor 15 detects a moving object
within its radius, so it broadcasts what it had seen to its
neighbors.

In our routing protocol, we choose to broadcast to the
node with highest NBR in a group. This is because nodes
with higher NBRs are connected to more nodes and hence,
the possibility that they can reach their destination much
faster.

Table 1 shows the routing table of sensor 15. Node 15
broadcasts its message to its neighbors with an emphasis
that only one of its neighbors rebroadcast the message. In
this case, it is node 14 as it has the highest NBR and a
different level than the sender (i.e., sensor 15). Node 14
then broadcasts to node 11, etc.

ID LEVEL NBR
15 2 3

13 14 16 1 3 1 3 4 3
Table 1 Routing Table for Sensor 15

In case a node has neighbors at same level and same NBR

it chooses all of them. In Figure 1, node 11 chooses node 8
and 9 but not 14 because it is the sender.

Criteria for choosing the next hop
Assigning a level to each sensor makes it easier for the
node to choose its next hop. A sensor selects its next
broadcast neighbor destination by comparing the attributes
of its neighbors from its routing table (see Table 1).
Following are these attributes:
•GPS – location attribute has the highest priority. If a level

3 node has two cluster head children then it chooses
one that is nearest to the destination.

•Level – the level difference helps the sensors to determine
the next hop to broadcast the data packet.

•NBR – a sensor chooses a neighbor with the highest NBR.
The above three attributes limit the data dissemination

routes to the minimum instead of flooding the network and
causing data congestion and energy depletion.

3. Secure Routing Protocol
In the Secure Routing Protocol for Sensor Networks
(SRPSN) Proposed here, every node has a unique ID
(Identity). Source node is a normal sensor node with
resource constraints. Sink node is a super node, which has
more power and memory. Sink node stores a table
containing (ID, Key) pairs for all sensor nodes. After self-
organization, sink node knows the topology of the sensor
network. It sends the encrypted cluster group key to sensor
nodes using the shared key between the sensor node and
sink node.

SIGMOD Record, Vol. 33, No. 1, March 2004 9

Using SRPSN, we guarantee that a packet reaches the
sink node even if malicious nodes exist. It guarantees that
the message is originated from the authenticated source
node and is not tampered on the route. Our SRPSN has the
following three features:
1) We use the cache to store the routing table. We do not
use source routing containing large size routing packets [9].
It is not feasible in sensor networks since usually there are
thousands of sensors in sensor networks [6].
2) Our protocol uses the hierarchical architecture. The
cluster head aggregates the data, then sends the data to sink
node along the route. In this way, we can greatly decrease
the number of messages to communicate, therefore can
lower the communication overhead.
3) We only use high efficient symmetric cryptographic
operations to secure messages. We do not use asymmetric
operations (such as digital signatures) for cryptography and
authentication since it needs large computation and
communication overhead [6, 12].

3.1. Secure Route Discovery
In our route discovery, source node initiates the route
discovery and sends route request (RREQ) to sink node.
When sink node receives RREQ, it creates route reply
(RREP) to source node. After route discovery, every node
on the route has created the routing table, which stores only
previous and next hops on the route.

Secure Route Request (RREQ)
Source node initiates the route discovery by broadcasting
RREQ to its neighbors. RREQ includes the IDs of source
node and sink node, IDRREQ (a random number), encrypted
nonce (the nonce is a random number), and MAC (Message
Authentication Code) [13]. The MAC is generated by a
keyed hash algorithm [13]. The inputs are the IDs of the
source node and sink node, IDRREQ , encrypted nonce and the
key of source node. RREQ is constructed as follows:

)),(,,,(

),(,,,

sin

sin

KeynonceEIDIDIDMAC

nonceEIDIDID

keyRREQksource

keyRREQksource

When the intermediate node receives the RREQ, it creates
the routing table with the ID of the previous two hops. If it
receives RREQ directly from source node, it adds its ID on
RREQ. If it receives the RREQ from other nodes, it replaces
IDthis, IDpre embedded in RREQ with the IDs of its previous
node and its own ID. Finally, it broadcasts the updated
RREQ. The updated RREQ is constructed as follows:

)),(,,,(

),(,,,,,

sin

sin

KeynonceEIDIDIDMAC

nonceEIDIDIDIDID

keyRREQksource

keyRREQksourceprethis

When sink node receives the RREQ, it checks the (ID,
Key) pair table to get the key of source node. Then, it uses
the key to calculate MAC and verify MAC . Sink node only
accepts RREQ, which is the first to reach sink node with
valid MAC for the same source node and same IDRREQ . Sink
node drops other RREQs with same IDRREQ.

Secure Route Reply (RREP)
When sink node accepts RREQ, it constructs RREP. The
RREP is composed of IDs of source node, sink node,
current node, and predecessor node, IDRREQ , and MAC. The
MAC is calculated using IDs of source node and sink node,
IDRREQ , nonce, and the key of source node. Then sink node
broadcasts RREP. RREP is constructed as follows:

),,,,(

,,,,,

sin

sin

KeynonceIDIDIDMAC

IDIDIDIDID

RREQksource

RREQksourceprethis

The intermediate node, which receives the RREP, checks
the IDs embedded in the RREP. If the ID of previous node
embedded in the RREP is the ID of current node, it updates
IDthis, IDpre embedded in the RREP with its current ID and
the ID of its previous node. Then, it broadcasts the updated
RREP. Otherwise, it drops it. It also updates its routing
table to add ID of next hop towards sink node.

Source node receives the RREP and verifies MAC to
make sure that it’s from sink node. If the RREP has not
been tampered, source node inserts the ID of the next hop
on the route to its routing table.

Secure Route maintenance
If one sensor node wants to send data to sink node and there
is no route in its routing table to sink node, it initiates the
route discovery to sink node. If source node gets the error
message after it sends data or routing packet, it triggers the
route discovery.

3.2. Secure Data Forwarding
In the hierarchical network architecture, the sensor node
sends the data to the cluster head. The cluster head
aggregates the data and sends the information to sink node.
In the cluster communication, we secure the messages using
the group key. Among the clusters’ communication, we use
the preloaded key to secure the information. We use these
two mechanisms to send data to the sink node securely.

3.2.1 Secure Data Forwarding in the Cluster
If a sensor node sends the data to the cluster head, it
constructs the data packet as follows:

{ }]),(,[)],(,[GKdataEIDMACdataEID GKGK
Here, ID is the ID of the cluster head, GK is the group

key of the cluster.
The sensor node broadcasts the data packet. Any node

receives the packet, which checks the ID embedded. If the
ID embedded in the packet matches the ID it holds, it
verifies the authentication and integrity of the data packet
through MAC. Otherwise, the packet is dropped by the
node.

3.2.2 Secure Data Forwarding among the Clusters
The source cluster head checks its routing table. If there is a
route to sink node, it constructs the following packet for
data dissemination:

10 SIGMOD Record, Vol. 33, No. 1, March 2004

]),(,,[

)],(,,[,,

keydataEQIDMAC

dataEQIDIDID

keyIDsource

keyIDsourcenextthis

Where IDthis is the ID of the current node that broadcasts
the message, and IDnext is the ID of next hop in the current
node’s routing table, IDsource is the ID of source node, QID is
a random number, key is preloaded key of the source node,
and MAC is generated by a keyed hash algorithm [13].

The intermediate node receives the packet, and checks the
ID embedded. If the ID embedded in the packet matches the
ID it holds, it updates the ID of the next hop embedded in
the packet and broadcasts it. Otherwise, the packet is
dropped by the node.

If the source node can not get the packet again that the
next hop rebroadcasts, it triggers a new route discovery to
the sink node. After the new route is created, the source
node broadcasts the data. If the intermediate node can’t get
the packet broadcasted by the next hop within a certain
time, it reports the error message to source node.

After sink node receives the packet, it checks the ID of
source node and checks the {ID, Key) pair table to get the
key of source node. Then, it verifies the authentication and
integrity of the packet through MAC. If the authentication
and integrity is guaranteed, sink node gets the correct query
result from the source node.

3.3 Security Analysis
If the intermediate node is a malicious node, it can perform
the following three actions: broadcast, drop or modify.

3.3.1 Intermediate Node Broadcasts Messages
In a route discovery, the malicious node may have two
choices to attack the RREQ process. Case 1, it updates
RREQ packet by inserting wrong ID of current node; Case
2, it creates the routing table with wrong information.

Case 1: The next hop records the wrong ID of the
previous node in its routing table. When the RREP packet
reaches this hop, RREP is updated using the tampered ID of
the previous node. Other nodes can not accept this node
since no ID matches the tampered ID. The next hop adds
the malicious node into the malicious node table since it
cannot get acknowledgement. In this case, source node
cannot receive the RREP packet, and it triggers another
route discovery.

Case 2: When RREP packet reaches the malicious node,
the node broadcasts it with a wrong ID of previous node
since it has incorrect information in the routing table. The
next hop gets the RREP from the malicious node, and
checks its own routing table. It can detect the tampered
RREP broadcasted by the malicious node since its routing
table stores two previous hops. The next hop blocks the
malicious node. Since source node can not receive the
RREP in this case, it triggers another route discovery.

In RREP process, a malicious node broadcasts a tampered
ID of previous node or current node. This is the same as

case 2 RREQ process. The next hop of the malicious node
can detect it.

3.3.2 Intermediate Node Drops Messages
In a route discovery, if a malicious node drops the RREQ
packets, it just blocks itself fro m routing. If a malicious
node drops the RREP packet, the next hop can detect it
since it cannot receive the packet again. Source node cannot
get the RREP packet, and it triggers another route
discovery.

In a data forwarding process, if a malicious node drops
the data packet, the former node can detect it since it can
not get acknowledgement from the next hop. The former
node forwards the error message to source node.

3.3.3 Intermediate Node Modifies Messages
In a route discovery, if a malicious node modifies the
RREQ core content, such as IDsource, IDsink, IDRREQ, or
Ekey(nonce) , sink node can detect it from verifying MAC. If
a malicious node modifies the RREP core content, source
node can detect it through MAC. In data forwarding, we
have the same solution as modified RREQ core content.

4. Key Management
In this section, we design a key computation technique for
hierarchical sensor networks. It is a two levels group key
management scheme. One group key is computed for a
group of sensors, and the other group key is for a group of
cluster heads. Each group has a different group key for
encryption and decryption of messages. The key is
computed by considering one of the sensor nodes as the
initiator and one as the leader. The initiator starts the
computation of the group key by providing its partial key,
and the leader computes the final group key by using all the
partial keys. Every sensor node contributes its partial key
for computation of the group key. Likewise, another group
key is computed for cluster heads to secure communication
among cluster heads.

4.1 Hierarchical Key Management Model
There are two types of sensor groups in our tree-structure
hierarchical sensor network. One is a group of general
sensor nodes led by a cluster head, while other is a group of
cluster heads with one cluster head as head of that group.
Two different types of nodes have been used here. These
nodes are cluster heads, and general sensor nodes. Under
each cluster head there is a group of general sensor nodes.
The cluster heads are responsible for collecting data on
behalf of a group and communicate with other cluster
heads.

We are assuming that each group of sensor nodes has one
cluster head and it processes more data than general sensor
nodes. A cluster head can communicates with cluster heads
of other groups. It is self-reconfigurable sensor network [2]
and able to handle failure of nodes and can reconfigure the

SIGMOD Record, Vol. 33, No. 1, March 2004 11

architecture according to the requirement for sensing
coverage. It is a multi-hop network.

For example, consider a military sensor hierarchical
architecture where there is a group of sensor nodes say A
collecting data from geographical area say A. There is
another group of sensor nodes say B in region B. Sensors of
group B can get information from B, but not from A. The
cluster head in-charge of group A and B will be able to
collect information from both the groups, and broadcasts
decision to both the regions.

4.2 Group Key Computation
We have modified the multi-party Diffie-Hellman protocol
[10] to accommodate it in sensor hierarchical network
architecture. To do so, one of the group members is chosen
as initiator, and another member as leader. The leaf nodes
work as initiator and cluster head as leader. Starting from
the initiator sensor node, every sensor node contributes its
partial key for computing the group key. Partial key can be
a random number generated locally. The leader node
accumulates all the partial keys for computation of the
group key. This is a bottom up approach, as partial keys are
accumulated fro m leaf nodes to the parent nodes.

4.2.1 Group Key Computation without Blind Factor
For group key computation without using blinding factor
[5] we use the following approach. Since the leaf nodes
work as initiator, they first broadcast their partial keys. The
parent sensor nodes of the leaf nodes get the partial keys
and add their contribution of partial keys. As it is a bottom
up approach, the nodes above leaf nodes broadcast their
partial keys along with the leaf levels’ partial keys. The
nodes above that level get the part ial keys and add their
partial keys. Finally, the cluster head will have all the
partial keys, and it will calculate the group key using its
partial key contribution. After that, the cluster head
broadcasts the group key.

A symmetric key is used to encrypt and decrypt the
partial keys. This is to make sure that unauthentic nodes
cannot decrypt the partial keys. The identification of the
nodes is used with the encrypted partial keys. The sensor
nodes check the identification before decrypting the partial
keys, as the parent nodes need the partial keys of their
children and they do not need the partial keys of other
sensor nodes. The other group members cannot compute the
group key because they cannot get the partial key of the
cluster head since the cluster head do not broadcast its
partial key.

In Figure 2, the leaf nodes are M1, M2, …, M9. M1, the
initiator sensor, computes the partial key gS1 and broadcasts
it. The parent node M10 of M1 gets the partial keys from its
children. Here, g is a generator of the multiplicative group
ZP* (i.e. the set {1, 2… p-1}, p is the prime) [10] and S1 is
a randomly chosen secret number for member M1.
Likewise, the member M2 computes gS2 and broadcasts it,
and the parent M10 gets the partial key. In this way, the

member M10 receives g S1S2S3, and raises power by S10 to get
the intermediate key (IK). Here gS10 is the partial key
contribution of M10.

Next , we discuss two types of group keys; the intra-
cluster and the inter-cluster. The intra-cluster group key is
used by group of sensor nodes led by a cluster head, and
inter-cluster group key is used by a group of cluster heads.

Cluster head General sensor nodes
M1 M2 M3 M4 M5 M6 M7 M8 M9

M10 M11 M12

gs2 gs3 gs4 gs5 gs6 gs7

gs8 gs9

gs1s2s3s10

gs1

gs4s5s6s11 gs7s8s9s12

gs1s2 ... s12s13

Figure 2 Intra-Cluster Key Computations

The intermediate keys in M10, M11, and M12 are

IK1 = g S1 S2 S3 S10, IK2 = g S4 S5 S6 S11, and IK3 = g S7 S8 S9 S12
respectively . The intermediate keys are encrypted using a
symmetric key. All the sensor nodes in a group have the
symmetric key. The cluster head calculates the group key
K, using IK1, IK2, and IK3 and its contribution g s13.

K = g S1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13 [Intra-cluster group key]
Then it encrypts the group key using the symmetric key.
The authentic nodes, which have the symmetric key, can
decrypt the group key. The cluster head broadcasts the
group key to its group, so that every sensor node in that
group gets the group key. This group key is called intra-
cluster group key, and is used for encryption/decryption
inside the group of sensor nodes.

For inter-cluster encryption/decryption, a different group
key is computed. The inter-cluster group key is unknown to
the general sensor nodes. Figure 3 shows the computation
of inter-cluster group key. The intermediate key in C7, C8,
C9 are IK1intra = g C1C7 , IK2intra = g C2C3C8 , IK3intra = g
C4C5C6C9
The head of the cluster heads (HCH) computes the inter-
cluster group key C using intermediate keys IK1inter, IK2inter,
IK3inter, and its contribution gc10

C = g C1C7 C2C3C8 C4C5C6C9c10 [Inter-cluster group key]
The HCH broadcasts the intra-cluster group key to the
cluster heads. The cluster heads use this group key for
encryption/decryption of messages among the cluster heads.

4.2.2 Group Key Computation Using Blind Factor
We can compute the group key using blinding factor [8].
The advantage using blinding factor is that an attacker will
not be able to get the group key when cluster head
broadcasts the group key. In Figure 2, we show that
intermediate keys are IK1 = g S1 S2 S3 S10 , IK2 = g S4 S5 S6 S11

and IK3 = g S7 S8 S9 S12. After computation of IK1, IK2, IK3

12 SIGMOD Record, Vol. 33, No. 1, March 2004

the parent nodes M10, M11, M12 broadcast the intermediate
keys. The children of M10, M11, M12 are interested in those
keys, as they need to remove their contribution from the IK.
Then they insert randomly chosen blinding factor B. The
keys after inserting blinding factor are as follows.
IKB1 = g B1 S2 S3 S10 , IKB2 = g S1 B2 S3 S10 , and IKB9
= g S7 S8 B9 S12. The cluster head gets the broadcasted keys
IKB1,…, IKB9. The cluster head computes the group key
K, using IKB1…IKB9 and its contribution g s13.
K = g B1 S2 S3 S10 S4 S5 S6 S11 S7 S8 S9 S12s13

C1 C2 C3 C4 C5 C6

C7 C8 C9

gc2gc1 gc3 gc4
gc5 gc6

gc1c7
gc2c3c8 gc4c5c6c9

gc4 ... c9c10
C10

Cluster head

 Figure 3 Inter-Cluster Key Computations

After the group key computation, the cluster head

broadcasts the group key with a blind factor. Now the
authentic sensor node can recognize its blind factor. Each
member unblinds [5] its blinding factor that it receives from
cluster head. It reinserts its original contribution Si (i =
1...n) for getting the group key. Same method is used to
compute the inter-cluster group key. A symmetric key is
used for encryption and decryption of partial keys. Cluster
head uses the same symmetric key for encryption of the
group key.

5. Conclusion
In this paper, we discussed a secure hierarchical sensor
network model. We propose a new routing protocol
algorithm that depends on the number of neighbors and
their levels to disseminate the queries and data. The level-
based hierarchical routing protocol compromises between
shortest path and energy consumption. We propose a secure
routing protocol in sensor networks (SRPSN). SRPSN
guarantees that the sink node gets the correct query results
from the sensor network. In our secure routing protocol, we
use high efficient symmetric key and use hierarchical
architecture, which greatly lowers the computation and
communication overhead. In addition, we propose a group
key management scheme. In this scheme, every sensor node
contributes its partial key for computing the group key.

References
[1] C. Intanagonwiwat, R. Govindan, and D. Estrin.

Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In
Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking ,
pages 56-67, Boston, MA, Aug. 2000. ACM Press.

[2] L. Subramanian and R. H. Katz, An Architecture for
Building Self-Configurable Systems , IEEE/ACM
Workshop on Mobile Ad Hoc Networking and
Computing (MobiHOC’00), Boston, 2000.

[3] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar.
Next Century Challenges: Scalable Coordination in
Sensor Networks, In Proceedings of the Fifth Annual
International Conference on MobiCOM, August 1999,
Seattle, Washington.

[4] M. Tubaishat and S. Madria. Sensor Networks: An
Overview, IEEE Potentials, Vol. 22, No. 2, April/May
2003.

[5] D. W. Carman, P. S. Kruus, and B. J. Matt. Constraints
And Approaches For Distributed Sensor Network
Security. NAI Labs Technical Report #00-010,
September 2000.

[6] R. Szewczyk, V. Wen, D. Culler, and D. Tygar.
SPINS: Security Protocols for Sensor Networks,
Wireless Networks Journal (WINE) , September 2002.

[7] J. Kulik, W. R. Heinzelman, and H. Balakrishnan,
Adaptive Protocols for Information Dissemination in
Wireless Sensor Networks, Proc. 5th ACM/IEEE
MobiCom Conference (MobiCom '99), Seattle, WA,
August, 1999.

[8] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang.
Providing Robust and Ubiquitous Security Support for
Mobile Ad-Hoc Networks. IEEE Ninth International
Conference on Network Protocols (ICNP'01), 2001.

[9] P. Papadimitratos and Z. J. Haas. Secure Routing for
Mobile Ad Hoc Networks. SCS Communication
Networks and Distributed Systems Modeling and
Simulation Conference (CNDS 2002) , San Antonio,
TX, January 27-31, 2002.

[10] W. Diffie and M. E. Hellman. Privacy and
Authentication: An Introduction to Cryptography.
Proceedings of the IEEE , 67(3):397–427, March 1979.

[11] W. Heinzelman, A. Chandrakasan, and H.
Balakrishnan, An Application-Specific Protocol
Architecture for Wireless Microsensor Networks, IEEE
Transactions on Wireless Communications, Vol. 1, No.
4, October 2002, pp. 660-670.

[12] Y. Hu, D. B. Johnson, and A. Perrig. SEAD: Secure
Efficient Distance Vector Routing for Mobile Wireless
Ad Hoc Networks. 4th IEEE Workshop on Mobile
Computing Systems and Applications, WMCSA’02,
New York, 2002.

[13] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication, Internet
RFC 2104, February 1997.

SIGMOD Record, Vol. 33, No. 1, March 2004 13

