
Managing Uncertainty in Sensor Databases

Reynold Cheng Sunil Prabhakar
Department of Computer Science, Purdue University

Email: {ckcheng,sunil}@cs.purdue.edu

Abstract

Sensors are often employed to monitor continuously chang-
ing entities like locations of moving objects and temperature.
The sensor readings are reported to a centralized database
system, and are subsequently used to answer queries. Due
to continuous changes in these values and limited resources
(e.g., network bandwidth and battery power), the database
may not be able to keep track of the actual values of the en-
tities, and use the old values instead. Queries that use these
old values may produce incorrect answers. However, if the
degree of uncertainty between the actual data value and the
database value is limited, one can place more confidence in
the answers to the queries. In this paper, we present a frame-
work that represents uncertainty of sensor data. Depending
on the amount of uncertainty information given to the ap-
plication, different levels of imprecision are presented in a
query answer. We examine the situations when answer im-
precision can be represented qualitatively and quantitatively.
We propose a new kind of probabilistic queries called Prob-
abilistic Threshold Query, which requires answers to have
probabilities larger than a certain threshold value. We also
study techniques for evaluating queries under different de-
tails of uncertainty, and investigate the tradeoff between data
uncertainty, answer accuracy and computation costs.

1 Introduction

Sensors are often used to monitor the status of an environ-
ment continuously. The sensor readings are then reported
to the application for making decisions and answering user
queries. For example, a fire-alarm system in a building may
employ temperature sensors to detect any abrupt change in
temperature. An aircraft is equipped with sensors to track
the wind speed, and radars are used to detect and report the
aircraft’s location to a military system. These applications
usually include a database or server to which the sensor read-
ings are sent. Limited network bandwidth and battery power
imply that it is often not practical for the server to record
the exact status of an entity it monitors at every time instant.
In particular, if the value of an entity (e.g., temperature, lo-
cation) being monitored is constantly evolving, the recorded

data value may differ from the actual value. Querying the
database can then produce incorrect results. Consider Fig-
ure 1(a), where sensors are used to monitor two moving ob-
jects a and b. If the location values recorded in the database
(a0 and b0) are used, a will be the nearest neighbor of q. In
reality, objects a and b have moved to positions a1 and b1,
in which case b is the true nearest neighbor of q. In scenar-
ios where critical decisions are made, producing incorrect
answers may not be acceptable.

b0 a0

b1 a1

b
(b)

0b

q

q

(a)

Bound for Current Location

0 a0q

Recorded Location

Possible Current Location

a0q
(c)

Figure 1: Example of data uncertainty and nearest-neighbor
query.

Apparently, in a system that monitors constantly changing
values, it is impossible to obtain meaningful query answers
from the database. However, one can argue that the values
of these objects usually cannot change drastically in a short
period of time: the degree and/or rate of change of an object
is constrained. Such information can help us alleviate the
problem. In the previous example, if we can guarantee that
at the time the query is evaluated, the actual locations of a
and b are within certain bounds from a0 and b0 respectively
(Figure 1(b)), then we can state with confidence that a is the
nearest neighbor of q. In general, the objects’ uncertainty
may not allow us to identify a single object that is the nearest
neighbor. For example, in Figure 1(c), both a and b can
be the nearest neighbor of q since a may be farther than b
from q, and vice versa. Therefore, if the state of an external

SIGMOD Record, Vol. 32, No. 4, December 2003 41

entity is represented by an interval instead of an exact value,
the answer can either be certain (Figure 1(b)) or uncertain
(Figure 1(c)).

In this paper, we describe how the uncertainty of an entity
can be modeled by an interval, and investigate how to answer
a database query when intervals, instead of exact values, are
given. We generalize the Future Temporal Logic (FTL) [11]
for location queries, to queries with inherently uncertain sen-
sor data as input. In particular, the MUST keyword is used in
a query to specify that an answer must be certain to satisfy a
query, while the MAY keyword allows uncertainty in answers.
For example, in Figure 1(c), using the MUST keyword in the
nearest neighbor query yields no answer, but a and b are re-
turned when MAY is used instead.

While the MAY and MUST keywords help in querying inher-
ently imprecise data, one may want to know further which
object has a better chance of satisfying a query. For instance,
in Figure 1(c), does a have a higher probability of being the
nearest neighbor of q than b? In order to answer this ques-
tion, not only does one need to have an interval to bound
the uncertainty of an entity’s value, he also needs to know
the probability distribution of the value within the interval.
With such additional information, one can augment different
levels of confidence (e.g. as a probability) with each answer
based on the uncertainty of the queried objects. This prob-
abilistic query [13, 4, 3, 2] gives more useful information
than the MAY and MUST keywords, since the user can know
the likeliness of each answer in satisfying a query.

In this paper, we introduce the concept of a probabilistic
threshold query. It is different from the probabilistic query
in which one needs to specify the minimum probability value
required for a query answer. As an example, suppose the
probabilities of a and b for being q’s nearest neighbor are
0.7 and 0.3 respectively. If the probability threshold is set
to 0.5, then only a is the answer. Therefore, the probability
threshold can be used to eliminate objects with small proba-
bility values. Compared with queries using MAY and MUST, it
provides a more precise mechanism in handling uncertainty;
compared with probabilistic queries, it allows a better con-
trol over the number of answers returned since a user may
not be interested in answers that have very small chance of
satisfying a query. We will also demonstrate how probabilis-
tic threshold queries can be more efficient than probabilistic
queries. To sum up, our contributions are:

• Propose a framework which is applicable to a wide
range of constantly-evolving sensor data. The model
encompasses different levels of understanding of data
uncertainty, from no uncertainty to the most detailed
uncertainty information;

• Extend the semantics of MAY and MUST keywords to sup-
port sensor data queries;

• Propose probabilistic threshold queries and illustrate
why it is more efficient than probabilistic queries; and

• Study the relationship between data uncertainty, query
complexity and answer imprecision.

The rest of this paper is organized as follows. In Sec-
tion 2 we present a model that captures different details of
data uncertainty. Section 3 discusses algorithms for evaluat-
ing queries over intervals, and Section 4 describes the eval-
uation of probabilistic threshold queries. In Section 5 we
discuss some related work. Section 6 concludes the paper.

2 A Taxonomy of Data Uncertainty

We now present three forms of data uncertainty, namely
point uncertainty, interval uncertainty and probabilistic un-
certainty, whose differences are due to the amount of infor-
mation known about a sensor data item.

1. Point Uncertainty The simplest data uncertainty model
is to assume there is no uncertainty at all. Each data item
is assumed to be a correct representation of the external en-
tity being monitored. Specifically, let us assume that a real-
valued attribute a of a set of database objects T is queried. 1

The ith object of T is named as Ti, and the value of a for Ti

is called Ti.a (where i = 1, . . . , |T |). Database queries under
the point uncertainty model simply uses the values of Ti.a’s
as inputs. Although handling real values in a database query
is easy, the query result is just an approximation of the true
result. We have already illustrated that incorrect query re-
sults can be returned when a database attribute, Ti.a, is used
to model a constantly changing quantity. We therefore need
better data models to represent uncertainty.

2. Interval Uncertainty Different kinds of uncertainty
models for constantly-evolving data have been proposed in
the literature. One model assumes that the attribute value
changes with known speed, but the speed may change each
time the value is reported. Wolfson et al. [13] describe a
model for locations of moving objects: at any point in time,
the actual location is within a certain bound, d of its last re-
ported location. If the actual location changes further than d,
then the sensor reports its new location to the database and
possibly changes d. Another model assumes that the object
travels with known velocity along a straight line, but may
deviate from this path by a certain distance [12].

Our second uncertainty model generalizes these models to
support sensor-based applications. The basic idea is to use
an interval (called uncertainty interval) to bound the possible
values of Ti.a:

1Although we assume the domain of the data values is real, our model
can be extended to higher dimensions.

42 SIGMOD Record, Vol. 32, No. 4, December 2003

Uncertainty Model Information Required Query Type

1. Point Uncertainty Ti.a Traditional queries
2. Interval Uncertainty Ti.a, Ui(t) Interval Queries with MAY and MUST keywords
3. Probabilistic Uncertainty Ti.a, Ui(t), fi(x,t) Probabilistic Queries, Probabilistic Threshold Queries

Table 1: Uncertainty models and query types

Definition 1: An uncertainty interval of Ti.a at time instant
t, denoted by Ui(t), is an interval [li(t),ui(t)] such that li(t)
and ui(t) are real-valued functions of t, and that the condi-
tions ui(t)≥ li(t) and Ti.a ∈ [li(t),ui(t)] always hold.

Therefore, in this model, all that is required is at the time
of query execution the range of possible values of the at-
tribute of interest is known. The uncertainty interval is often
determined by the last recorded value (Ti.a), the time elapsed
since its last update, and other application-specific assump-
tions. For example, UA(t) can contain all the values within a
distance of (t−tupdate)×v from its last reported value, where
tupdate is the time that the last update was obtained, and v is
the maximum rate of change of the value.

3. Probabilistic Uncertainty This data model is proposed in
[2]. Compared with the interval uncertainty, it requires one
more piece of information – the probability density function
or pdf of Ti.a within Ui(t). Assuming that Ti.a is a continu-
ous random variable, the formal definition of uncertainty pdf
is given as follows:

Definition 2: An uncertainty pdf of Ti.a at time t, denoted
by fi(x, t), is a pdf of Ti.a, such that fi(x, t)=0 if x /∈Ui(t).

Note that fi(x, t) must be a probability function bounded
by Ui(t) i.e., fi(x,y) equals 0 if (x,y) is outside Ui(t).
Also, in applications where the uncertainty pdf is not readily
known, one may need to perform a statistical evaluation of
the sensor data in order to choose a suitable pdf. An alter-
native is to simply assume that Ti.a is uniformly distributed,
i.e., fi(x, t) = 1/[ui(t)− li(t)] for Ti.a ∈ Ui(t). By employ-
ing a uniform distribution, one assumes the data value has an
equal chance of locating anywhere in the uncertainty inter-
val, which is a reasonable assumption. Because of its simple
form, the uniform distribution can simplify query evaluation
algorithms significantly.

Table 1 lists different types of data uncertainty and their
relevant queries. When the knowledge about the data items
increases, interval queries and probabilistic queries can be
issued to provide more meaningful answers. We will exam-
ine these two classes of queries in the next sections. Unless
stated otherwise, we assume queries are interested in the data
at time instant t, the time at which the query is issued.

3 Interval Queries

As seen from Table 1, interval queries are those that treat
data as uncertainty intervals. In this section, we present the
semantics of interval queries. Then we illustrate how a range
query is executed with uncertainty intervals as inputs.

3.1 The MAY and MUST keywords

Two important keywords, MAY and MUST, are used to control
the behavior of an interval query. These two keywords fol-
low the same semantics defined in [11] for moving objects.

When MUST is specified, the query engine can only return
the answers that are certain to satisfy the query. For example,
in Figure 1(b), Specifying MUST in the query will yield a as
q’s nearest neighbor, because the whole uncertainty interval
of a is closer to q than any possible position of b. However,
in Figure 1(c), neither a and b can be returned because we
cannot tell for sure which one is the nearest neighbor of q.

When MAY is used, answers that have non-zero chance of
satisfying the query are all returned. Hence a may be q’s
nearest neighbor in Figure 1(b); a and b may be q’s nearest
neighbor in Figure 1(c).

From these examples, it is clear that the set of answers
returned by the MUST keyword is the subset returned by the
MAY keyword. While a MUST query returns correct answers,
its constraint may be so strict that none of the answer is re-
turned. A MAY query, on the other hand, contains both correct
and incorrect answers.

3.2 Evaluating an Interval Range Query

To illustrate how an actual interval query is evaluated, con-
sider an Interval Range Query (IRQ), which is a range query
for uncertainty intervals. Let [l,u] be the query range spec-
ified by the user. When the MAY keyword is specified, IRQ
returns all Ti’s such that Ti.a has a possibility of being inside
[l,u]. Assume that li(t) < ui(t). Then we can evaluate IRQ
by checking over each object in T to see if Ui(t) overlaps
[l,u]. An overlap indicates that Ti.a may be inside [l,u], so
Ti is put into the result set, R. Figure 2 shows the complete
algorithm.

SIGMOD Record, Vol. 32, No. 4, December 2003 43

1. R← /0
2. for i← 1 to |T | do

(a) OI←Ui(t)∩ [l,u]
(b) if (width of OI 6= 0) then

i. R← R∪Ti

3. return R

Figure 2: IRQ Algorithm Using the MAY Keyword.

When the MUST keyword is used, Ui(t) has to be com-
pletely inside [l,u] for Ti to be an answer. This is done by
deleting Step 2(a), and replacing Step 2(b) by:

if (l ≤ li(t) and ui(t)≤ u) then

so that Ti is included in R when Ti.a lies within [l,u].

The range query algorithm in Figure 2 can actually be
more efficient by using an interval tree that indexes one-
dimensional intervals (see [7, 6] for details). However,
these interval trees assume that the interval bounds are time-
invariant, whereas the uncertainty bounds in our model are
functions of time. Further studies are required to study how
to use interval trees to index constantly changing bounds.

4 Probabilistic Threshold Queries

Interval queries using the MAY and MUST keywords offer a
simple way to handle uncertainty. However, they only pro-
vide a qualitative treatment of data uncertainty. In particular,
the MAY keyword does not specify how likely an answer can
satisfy a query. Suppose two objects Ti and Tj appear in the
results of an IRQ with the MAY keyword. The user may think
that the two objects have the same chance of satisfying the
query. In reality, the user is misled, since Ti.a is completely
inside [l,u], while U j(t) only has a small overlap with [l,u].

To solve this problem, we need to have a more quantitative
treatment of uncertainty. We can replace the MAY and MUST
keywords with a more specific requirement – a probability
value – so that an object will only appear in the answer if its
probability of satisfying the query is larger than that value.
For example, one may ask “Which object has a probability of
0.7 or more in satisfying the range query?”. Since any object
with probability less than 0.7 is not part of the answer, the
user can be more confident with the answers he gets.

An important question is: can we adopt the interval uncer-
tainty data model to answer such queries? Unfortunately, the
answer is not. Suppose an attribute with uncertainty interval
Ui(t) overlaps [l,u]. One is unable to tell the probability that
Ti.a is inside [l,u], because no information about the distri-
bution of Ti.a in Ui(t) is given. In general, we need to have

an additional piece of information to answer such queries:
the pdf of Ti.a inside Ui(t). This is where the probabilistic
uncertainty data model comes into play. The probabilistic
threshold query (PTQ) can now be defined as follows:

Definition 3: A Probabilistic Threshold Query (PTQ) with
threshold p (where 0 < p ≤ 1) queries data under the prob-
abilistic uncertainty model, and returns a set R of answers
such that for each answer r ∈ R, r has a probability of p or
more in satisfying the query.

Notice that an interval query with the MUST keyword is
equivalent to a PTQ with p = 1, while the one with the MAY
keyword can be viewed as a PTQ with p very close to 0. A
PTQ allows a user to specify any p∈ (0,1] and thus provides
more flexibility than an interval query.

4.1 Evaluating a Probabilistic Threshold
Range Query

To understand how PTQ is evaluated, let us examine the
Probabilistic Threshold Range Query (PTRQ). It is a range
query that utilizes probabilistic uncertainty and returns Ti’s
such that the probability that Ti.a is inside [l,u], denoted by
pi, is greater than or equal to p. Before presenting its evalua-
tion algorithm, it is useful to review the Probabilistic Range
Query (PRQ) discussed in [2]. PRQ is different from PTRQ
because PRQ imposes no probabilistic constraint on the re-
sult i.e., it returns all tuples (Ti, pi) with all pi > 0. Also,
PRQ returns pi to the user, but PTRQ does not.

1. R← /0
2. for i← 1 to |T | do

(a) OI←Ui(t)∩ [l,u]
(b) if (width of OI 6= 0) then

i. pi←
�

OI fi(x, t)dx
ii. if pi 6= 0 then R← R∪ (Ti, pi)

3. return R

Figure 3: PRQ Algorithm.

Figure 3 shows how PRQ is evaluated. Similar to IRQ, the
overlapping interval OI of each Ui(t) and [l,u] is evaluated
(Step 2a). Next, pi is computed by integrating fi(x, t) over
OI (Step 2b(i)). If pi 6= 0, (Ti, pi) is inserted into set R that
stores the result (Step 2b(ii)).

To evaluate PTRQ, we can simply change Step 2b(ii) to

if pi ≥ p then R← R∪Ti

so that the result only contains Ti’s with pi’s greater than or
equal to p. Unfortunately, this simple approach is not very
efficient. This is because we need to evaluate an integral

44 SIGMOD Record, Vol. 32, No. 4, December 2003

Query Type Uncertainty Constraint Example Answer Complexity

1. Traditional query None Range Query May be incorrect Low
2. Interval query MAY and MUST IRQ Imprecise (qualitative) Medium
3. Probabilistic threshold query Probabilistic threshold PTRQ Imprecise (probabilistic) High

Table 2: Query properties under different uncertainty models.

for each Ti in Step 2b(i) numerically, which involves divid-
ing the area under the curve of fi(x, t) into small equal-sized
stripes and summing up the area of each stripes. 2 We can
reduce the computation cost by exploiting the probabilistic
threshold p:

1. Estimate the upper bound of the integral before evaluat-
ing it. Specifically, divide OI into a few sub-intervals,
where the height of each sub-interval is equal to the
largest value of fi(x, t) in that sub-interval. If the sum
of the areas of these large sub-intervals is smaller than
p, we can immediately conclude that pi < p and Ti can-
not be the answer.

2. To evaluate the integral, the area of each stripe is eval-
uated and added to an intermediate sum pinter, where
integration is completed when pinter equals to pi. Once
pinter ≥ p , we can deduce that pi ≥ p and stop comput-
ing the integral.

3. If the interval outside [l,u] (i.e., Ui(t) − OI) has
a much shorter length than OI, we can evaluate�

Ui(t)−OI fi(x, t)dx instead. If the value of this integral
is smaller than p, then pi must be larger than p.

From the above discussions, we observe that by impos-
ing a probabilistic threshold to a probabilistic query, various
optimization techniques can be employed to improve its ef-
ficiency. The techniques for exploiting the threshold depend
on the class of the query, since each query class has its own
evaluation algorithm (see [2] for a classification of proba-
bilistic queries). An interesting future work is to explore the
efficient evaluation of PTQ for different query classes.

4.2 A Comparison of Imprecise Queries

Now let us compare traditional queries, interval queries and
probabilistic threshold queries. A traditional query does not
consider any data uncertainty information and is thus the
most efficient. However, its query answer can be completely
incorrect. An interval query handles interval uncertainty, and
is thus more complicated than traditional queries. The an-
swers it provides, however, are more meaningful than those

2In general we need to evaluate the integral numerically, unless fi(x,t)
is a simple function like the uniform distribution.

provided by traditional queries, where the imprecision of an-
swers is expressed through the use of MAY and MUST key-
words. Finally, a probabilistic threshold query runs under
the probabilistic uncertainty model. Since the pdf of the at-
tribute value is considered, its evaluation algorithm is costly
(as illustrated by the difference in evaluating an IRQ and
PTRQ). Nevertheless, it treats imprecise answers quantita-
tively with probabilistic guarantees, so that a user can have a
better understanding of the answers. Table 2 summarizes the
properties, answer precision and computational complexity
of the three query types.

5 Related Work

The constantly changing sensor data studied in this paper are
collectively known as dynamic attributes [11]. Their main
property is that their values change over time even if they are
not explicitly updated in the database. In [13], Wolfson et al.
present a moving object model where each moving object
is equipped with a facility to detect the deviation of its ac-
tual location from the location value in the DBMS. A thresh-
old value d is defined in such a way that if the deviation is
larger than it, then an update of the location of that object is
sent to the DBMS. If an object moves without any route, the
uncertainty is a circle with radius d bounding the location
of the object. This model can be generalized to the inter-
val uncertainty model, which bounds the uncertainty of any
continuously changing sensor data. The probabilistic uncer-
tainty model is discussed in [4] for moving objects and in
[2] for continuously sensor data. The essence of these mod-
els is captured by our more general and flexible framework.
A system designer can choose how detailed data uncertainty
should be represented, depending on system resources and
user requirements.

A spatio-temporal query language, called the Future Tem-
poral Logic (FTL), has been proposed in [11] for querying
moving object locations. The authors define the “may” and
“must” semantics for FTL: the former semantic specified
that the answer to a query has a probability of being incor-
rect, while the latter one requires the answer to be correct.
Another similar work in spatio-temporal query language is
by Abdessalem et al. [1]. We apply their concepts to interval
queries for inherently uncertain sensor data.

There are a number of works about evaluation of intervals.
SIGMOD Record, Vol. 32, No. 4, December 2003 45

Olston et al. discuss the problem of balancing the trade-off
between precision and performance for querying replicated
data [9, 8, 10]. In their model, the cache in the server cannot
keep track of the exact values of sensor sources due to lim-
ited network bandwidth. Instead of storing the actual value
in the server’s cache, an interval for each item is stored,
within which the current value must be located. A query
is then answered by using these intervals, together with the
actual values fetched from the sources. The problem of min-
imizing the update cost within an error bound specified by
aggregate queries is studied. Khanna et al. [5] extend Ol-
ston’s work by proposing an online algorithm to identify a
set of elements with minimum update cost so that a query
can be answered within an error bound. Manolopoulos et
al. [7] discuss an efficient interval tree to facilitate the exe-
cution of intersection queries over intervals, and Kriegel et
al. [6] propose an implementation of interval trees on top of
relational tables and database queries.

For probabilistic queries, Wolfson et al. [13] discuss range
queries for moving objects, while Cheng et al. [4, 3] de-
scribe nearest-neighbor query algorithms under different ob-
ject movement models. A general classification, evaluation
and quality of different types of probabilistic queries for sen-
sor data are presented in [2]. Here we propose the prob-
abilistic threshold query, which can be more efficient than
probabilistic queries (recall the discussions of PTRQ in Sec-
tion 4.1). It also allows users to have more control over the
answers, where only those with probabilities larger than the
threshold are returned.

6 Conclusions

Uncertainty is inherent with constantly-changing sensor
data. If a database system makes use of the sensor data with-
out being aware of its uncertainty, a query can yield incorrect
results. We tackle this problem by introducing a data uncer-
tainty framework that possesses different details of uncer-
tainty information. By using uncertainty information wisely,
queries can produce more meaningful results.

Depending on the amount of uncertainty given, queries
can produce different forms of imprecise results. Through
the example of a simple range query, we illustrate how
an interval query handles uncertainty interval qualitatively
through the use of MAY and MUST keywords, and how a PTQ
produces results with probabilistic guarantees. While the re-
sult of a PTQ is the most informative, it is also the most
expensive. However, a PTQ can be more efficient than a
probabilistic query if the probabilistic threshold constraint is
exploited. Our future work is to examine how to make other
queries, such as nearest-neighbor queries, to execute faster
through the use of probabilistic threshold information.

References

[1] T. Abdessalem, J. Moreira, and C. Ribeiro. Move-
ment query operations for spatio-temporel databases.
In Proc. 17èmes Journées Bases de Données Avancées
(BDA’01), Agadir, Maroc, October 2001.

[2] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluat-
ing probabilistic queries over imprecise data. In Proc.
of the ACM SIGMOD Intl. Conf. on Management of
Data, June 2003.

[3] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Query-
ing imprecise data in moving object environments. In
IEEE Transactions On Knowledge and Data Engineer-
ing (to appear), 2004.

[4] R. Cheng, S. Prabhakar, and D. V. Kalashnikov. Query-
ing imprecise data in moving object environments. In
Proc.of the Intl Conf. on Data Engineering (ICDE’03),
2003.

[5] S. Khanna and W.C. Tan. On computing functions with
uncertainty. In 20th ACM Symposium on Principles of
Database Systems, 2001.

[6] H. Kriegel, M. Potke, and T. Seidl. Managing intervals
efficiently in object-relational databases. In Proc. of
the 26th Intl. Conf. on VLDB, Cairo, Egypt, 2000.

[7] Y. Manolopoulos, Y. Theodoridis, and V.J. Tsotras.
Chapter 4: Access methods for intervals. In Advanced
Database Indexing. Kluwer, 2000.

[8] C. Olston, Boon Thau Loo, and J. Widom. Adaptive
precision setting for cached approximate values. In
Proc. of the ACM SIGMOD 2001 Intl. Conf. on Man-
agement of Data, 2001.

[9] C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over
replicated data. In Proc. of the 26th Intl. Conf. on Very
Large Data Bases, 2000.

[10] C. Olston and J. Widom. Best-effort cache synchro-
nization with source cooperation. In Proc. of the ACM
SIGMOD 2002 Intl. Conf. on Management of Data,
pages 73–84, 2002.

[11] P. A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Querying the uncertain position of moving objects. In
Temporal Databases: Research and Practice. 1998.

[12] Goce Trajcevski, Ouri Wolfson, Fengli Zhang, and
Sam Chamberlain. The geometry of uncertainty in
moving object databases. In EDBT, 8th International
Conference on Extending Database Technology, pages
233–250. Springer, March 2002.

[13] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha.
Updating and querying databases that track mobile
units. Distributed and Parallel Databases, 7(3), 1999.

46 SIGMOD Record, Vol. 32, No. 4, December 2003

